opm-simulators/opm/simulators/linalg/bda/FPGASolverBackend.hpp
Giacomo Marchiori b4aa28771f Added fpgaSolver
2021-03-12 11:14:59 +01:00

266 lines
11 KiB
C++

/*
Copyright 2020 Equinor ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_FPGASOLVER_BACKEND_HEADER_INCLUDED
#define OPM_FPGASOLVER_BACKEND_HEADER_INCLUDED
#include <opm/simulators/linalg/bda/BdaSolver.hpp>
#include <opm/simulators/linalg/bda/FPGABILU0.hpp>
#include <linearalgebra/ilu0bicgstab/xilinx/src/sda_app/bicgstab_solver_config.hpp>
#include <linearalgebra/ilu0bicgstab/xilinx/src/sda_app/common/opencl_lib.hpp>
#include <linearalgebra/ilu0bicgstab/xilinx/src/sda_app/common/fpga_functions_bicgstab.hpp>
namespace bda
{
/// This class implements an ilu0-bicgstab solver on FPGA
template <unsigned int block_size>
class FpgaSolverBackend : public BdaSolver<block_size>
{
typedef BdaSolver<block_size> Base;
typedef FPGABILU0<block_size> Preconditioner;
using Base::N;
using Base::Nb;
using Base::nnz;
using Base::nnzb;
using Base::verbosity;
using Base::maxit;
using Base::tolerance;
using Base::initialized;
private:
double *rx = nullptr; // reordered x
double *rb = nullptr; // reordered b
int *fromOrder = nullptr, *toOrder = nullptr;
bool analysis_done = false;
bool level_scheduling = false;
// LUMat will shallow copy rowPointers and colIndices of mat/rMat
std::unique_ptr<BlockedMatrix<block_size> > mat = nullptr;
BlockedMatrix<block_size> *rMat = nullptr;
std::unique_ptr<Preconditioner> prec = nullptr;
// vectors with data processed by the preconditioner (input to the kernel)
void **processedPointers = nullptr;
int *processedSizes = nullptr;
unsigned int fpga_calls = 0;
bool perf_call_enabled = true;
// per call performance metrics
typedef struct {
double s_preconditioner_create = 0.0;
double s_analysis = 0.0;
double s_reorder = 0.0;
double s_mem_setup = 0.0;
double s_mem_h2d = 0.0;
double s_kernel_exec = 0.0;
unsigned int n_kernel_exec_cycles = 0;
float n_kernel_exec_iters = 0.0;
double s_mem_d2h = 0.0;
double s_solve = 0.0;
double s_postprocess = 0.0;
bool converged = false;
unsigned int converged_flags = 0;
} perf_call_metrics_t;
// cumulative performance metrics
typedef struct {
double s_initialization;
double s_preconditioner_setup;
double s_preconditioner_create;
double s_preconditioner_create_min,s_preconditioner_create_max,s_preconditioner_create_avg;
double s_analysis;
double s_analysis_min,s_analysis_max,s_analysis_avg;
double s_reorder;
double s_reorder_min,s_reorder_max,s_reorder_avg;
double s_mem_setup;
double s_mem_setup_min,s_mem_setup_max,s_mem_setup_avg;
double s_mem_h2d;
double s_mem_h2d_min,s_mem_h2d_max,s_mem_h2d_avg;
double s_kernel_exec;
double s_kernel_exec_min,s_kernel_exec_max,s_kernel_exec_avg;
unsigned long n_kernel_exec_cycles;
unsigned long n_kernel_exec_cycles_min,n_kernel_exec_cycles_max,n_kernel_exec_cycles_avg;
float n_kernel_exec_iters;
float n_kernel_exec_iters_min,n_kernel_exec_iters_max,n_kernel_exec_iters_avg;
double s_mem_d2h;
double s_mem_d2h_min,s_mem_d2h_max,s_mem_d2h_avg;
double s_solve;
double s_solve_min,s_solve_max,s_solve_avg;
double s_postprocess;
double s_postprocess_min,s_postprocess_max,s_postprocess_avg;
unsigned int n_converged;
} perf_total_metrics_t;
std::vector<perf_call_metrics_t> perf_call;
perf_total_metrics_t perf_total;
// fpga_config_bits: bit0=do_reset_debug: if 1, will reset debug flags at each state change, otherwise flags are sticky
// fpga_config_bits: bit1=absolute_compare: if 1, will compare norm with provided precision value, otherwise it's incremental
unsigned int fpga_config_bits = 0;
bool fpga_disabled = false;
bool platform_awsf1;
unsigned int debugbufferSize;
unsigned long int *debugBuffer = nullptr;
unsigned int *databufferSize = nullptr;
unsigned char *dataBuffer[RW_BUF] = {nullptr};
unsigned int debug_outbuf_words;
int resultsNum;
int resultsBufferNum;
unsigned int resultsBufferSize[RES_BUF_MAX];
unsigned int result_offsets[6];
unsigned int kernel_cycles, kernel_iter_run;
double norms[4];
unsigned char last_norm_idx;
bool kernel_aborted, kernel_signature, kernel_overflow;
bool kernel_noresults;
bool kernel_wrafterend, kernel_dbgfifofull;
bool use_residuals = false;
bool use_LU_res = false;
int sequence = 0;
// TODO: these values may be sent via command line parameters
unsigned int abort_cycles = 2000000000; // 2x10^9 @ 300MHz is around 6.6 s
unsigned int debug_sample_rate = 65535; // max value allowed is 65535, 0 means disabled; reduce to get a finer debug dump
int nnzValArrays_size = 0;
int L_nnzValArrays_size = 0;
int U_nnzValArrays_size = 0;
// aliases to areas of the host data buffers
long unsigned int *setupArray = nullptr;
double **nnzValArrays = nullptr;
short unsigned int *columnIndexArray = nullptr;
unsigned char *newRowOffsetArray = nullptr;
