mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-24 15:16:41 -06:00
70c9d2e237
micp
824 lines
32 KiB
C++
824 lines
32 KiB
C++
/*
|
|
Copyright 2020 Equinor ASA
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <config.h>
|
|
#include <cmath>
|
|
#include <sstream>
|
|
|
|
#include <opm/common/OpmLog/OpmLog.hpp>
|
|
#include <opm/common/ErrorMacros.hpp>
|
|
#include <dune/common/timer.hh>
|
|
|
|
#include <opm/simulators/linalg/bda/openclSolverBackend.hpp>
|
|
|
|
#include <opm/simulators/linalg/bda/BdaResult.hpp>
|
|
#include <opm/simulators/linalg/bda/Reorder.hpp>
|
|
|
|
|
|
// iff true, the nonzeroes of the matrix are copied row-by-row into a contiguous, pinned memory array, then a single GPU memcpy is done
|
|
// otherwise, the nonzeroes of the matrix are assumed to be in a contiguous array, and a single GPU memcpy is enough
|
|
#define COPY_ROW_BY_ROW 0
|
|
|
|
namespace bda
|
|
{
|
|
|
|
using Opm::OpmLog;
|
|
using Dune::Timer;
|
|
|
|
template <unsigned int block_size>
|
|
openclSolverBackend<block_size>::openclSolverBackend(int verbosity_, int maxit_, double tolerance_, unsigned int platformID_, unsigned int deviceID_, ILUReorder opencl_ilu_reorder_) : BdaSolver<block_size>(verbosity_, maxit_, tolerance_, platformID_, deviceID_), opencl_ilu_reorder(opencl_ilu_reorder_) {
|
|
prec = new Preconditioner(opencl_ilu_reorder, verbosity_);
|
|
|
|
std::ostringstream out;
|
|
try {
|
|
std::vector<cl::Platform> platforms;
|
|
cl::Platform::get(&platforms);
|
|
if (platforms.empty()) {
|
|
OPM_THROW(std::logic_error, "Error openclSolver is selected but no OpenCL platforms are found");
|
|
}
|
|
out << "Found " << platforms.size() << " OpenCL platforms" << "\n";
|
|
|
|
if (verbosity >= 1) {
|
|
std::string platform_info;
|
|
for (unsigned int i = 0; i < platforms.size(); ++i) {
|
|
platforms[i].getInfo(CL_PLATFORM_NAME, &platform_info);
|
|
out << "Platform name : " << platform_info << "\n";
|
|
platforms[i].getInfo(CL_PLATFORM_VENDOR, &platform_info);
|
|
out << "Platform vendor : " << platform_info << "\n";
|
|
platforms[i].getInfo(CL_PLATFORM_VERSION, &platform_info);
|
|
out << "Platform version : " << platform_info << "\n";
|
|
platforms[i].getInfo(CL_PLATFORM_PROFILE, &platform_info);
|
|
out << "Platform profile : " << platform_info << "\n";
|
|
platforms[i].getInfo(CL_PLATFORM_EXTENSIONS, &platform_info);
|
|
out << "Platform extensions: " << platform_info << "\n\n";
|
|
}
|
|
}
|
|
OpmLog::info(out.str());
|
|
out.str("");
|
|
out.clear();
|
|
|
|
if (platforms.size() <= platformID) {
|
|
OPM_THROW(std::logic_error, "Error chosen too high OpenCL platform ID");
|
|
} else {
|
|
std::string platform_info;
|
|
out << "Chosen:\n";
|
|
platforms[platformID].getInfo(CL_PLATFORM_NAME, &platform_info);
|
|
out << "Platform name : " << platform_info << "\n";
|
|
platforms[platformID].getInfo(CL_PLATFORM_VERSION, &platform_info);
|
|
out << "Platform version : " << platform_info << "\n";
|
|
OpmLog::info(out.str());
|
|
out.str("");
|
|
out.clear();
|
|
}
|
|
|
|
platforms[platformID].getDevices(CL_DEVICE_TYPE_ALL, &devices);
|
|
|
|
if (devices.empty()) {
|
|
OPM_THROW(std::logic_error, "Error openclSolver is selected but no OpenCL devices are found");
|
|
}
|
|
out << "Found " << devices.size() << " OpenCL devices" << "\n";
|
|
|
|
if (verbosity >= 1) {
|
|
for (unsigned int i = 0; i < devices.size(); ++i) {
|
|
std::string device_info;
|
|
std::vector<size_t> work_sizes;
|
|
std::vector<cl_device_partition_property> partitions;
|
|
|
|
devices[i].getInfo(CL_DEVICE_NAME, &device_info);
|
|
out << "CL_DEVICE_NAME : " << device_info << "\n";
|
|
