mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-24 15:16:41 -06:00
152 lines
5.5 KiB
C++
152 lines
5.5 KiB
C++
/*
|
|
Copyright 2019 Equinor ASA
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef BILU0_HPP
|
|
#define BILU0_HPP
|
|
|
|
#include <mutex>
|
|
|
|
#include <opm/simulators/linalg/bda/BlockedMatrix.hpp>
|
|
#include <opm/simulators/linalg/bda/ILUReorder.hpp>
|
|
|
|
#include <opm/simulators/linalg/bda/opencl.hpp>
|
|
#include <opm/simulators/linalg/bda/openclKernels.hpp>
|
|
#include <opm/simulators/linalg/bda/ChowPatelIlu.hpp>
|
|
|
|
// if CHOW_PATEL is 0, exact ILU decomposition is performed on CPU
|
|
// if CHOW_PATEL is 1, iterative ILU decomposition (FGPILU) is done, as described in:
|
|
// FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION, E. Chow and A. Patel, SIAM 2015, https://doi.org/10.1137/140968896
|
|
// if CHOW_PATEL_GPU is 0, the decomposition is done on CPU
|
|
// if CHOW_PATEL_GPU is 1, the decomposition is done by bda::FGPILU::decomposition() on GPU
|
|
// the apply phase of the ChowPatelIlu uses two triangular matrices: L and U
|
|
// the exact decomposition uses a full matrix LU which is the superposition of L and U
|
|
// ChowPatelIlu could also operate on a full matrix LU when L and U are merged, but it is generally better to keep them split
|
|
#define CHOW_PATEL 0
|
|
#define CHOW_PATEL_GPU 1
|
|
|
|
|
|
namespace bda
|
|
{
|
|
|
|
/// This class implementa a Blocked ILU0 preconditioner
|
|
/// The decomposition is done on CPU, and reorders the rows of the matrix
|
|
template <unsigned int block_size>
|
|
class BILU0
|
|
{
|
|
|
|
private:
|
|
int N; // number of rows of the matrix
|
|
int Nb; // number of blockrows of the matrix
|
|
int nnz; // number of nonzeroes of the matrix (scalar)
|
|
int nnzbs; // number of blocks of the matrix
|
|
std::unique_ptr<BlockedMatrix<block_size> > LUmat = nullptr;
|
|
std::shared_ptr<BlockedMatrix<block_size> > rmat = nullptr; // only used with PAR_SIM
|
|
#if CHOW_PATEL
|
|
std::unique_ptr<BlockedMatrix<block_size> > Lmat = nullptr, Umat = nullptr;
|
|
#endif
|
|
double *invDiagVals = nullptr;
|
|
std::vector<int> diagIndex;
|
|
std::vector<int> rowsPerColor; // color i contains rowsPerColor[i] rows, which are processed in parallel
|
|
std::vector<int> rowsPerColorPrefix; // the prefix sum of rowsPerColor
|
|
std::vector<int> toOrder, fromOrder;
|
|
int numColors;
|
|
int verbosity;
|
|
std::once_flag pattern_uploaded;
|
|
|
|
ILUReorder opencl_ilu_reorder;
|
|
|
|
typedef struct {
|
|
cl::Buffer invDiagVals;
|
|
cl::Buffer diagIndex;
|
|
cl::Buffer rowsPerColor;
|
|
#if CHOW_PATEL
|
|
cl::Buffer Lvals, Lcols, Lrows;
|
|
cl::Buffer Uvals, Ucols, Urows;
|
|
#else
|
|
cl::Buffer LUvals, LUcols, LUrows;
|
|
#endif
|
|
} GPU_storage;
|
|
|
|
ilu_apply1_kernel_type *ILU_apply1;
|
|
ilu_apply2_kernel_type *ILU_apply2;
|
|
cl::make_kernel<cl::Buffer&, const double, const unsigned int> *scale;
|
|
cl::make_kernel<const unsigned int, const unsigned int, cl::Buffer&, cl::Buffer&, cl::Buffer&,
|
|
cl::Buffer&, cl::Buffer&,
|
|
const int, cl::LocalSpaceArg> *ilu_decomp;
|
|
|
|
GPU_storage s;
|
|
cl::Context *context;
|
|
cl::CommandQueue *queue;
|
|
std::vector<cl::Event> events;
|
|
cl_int err;
|
|
int work_group_size = 0;
|
|
int total_work_items = 0;
|
|
int lmem_per_work_group = 0;
|
|
|
|
ChowPatelIlu chowPatelIlu;
|
|
|
|
void chow_patel_decomposition();
|
|
|
|
public:
|
|
|
|
BILU0(ILUReorder opencl_ilu_reorder, int verbosity);
|
|
|
|
~BILU0();
|
|
|
|
// analysis
|
|
bool init(BlockedMatrix<block_size> *mat);
|
|
|
|
// ilu_decomposition
|
|
bool create_preconditioner(BlockedMatrix<block_size> *mat);
|
|
|
|
// apply preconditioner, x = prec(y)
|
|
void apply(cl::Buffer& y, cl::Buffer& x);
|
|
|
|
void setOpenCLContext(cl::Context *context);
|
|
void setOpenCLQueue(cl::CommandQueue *queue);
|
|
void setKernelParameters(const unsigned int work_group_size, const unsigned int total_work_items, const unsigned int lmem_per_work_group);
|
|
void setKernels(
|
|
cl::make_kernel<cl::Buffer&, cl::Buffer&, cl::Buffer&, cl::Buffer&, cl::Buffer&, cl::Buffer&, cl::Buffer&, const unsigned int, const unsigned int, cl::LocalSpaceArg> *ILU_apply1,
|
|
cl::make_kernel<cl::Buffer&, cl::Buffer&, cl::Buffer&, cl::Buffer&, cl::Buffer&, cl::Buffer&, cl::Buffer&, const unsigned int, const unsigned int, cl::LocalSpaceArg> *ILU_apply2,
|
|
cl::make_kernel<cl::Buffer&, const double, const unsigned int> *scale,
|
|
cl::make_kernel<const unsigned int, const unsigned int, cl::Buffer&, cl::Buffer&, cl::Buffer&, cl::Buffer&, cl::Buffer&, const int, cl::LocalSpaceArg> *ilu_decomp
|
|
);
|
|
|
|
int* getToOrder()
|
|
{
|
|
return toOrder.data();
|
|
}
|
|
|
|
int* getFromOrder()
|
|
{
|
|
return fromOrder.data();
|
|
}
|
|
|
|
BlockedMatrix<block_size>* getRMat()
|
|
{
|
|
return rmat.get();
|
|
}
|
|
|
|
};
|
|
|
|
} // end namespace bda
|
|
|
|
#endif
|
|
|