unsigned int *PIndexArray = nullptr;
unsigned int *colorSizesArray = nullptr;
double **L_nnzValArrays = nullptr;
short unsigned int *L_columnIndexArray = nullptr;
unsigned char *L_newRowOffsetArray = nullptr;
unsigned int *L_PIndexArray = nullptr;
unsigned int *L_colorSizesArray = nullptr;
double **U_nnzValArrays = nullptr;
short unsigned int *U_columnIndexArray = nullptr;
unsigned char *U_newRowOffsetArray = nullptr;
unsigned int *U_PIndexArray = nullptr;
unsigned int *U_colorSizesArray = nullptr;
double *BLKDArray = nullptr;
double *X1Array = nullptr, *X2Array = nullptr;
double *R1Array = nullptr, *R2Array = nullptr;
double *LresArray = nullptr, *UresArray = nullptr;
double *resultsBuffer[RES_BUF_MAX] = {nullptr}; // alias for data output region
// OpenCL variables
cl_device_id device_id;
cl_context context;
cl_command_queue commands;
cl_program program;
cl_kernel kernel;
cl_mem cldata[RW_BUF] = {nullptr};
cl_mem cldebug = nullptr;
// HW limits/configuration variables
unsigned int hw_x_vector_elem;
unsigned int hw_max_row_size;
unsigned int hw_max_column_size;
unsigned int hw_max_colors_size;
unsigned short hw_max_nnzs_per_row;
unsigned int hw_max_matrix_size;
bool hw_use_uram;
bool hw_write_ilu0_results;
unsigned short hw_dma_data_width;
unsigned char hw_x_vector_latency;
unsigned char hw_add_latency;
unsigned char hw_mult_latency;
unsigned char hw_mult_num;
unsigned char hw_num_read_ports;
unsigned char hw_num_write_ports;
unsigned short hw_reset_cycles;
unsigned short hw_reset_settle;
// debug
bool reset_data_buffers = false;
bool fill_results_buffers = false;
int dump_data_buffers = 0; // 0=disabled, 1=binary format, 2=text format
bool dump_results = false;
char *data_dir = nullptr;
char *basename = nullptr;
unsigned short rst_assert_cycles = 0;
unsigned short rst_settle_cycles = 0;
/// Allocate host memory
/// \param[in] N number of nonzeroes, divide by dim*dim to get number of blocks
/// \param[in] nnz number of nonzeroes, divide by dim*dim to get number of blocks
/// \param[in] dim size of block
/// \param[in] vals array of nonzeroes, each block is stored row-wise and contiguous, contains nnz values
/// \param[in] rows array of rowPointers, contains N/dim+1 values
/// \param[in] cols array of columnIndices, contains nnz values
void initialize(int N, int nnz, int dim, double *vals, int *rows, int *cols);
/// Reorder the linear system so it corresponds with the coloring
/// \param[in] vals array of nonzeroes, each block is stored row-wise and contiguous, contains nnz values
/// \param[in] b input vector
void update_system(double *vals, double *b);
/// Analyse sparsity pattern to extract parallelism
/// \return true iff analysis was successful
bool analyse_matrix();
/// Perform ilu0-decomposition
/// \return true iff decomposition was successful
bool create_preconditioner();
/// Solve linear system
/// \param[inout] res summary of solver result
void solve_system(BdaResult &res);
/// Generate FPGA backend statistics
void generate_statistics(void);
public:
/// Construct an fpgaSolver
/// \param[in] fpga_bitstream FPGA bitstream file name
/// \param[in] linear_solver_verbosity verbosity of fpgaSolver
/// \param[in] maxit maximum number of iterations for fpgaSolver
/// \param[in] tolerance required relative tolerance for fpgaSolver
/// \param[in] opencl_ilu_reorder select either level_scheduling or graph_coloring, see ILUReorder.hpp for explanation
FpgaSolverBackend(std::string fpga_bitstream, int linear_solver_verbosity, int maxit, double tolerance, ILUReorder opencl_ilu_reorder);
/// Destroy an fpgaSolver, and free memory
~FpgaSolverBackend();
/// Solve linear system, A*x = b, matrix A must be in blocked-CSR format
/// \param[in] N number of rows, divide by dim to get number of blockrows
/// \param[in] nnz number of nonzeroes, divide by dim*dim to get number of blocks
/// \param[in] dim size of block
/// \param[in] vals array of nonzeroes, each block is stored row-wise and contiguous, contains nnz values
/// \param[in] rows array of rowPointers, contains N/dim+1 values
/// \param[in] cols array of columnIndices, contains nnz values
/// \param[in] b input vector, contains N values
/// \param[in] wellContribs WellContributions, not used in FPGA solver because it requires them already added to matrix A
/// \param[inout] res summary of solver result
/// \return status code
SolverStatus solve_system(int N, int nnz, int dim, double *vals, int *rows, int *cols, double *b, WellContributions& wellContribs, BdaResult &res) override;
/// Get result after linear solve, and peform postprocessing if necessary
/// \param[inout] x resulting x vector, caller must guarantee that x points to a valid array
void get_result(double *x) override;
}; // end class fpgaSolverBackend
} //namespace bda
#endif