devices[i].getInfo(CL_DEVICE_VENDOR, &device_info);
|
|
out << "CL_DEVICE_VENDOR : " << device_info << "\n";
|
|
devices[i].getInfo(CL_DRIVER_VERSION, &device_info);
|
|
out << "CL_DRIVER_VERSION : " << device_info << "\n";
|
|
devices[i].getInfo(CL_DEVICE_BUILT_IN_KERNELS, &device_info);
|
|
out << "CL_DEVICE_BUILT_IN_KERNELS: " << device_info << "\n";
|
|
devices[i].getInfo(CL_DEVICE_PROFILE, &device_info);
|
|
out << "CL_DEVICE_PROFILE : " << device_info << "\n";
|
|
devices[i].getInfo(CL_DEVICE_OPENCL_C_VERSION, &device_info);
|
|
out << "CL_DEVICE_OPENCL_C_VERSION: " << device_info << "\n";
|
|
devices[i].getInfo(CL_DEVICE_EXTENSIONS, &device_info);
|
|
out << "CL_DEVICE_EXTENSIONS : " << device_info << "\n";
|
|
|
|
devices[i].getInfo(CL_DEVICE_MAX_WORK_ITEM_SIZES, &work_sizes);
|
|
for (unsigned int j = 0; j < work_sizes.size(); ++j) {
|
|
out << "CL_DEVICE_MAX_WORK_ITEM_SIZES[" << j << "]: " << work_sizes[j] << "\n";
|
|
}
|
|
devices[i].getInfo(CL_DEVICE_PARTITION_PROPERTIES, &partitions);
|
|
for (unsigned int j = 0; j < partitions.size(); ++j) {
|
|
out << "CL_DEVICE_PARTITION_PROPERTIES[" << j << "]: " << partitions[j] << "\n";
|
|
}
|
|
partitions.clear();
|
|
devices[i].getInfo(CL_DEVICE_PARTITION_TYPE, &partitions);
|
|
for (unsigned int j = 0; j < partitions.size(); ++j) {
|
|
out << "CL_DEVICE_PARTITION_PROPERTIES[" << j << "]: " << partitions[j] << "\n";
|
|
}
|
|
|
|
// C-style properties
|
|
cl_device_id tmp_id = devices[i]();
|
|
cl_ulong size;
|
|
clGetDeviceInfo(tmp_id, CL_DEVICE_LOCAL_MEM_SIZE, sizeof(cl_ulong), &size, 0);
|
|
out << "CL_DEVICE_LOCAL_MEM_SIZE : " << size / 1024 << " KB\n";
|
|
clGetDeviceInfo(tmp_id, CL_DEVICE_GLOBAL_MEM_SIZE, sizeof(cl_ulong), &size, 0);
|
|
out << "CL_DEVICE_GLOBAL_MEM_SIZE : " << size / 1024 / 1024 / 1024 << " GB\n";
|
|
clGetDeviceInfo(tmp_id, CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(cl_ulong), &size, 0);
|
|
out << "CL_DEVICE_MAX_COMPUTE_UNITS : " << size << "\n";
|
|
clGetDeviceInfo(tmp_id, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(cl_ulong), &size, 0);
|
|
out << "CL_DEVICE_MAX_MEM_ALLOC_SIZE : " << size / 1024 / 1024 << " MB\n";
|
|
clGetDeviceInfo(tmp_id, CL_DEVICE_MAX_WORK_GROUP_SIZE, sizeof(cl_ulong), &size, 0);
|
|
out << "CL_DEVICE_MAX_WORK_GROUP_SIZE : " << size << "\n";
|
|
clGetDeviceInfo(tmp_id, CL_DEVICE_GLOBAL_MEM_SIZE, sizeof(cl_ulong), &size, 0);
|
|
out << "CL_DEVICE_GLOBAL_MEM_SIZE : " << size / 1024 / 1024 / 1024 << " GB\n\n";
|
|
}
|
|
}
|
|
OpmLog::info(out.str());
|
|
out.str("");
|
|
out.clear();
|
|
|
|
if (devices.size() <= deviceID){
|
|
OPM_THROW(std::logic_error, "Error chosen too high OpenCL device ID");
|
|
} else {
|
|
std::string device_info;
|
|
out << "Chosen:\n";
|
|
devices[deviceID].getInfo(CL_DEVICE_NAME, &device_info);
|
|
out << "CL_DEVICE_NAME : " << device_info << "\n";
|
|
devices[deviceID].getInfo(CL_DEVICE_VERSION, &device_info);
|
|
out << "CL_DEVICE_VERSION : " << device_info << "\n";
|
|
OpmLog::info(out.str());
|
|
out.str("");
|
|
out.clear();
|
|
}
|
|
|
|
// removed all unused devices
|
|
if (deviceID != 0)
|
|
{
|
|
devices[0] = devices[deviceID];
|
|
}
|
|
devices.resize(1);
|
|
|
|
context = std::make_shared<cl::Context>(devices[0]);
|
|
queue.reset(new cl::CommandQueue(*context, devices[0], 0, &err));
|
|
|
|
} catch (const cl::Error& error) {
|
|
std::ostringstream oss;
|
|
oss << "OpenCL Error: " << error.what() << "(" << error.err() << ")\n";
|
|
oss << getErrorString(error.err());
|
|
// rethrow exception
|
|
OPM_THROW(std::logic_error, oss.str());
|
|
} catch (const std::logic_error& error) {
|
|
// rethrow exception by OPM_THROW in the try{}, without this, a segfault occurs
|
|
throw error;
|
|
}
|
|
}
|
|
|
|
|
|
template <unsigned int block_size>
|
|
openclSolverBackend<block_size>::~openclSolverBackend() {
|
|
finalize();
|
|
}
|
|
|
|
|
|
// divide A by B, and round up: return (int)ceil(A/B)
|
|
template <unsigned int block_size>
|
|
unsigned int openclSolverBackend<block_size>::ceilDivision(const unsigned int A, const unsigned int B)
|
|
{
|
|
return A / B + (A % B > 0);
|
|
}
|
|
|
|
|
|
template <unsigned int block_size>
|
|
double openclSolverBackend<block_size>::dot_w(cl::Buffer in1, cl::Buffer in2, cl::Buffer out)
|
|
{
|
|
const unsigned int work_group_size = 256;
|
|
const unsigned int num_work_groups = ceilDivision(N, work_group_size);
|
|
const unsigned int total_work_items = num_work_groups * work_group_size;
|
|
const unsigned int lmem_per_work_group = sizeof(double) * work_group_size;
|
|
Timer t_dot;
|
|
|
|
cl::Event event = (*dot_k)(cl::EnqueueArgs(*queue, cl::NDRange(total_work_items), cl::NDRange(work_group_size)), in1, in2, out, N, cl::Local(lmem_per_work_group));
|
|
|
|
queue->enqueueReadBuffer(out, CL_TRUE, 0, sizeof(double) * num_work_groups, tmp);
|
|
|
|
double gpu_sum = 0.0;
|
|
for (unsigned int i = 0; i < num_work_groups; ++i) {
|
|
gpu_sum += tmp[i];
|
|
}
|
|
|
|
if (verbosity >= 4) {
|
|
event.wait();
|
|
std::ostringstream oss;
|
|
oss << std::scientific << "openclSolver dot_w time: " << t_dot.stop() << " s";
|
|
OpmLog::info(oss.str());
|
|
}
|
|
|
|
return gpu_sum;
|
|
}
|
|
|
|
template <unsigned int block_size>
|
|
double openclSolverBackend<block_size>::norm_w(cl::Buffer in, cl::Buffer out)
|
|
{
|
|
const unsigned int work_group_size = 256;
|
|
const unsigned int num_work_groups = ceilDivision(N, work_group_size);
|
|
const unsigned int total_work_items = num_work_groups * work_group_size;
|
|
const unsigned int lmem_per_work_group = sizeof(double) * work_group_size;
|
|
Timer t_norm;
|
|
|
|
cl::Event event = (*norm_k)(cl::EnqueueArgs(*queue, cl::NDRange(total_work_items), cl::NDRange(work_group_size)), in, out, N, cl::Local(lmem_per_work_group));
|
|
|
|
queue->enqueueReadBuffer(out, CL_TRUE, 0, sizeof(double) * num_work_groups, tmp);
|
|
|
|
double gpu_norm = 0.0;
|
|
for (unsigned int i = 0; i < num_work_groups; ++i) {
|
|
gpu_norm += tmp[i];
|
|
}
|
|
gpu_norm = sqrt(gpu_norm);
|
|
|
|
if (verbosity >= 4) {
|
|
event.wait();
|
|
std::ostringstream oss;
|
|
oss << std::scientific << "openclSolver norm_w time: " << t_norm.stop() << " s";
|
|
OpmLog::info(oss.str());
|
|
}
|
|
|
|
return gpu_norm;
|
|
}
|
|
|
|
template <unsigned int block_size>
|
|
void openclSolverBackend<block_size>::axpy_w(cl::Buffer in, const double a, cl::Buffer out)
|
|
{
|
|
const unsigned int work_group_size = 32;
|
|
const unsigned int num_work_groups = ceilDivision(N, work_group_size);
|
|
const unsigned int total_work_items = num_work_groups * work_group_size;
|
|
Timer t_axpy;
|
|
|
|
cl::Event event = (*axpy_k)(cl::EnqueueArgs(*queue, cl::NDRange(total_work_items), cl::NDRange(work_group_size)), in, a, out, N);
|
|
|
|
if (verbosity >= 4) {
|
|
event.wait();
|
|
std::ostringstream oss;
|
|
oss << std::scientific << "openclSolver axpy_w time: " << t_axpy.stop() << " s";
|
|
OpmLog::info(oss.str());
|
|
}
|
|
}
|
|
|
|
template <unsigned int block_size>
|
|
void openclSolverBackend<block_size>::custom_w(cl::Buffer p, cl::Buffer v, cl::Buffer r, const double omega, const double beta)
|
|
{
|
|
const unsigned int work_group_size = 32;
|
|
const unsigned int num_work_groups = ceilDivision(N, work_group_size);
|
|
const unsigned int total_work_items = num_work_groups * work_group_size;
|
|
Timer t_custom;
|
|
|
|
cl::Event event = (*custom_k)(cl::EnqueueArgs(*queue, cl::NDRange(total_work_items), cl::NDRange(work_group_size)), p, v, r, omega, beta, N);
|
|
|
|
if (verbosity >= 4) {
|
|
event.wait();
|
|
std::ostringstream oss;
|
|
oss << std::scientific << "openclSolver custom_w time: " << t_custom.stop() << " s";
|
|
OpmLog::info(oss.str());
|
|
}
|
|
}
|
|
|
|
template <unsigned int block_size>
|
|
void openclSolverBackend<block_size>::spmv_blocked_w(cl::Buffer vals, cl::Buffer cols, cl::Buffer rows, cl::Buffer x, cl::Buffer b)
|
|
{
|
|
const unsigned int work_group_size = 32;
|
|
const unsigned int num_work_groups = ceilDivision(N, work_group_size);
|
|
const unsigned int total_work_items = num_work_groups * work_group_size;
|
|
const unsigned int lmem_per_work_group = sizeof(double) * work_group_size;
|
|
Timer t_spmv;
|
|
|
|
cl::Event event = (*spmv_blocked_k)(cl::EnqueueArgs(*queue, cl::NDRange(total_work_items), cl::NDRange(work_group_size)), vals, cols, rows, Nb, x, b, block_size, cl::Local(lmem_per_work_group));
|
|
|
|
if (verbosity >= 4) {
|
|
event.wait();
|
|
std::ostringstream oss;
|
|
oss << std::scientific << "openclSolver spmv_blocked_w time: " << t_spmv.stop() << " s";
|
|
OpmLog::info(oss.str());
|
|
}
|
|
}
|
|
|
|
template <unsigned int block_size>
|
|
void openclSolverBackend<block_size>::gpu_pbicgstab(WellContributions& wellContribs, BdaResult& res) {
|
|
float it;
|
|
double rho, rhop, beta, alpha, omega, tmp1, tmp2;
|
|
double norm, norm_0;
|
|
|
|
if(wellContribs.getNumWells() > 0){
|
|
wellContribs.setKernel(stdwell_apply_k.get(), stdwell_apply_no_reorder_k.get());
|
|
}
|
|
|
|
Timer t_total, t_prec(false), t_spmv(false), t_well(false), t_rest(false);
|
|
|
|
// set r to the initial residual
|
|
// if initial x guess is not 0, must call applyblockedscaleadd(), not implemented
|
|
//applyblockedscaleadd(-1.0, mat, x, r);
|
|
|
|
// set initial values
|
|
events.resize(5);
|
|
queue->enqueueFillBuffer(d_p, 0, 0, sizeof(double) * N, nullptr, &events[0]);
|
|
queue->enqueueFillBuffer(d_v, 0, 0, sizeof(double) * N, nullptr, &events[1]);
|
|
rho = 1.0;
|
|
alpha = 1.0;
|
|
omega = 1.0;
|
|
|
|
queue->enqueueCopyBuffer(d_b, d_r, 0, 0, sizeof(double) * N, nullptr, &events[2]);
|
|
queue->enqueueCopyBuffer(d_r, d_rw, 0, 0, sizeof(double) * N, nullptr, &events[3]);
|
|
queue->enqueueCopyBuffer(d_r, d_p, 0, 0, sizeof(double) * N, nullptr, &events[4]);
|
|
|
|
cl::WaitForEvents(events);
|
|
events.clear();
|
|
if (err != CL_SUCCESS) {
|
|
// enqueueWriteBuffer is C and does not throw exceptions like C++ OpenCL
|
|
OPM_THROW(std::logic_error, "openclSolverBackend OpenCL enqueue[Fill|Copy]Buffer error");
|
|
}
|
|
|
|
norm = norm_w(d_r, d_tmp);
|
|
norm_0 = norm;
|
|
|
|
if (verbosity > 1) {
|
|
std::ostringstream out;
|
|
out << std::scientific << "openclSolver initial norm: " << norm_0;
|
|
OpmLog::info(out.str());
|
|
}
|
|
|
|
t_rest.start();
|
|
for (it = 0.5; it < maxit; it += 0.5) {
|
|
rhop = rho;
|
|
rho = dot_w(d_rw, d_r, d_tmp);
|
|
|
|
if (it > 1) {
|
|
beta = (rho / rhop) * (alpha / omega);
|
|
custom_w(d_p, d_v, d_r, omega, beta);
|
|
}
|
|
t_rest.stop();
|
|
|
|
// pw = prec(p)
|
|
t_prec.start();
|
|
prec->apply(d_p, d_pw);
|
|
t_prec.stop();
|
|
|
|
// v = A * pw
|
|
t_spmv.start();
|
|
spmv_blocked_w(d_Avals, d_Acols, d_Arows, d_pw, d_v);
|
|
t_spmv.stop();
|
|
|
|
// apply wellContributions
|
|
t_well.start();
|
|
if(wellContribs.getNumWells() > 0){
|
|
wellContribs.apply(d_pw, d_v, d_toOrder);
|
|
}
|
|
t_well.stop();
|
|
|
|
t_rest.start();
|
|
tmp1 = dot_w(d_rw, d_v, d_tmp);
|
|
alpha = rho / tmp1;
|
|
axpy_w(d_v, -alpha, d_r); // r = r - alpha * v
|
|
axpy_w(d_pw, alpha, d_x); // x = x + alpha * pw
|
|
norm = norm_w(d_r, d_tmp);
|
|
t_rest.stop();
|
|
|
|
if (norm < tolerance * norm_0) {
|
|
break;
|
|
}
|
|
|
|
it += 0.5;
|
|
|
|
// s = prec(r)
|
|
t_prec.start();
|
|
prec->apply(d_r, d_s);
|
|
t_prec.stop();
|
|
|
|
// t = A * s
|
|
t_spmv.start();
|
|
spmv_blocked_w(d_Avals, d_Acols, d_Arows, d_s, d_t);
|
|
t_spmv.stop();
|
|
|
|
// apply wellContributions
|
|
t_well.start();
|
|
if(wellContribs.getNumWells() > 0){
|
|
wellContribs.apply(d_s, d_t, d_toOrder);
|
|
}
|
|
t_well.stop();
|
|
|
|
t_rest.start();
|
|
tmp1 = dot_w(d_t, d_r, d_tmp);
|
|
tmp2 = dot_w(d_t, d_t, d_tmp);
|
|
omega = tmp1 / tmp2;
|
|
axpy_w(d_s, omega, d_x); // x = x + omega * s
|
|
axpy_w(d_t, -omega, d_r); // r = r - omega * t
|
|
norm = norm_w(d_r, d_tmp);
|
|
t_rest.stop();
|
|
|
|
if (norm < tolerance * norm_0) {
|
|
break;
|
|
}
|
|
|
|
if (verbosity > 1) {
|
|
std::ostringstream out;
|
|
out << "it: " << it << std::scientific << ", norm: " << norm;
|
|
OpmLog::info(out.str());
|
|
}
|
|
}
|
|
|
|
res.iterations = std::min(it, (float)maxit);
|
|
res.reduction = norm / norm_0;
|
|
res.conv_rate = static_cast<double>(pow(res.reduction, 1.0 / it));
|
|
res.elapsed = t_total.stop();
|
|
res.converged = (it != (maxit + 0.5));
|
|
|
|
if (verbosity > 0) {
|
|
std::ostringstream out;
|
|
out << "=== converged: " << res.converged << ", conv_rate: " << res.conv_rate << ", time: " << res.elapsed << \
|
|
", time per iteration: " << res.elapsed / it << ", iterations: " << it;
|
|
OpmLog::info(out.str());
|
|
}
|
|
if (verbosity >= 4) {
|
|
std::ostringstream out;
|
|
out << "openclSolver::ilu_apply: " << t_prec.elapsed() << " s\n";
|
|
out << "wellContributions::apply: " << t_well.elapsed() << " s\n";
|
|
out << "openclSolver::spmv: " << t_spmv.elapsed() << " s\n";
|
|
out << "openclSolver::rest: " << t_rest.elapsed() << " s\n";
|
|
out << "openclSolver::total_solve: " << res.elapsed << " s\n";
|
|
OpmLog::info(out.str());
|
|
}
|
|
}
|
|
|
|
|
|
template <unsigned int block_size>
|
|
void openclSolverBackend<block_size>::initialize(int N_, int nnz_, int dim, double *vals, int *rows, int *cols) {
|
|
this->N = N_;
|
|
this->nnz = nnz_;
|
|
this->nnzb = nnz_ / block_size / block_size;
|
|
|
|
Nb = (N + dim - 1) / dim;
|
|
std::ostringstream out;
|
|
out << "Initializing GPU, matrix size: " << N << " blocks, nnzb: " << nnzb << "\n";
|
|
out << "Maxit: " << maxit << std::scientific << ", tolerance: " << tolerance << "\n";
|
|
out << "PlatformID: " << platformID << ", deviceID: " << deviceID << "\n";
|
|
OpmLog::info(out.str());
|
|
out.str("");
|
|
out.clear();
|
|
|
|
try {
|
|
prec->setOpenCLContext(context.get());
|
|
prec->setOpenCLQueue(queue.get());
|
|
|
|
tmp = new double[N];
|
|
#if COPY_ROW_BY_ROW
|
|
vals_contiguous = new double[N];
|
|
#endif
|
|
mat.reset(new BlockedMatrix<block_size>(Nb, nnzb, vals, cols, rows));
|
|
|
|
d_x = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(double) * N);
|
|
d_b = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(double) * N);
|
|
d_rb = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(double) * N);
|
|
d_r = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(double) * N);
|
|
d_rw = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(double) * N);
|
|
d_p = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(double) * N);
|
|
d_pw = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(double) * N);
|
|
d_s = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(double) * N);
|
|
d_t = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(double) * N);
|
|
d_v = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(double) * N);
|
|
d_tmp = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(double) * N);
|
|
|
|
d_Avals = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(double) * nnz);
|
|
d_Acols = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(int) * nnzb);
|
|
d_Arows = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(int) * (Nb + 1));
|
|
|
|
bool reorder = (opencl_ilu_reorder != ILUReorder::NONE);
|
|
if (reorder) {
|
|
rb = new double[N];
|
|
d_toOrder = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(int) * Nb);
|
|
}
|
|
|
|
get_opencl_kernels();
|
|
|
|
prec->setKernels(ILU_apply1_k.get(), ILU_apply2_k.get(), scale_k.get(), ilu_decomp_k.get());
|
|
|
|
} catch (const cl::Error& error) {
|
|
std::ostringstream oss;
|
|
oss << "OpenCL Error: " << error.what() << "(" << error.err() << ")\n";
|
|
oss << getErrorString(error.err());
|
|
// rethrow exception
|
|
OPM_THROW(std::logic_error, oss.str());
|
|
} catch (const std::logic_error& error) {
|
|
// rethrow exception by OPM_THROW in the try{}, without this, a segfault occurs
|
|
throw error;
|
|
}
|
|
|
|
initialized = true;
|
|
} // end initialize()
|
|
|
|
void add_kernel_string(cl::Program::Sources &sources, std::string &source) {
|
|
sources.emplace_back(std::make_pair(source.c_str(), source.size()));
|
|
}
|
|
|
|
template <unsigned int block_size>
|
|
void openclSolverBackend<block_size>::get_opencl_kernels() {
|
|
|
|
cl::Program::Sources sources;
|
|
std::string axpy_s = get_axpy_string();
|
|
add_kernel_string(sources, axpy_s);
|
|
std::string scale_s = get_scale_string();
|
|
add_kernel_string(sources, scale_s);
|
|
std::string dot_1_s = get_dot_1_string();
|
|
add_kernel_string(sources, dot_1_s);
|
|
std::string norm_s = get_norm_string();
|
|
add_kernel_string(sources, norm_s);
|
|
std::string custom_s = get_custom_string();
|
|
add_kernel_string(sources, custom_s);
|
|
std::string spmv_blocked_s = get_spmv_blocked_string();
|
|
add_kernel_string(sources, spmv_blocked_s);
|
|
#if CHOW_PATEL
|
|
bool ilu_operate_on_full_matrix = false;
|
|
#else
|
|
bool ilu_operate_on_full_matrix = true;
|
|
#endif
|
|
std::string ILU_apply1_s = get_ILU_apply1_string(ilu_operate_on_full_matrix);
|
|
add_kernel_string(sources, ILU_apply1_s);
|
|
std::string ILU_apply2_s = get_ILU_apply2_string(ilu_operate_on_full_matrix);
|
|
add_kernel_string(sources, ILU_apply2_s);
|
|
std::string stdwell_apply_s = get_stdwell_apply_string(true);
|
|
add_kernel_string(sources, stdwell_apply_s);
|
|
std::string stdwell_apply_no_reorder_s = get_stdwell_apply_string(false);
|
|
add_kernel_string(sources, stdwell_apply_no_reorder_s);
|
|
std::string ilu_decomp_s = get_ilu_decomp_string();
|
|
add_kernel_string(sources, ilu_decomp_s);
|
|
|
|
cl::Program program = cl::Program(*context, sources);
|
|
program.build(devices);
|
|
|
|
// queue.enqueueNDRangeKernel() is a blocking/synchronous call, at least for NVIDIA
|
|
// cl::make_kernel<> myKernel(); myKernel(args, arg1, arg2); is also blocking
|
|
|
|
// actually creating the kernels
|
|
dot_k.reset(new cl::make_kernel<cl::Buffer&, cl::Buffer&, cl::Buffer&, const unsigned int, cl::LocalSpaceArg>(cl::Kernel(program, "dot_1")));
|
|
norm_k.reset(new cl::make_kernel<cl::Buffer&, cl::Buffer&, const unsigned int, cl::LocalSpaceArg>(cl::Kernel(program, "norm")));
|
|
axpy_k.reset(new cl::make_kernel<cl::Buffer&, const double, cl::Buffer&, const unsigned int>(cl::Kernel(program, "axpy")));
|
|
scale_k.reset(new cl::make_kernel<cl::Buffer&, const double, const unsigned int>(cl::Kernel(program, "scale")));
|
|
custom_k.reset(new cl::make_kernel<cl::Buffer&, cl::Buffer&, cl::Buffer&, const double, const double, const unsigned int>(cl::Kernel(program, "custom")));
|
|
spmv_blocked_k.reset(new spmv_kernel_type(cl::Kernel(program, "spmv_blocked")));
|
|
ILU_apply1_k.reset(new ilu_apply1_kernel_type(cl::Kernel(program, "ILU_apply1")));
|
|
ILU_apply2_k.reset(new ilu_apply2_kernel_type(cl::Kernel(program, "ILU_apply2")));
|
|
stdwell_apply_k.reset(new stdwell_apply_kernel_type(cl::Kernel(program, "stdwell_apply")));
|
|
stdwell_apply_no_reorder_k.reset(new stdwell_apply_no_reorder_kernel_type(cl::Kernel(program, "stdwell_apply_no_reorder")));
|
|
ilu_decomp_k.reset(new ilu_decomp_kernel_type(cl::Kernel(program, "ilu_decomp")));
|
|
} // end get_opencl_kernels()
|
|
|
|
template <unsigned int block_size>
|
|
void openclSolverBackend<block_size>::finalize() {
|
|
if (opencl_ilu_reorder != ILUReorder::NONE) {
|
|
delete[] rb;
|
|
}
|
|
delete[] tmp;
|
|
#if COPY_ROW_BY_ROW
|
|
delete[] vals_contiguous;
|
|
#endif
|
|
delete prec;
|
|
} // end finalize()
|
|
|
|
template <unsigned int block_size>
|
|
void openclSolverBackend<block_size>::copy_system_to_gpu() {
|
|
Timer t;
|
|
events.resize(5);
|
|
|
|
#if COPY_ROW_BY_ROW
|
|
int sum = 0;
|
|
for (int i = 0; i < Nb; ++i) {
|
|
int size_row = rmat->rowPointers[i + 1] - rmat->rowPointers[i];
|
|
memcpy(vals_contiguous + sum, reinterpret_cast<double*>(rmat->nnzValues) + sum, size_row * sizeof(double) * block_size * block_size);
|
|
sum += size_row * block_size * block_size;
|
|
}
|
|
err = queue->enqueueWriteBuffer(d_Avals, CL_TRUE, 0, sizeof(double) * nnz, vals_contiguous, nullptr, &events[0]);
|
|
#else
|
|
err = queue->enqueueWriteBuffer(d_Avals, CL_TRUE, 0, sizeof(double) * nnz, rmat->nnzValues, nullptr, &events[0]);
|
|
#endif
|
|
|
|
err |= queue->enqueueWriteBuffer(d_Acols, CL_TRUE, 0, sizeof(int) * nnzb, rmat->colIndices, nullptr, &events[1]);
|
|
err |= queue->enqueueWriteBuffer(d_Arows, CL_TRUE, 0, sizeof(int) * (Nb + 1), rmat->rowPointers, nullptr, &events[2]);
|
|
err |= queue->enqueueWriteBuffer(d_b, CL_TRUE, 0, sizeof(double) * N, rb, nullptr, &events[3]);
|
|
err |= queue->enqueueFillBuffer(d_x, 0, 0, sizeof(double) * N, nullptr, &events[4]);
|
|
if (opencl_ilu_reorder != ILUReorder::NONE) {
|
|
events.resize(6);
|
|
queue->enqueueWriteBuffer(d_toOrder, CL_TRUE, 0, sizeof(int) * Nb, toOrder, nullptr, &events[5]);
|
|
}
|
|
cl::WaitForEvents(events);
|
|
events.clear();
|
|
if (err != CL_SUCCESS) {
|
|
// enqueueWriteBuffer is C and does not throw exceptions like C++ OpenCL
|
|
OPM_THROW(std::logic_error, "openclSolverBackend OpenCL enqueueWriteBuffer error");
|
|
}
|
|
|
|
if (verbosity > 2) {
|
|
std::ostringstream out;
|
|
out << "openclSolver::copy_system_to_gpu(): " << t.stop() << " s";
|
|
OpmLog::info(out.str());
|
|
}
|
|
} // end copy_system_to_gpu()
|
|
|
|
// don't copy rowpointers and colindices, they stay the same
|
|
template <unsigned int block_size>
|
|
void openclSolverBackend<block_size>::update_system_on_gpu() {
|
|
Timer t;
|
|
events.resize(3);
|
|
|
|
#if COPY_ROW_BY_ROW
|
|
int sum = 0;
|
|
for (int i = 0; i < Nb; ++i) {
|
|
int size_row = rmat->rowPointers[i + 1] - rmat->rowPointers[i];
|
|
memcpy(vals_contiguous + sum, reinterpret_cast<double*>(rmat->nnzValues) + sum, size_row * sizeof(double) * block_size * block_size);
|
|
sum += size_row * block_size * block_size;
|
|
}
|
|
err = queue->enqueueWriteBuffer(d_Avals, CL_TRUE, 0, sizeof(double) * nnz, vals_contiguous, nullptr, &events[0]);
|
|
#else
|
|
err = queue->enqueueWriteBuffer(d_Avals, CL_TRUE, 0, sizeof(double) * nnz, rmat->nnzValues, nullptr, &events[0]);
|
|
#endif
|
|
|
|
err |= queue->enqueueWriteBuffer(d_b, CL_TRUE, 0, sizeof(double) * N, rb, nullptr, &events[1]);
|
|
err |= queue->enqueueFillBuffer(d_x, 0, 0, sizeof(double) * N, nullptr, &events[2]);
|
|
cl::WaitForEvents(events);
|
|
events.clear();
|
|
if (err != CL_SUCCESS) {
|
|
// enqueueWriteBuffer is C and does not throw exceptions like C++ OpenCL
|
|
OPM_THROW(std::logic_error, "openclSolverBackend OpenCL enqueueWriteBuffer error");
|
|
}
|
|
|
|
if (verbosity > 2) {
|
|
std::ostringstream out;
|
|
out << "openclSolver::update_system_on_gpu(): " << t.stop() << " s";
|
|
OpmLog::info(out.str());
|
|
}
|
|
} // end update_system_on_gpu()
|
|
|
|
|
|
template <unsigned int block_size>
|
|
bool openclSolverBackend<block_size>::analyse_matrix() {
|
|
Timer t;
|
|
|
|
bool success = prec->init(mat.get());
|
|
int work_group_size = 32;
|
|
int num_work_groups = ceilDivision(N, work_group_size);
|
|
int total_work_items = num_work_groups * work_group_size;
|
|
int lmem_per_work_group = work_group_size * sizeof(double);
|
|
prec->setKernelParameters(work_group_size, total_work_items, lmem_per_work_group);
|
|
|
|
if (opencl_ilu_reorder == ILUReorder::NONE) {
|
|
rmat = mat.get();
|
|
} else {
|
|
toOrder = prec->getToOrder();
|
|
fromOrder = prec->getFromOrder();
|
|
rmat = prec->getRMat();
|
|
}
|
|
|
|
if (verbosity > 2) {
|
|
std::ostringstream out;
|
|
out << "openclSolver::analyse_matrix(): " << t.stop() << " s";
|
|
OpmLog::info(out.str());
|
|
}
|
|
|
|
analysis_done = true;
|
|
|
|
return success;
|
|
} // end analyse_matrix()
|
|
|
|
|
|
template <unsigned int block_size>
|
|
void openclSolverBackend<block_size>::update_system(double *vals, double *b, WellContributions &wellContribs) {
|
|
Timer t;
|
|
|
|
mat->nnzValues = vals;
|
|
if (opencl_ilu_reorder != ILUReorder::NONE) {
|
|
reorderBlockedVectorByPattern<block_size>(mat->Nb, b, fromOrder, rb);
|
|
wellContribs.setReordering(toOrder, true);
|
|
} else {
|
|
rb = b;
|
|
wellContribs.setReordering(nullptr, false);
|
|
}
|
|
|
|
if (verbosity > 2) {
|
|
std::ostringstream out;
|
|
out << "openclSolver::update_system(): " << t.stop() << " s";
|
|
OpmLog::info(out.str());
|
|
}
|
|
} // end update_system()
|
|
|
|
|
|
template <unsigned int block_size>
|
|
bool openclSolverBackend<block_size>::create_preconditioner() {
|
|
Timer t;
|
|
|
|
bool result = prec->create_preconditioner(mat.get());
|
|
|
|
if (verbosity > 2) {
|
|
std::ostringstream out;
|
|
out << "openclSolver::create_preconditioner(): " << t.stop() << " s";
|
|
OpmLog::info(out.str());
|
|
}
|
|
return result;
|
|
} // end create_preconditioner()
|
|
|
|
|
|
template <unsigned int block_size>
|
|
void openclSolverBackend<block_size>::solve_system(WellContributions &wellContribs, BdaResult &res) {
|
|
Timer t;
|
|
|
|
// actually solve
|
|
try {
|
|
gpu_pbicgstab(wellContribs, res);
|
|
} catch (const cl::Error& error) {
|
|
std::ostringstream oss;
|
|
oss << "openclSolverBackend::solve_system error: " << error.what() << "(" << error.err() << ")\n";
|
|
oss << getErrorString(error.err());
|
|
// rethrow exception
|
|
OPM_THROW(std::logic_error, oss.str());
|
|
} catch (const std::logic_error& error) {
|
|
// rethrow exception by OPM_THROW in the try{}, without this, a segfault occurs
|
|
throw error;
|
|
}
|
|
|
|
if (verbosity > 2) {
|
|
std::ostringstream out;
|
|
out << "openclSolver::solve_system(): " << t.stop() << " s";
|
|
OpmLog::info(out.str());
|
|
}
|
|
|
|
} // end solve_system()
|
|
|
|
|
|
// copy result to host memory
|
|
// caller must be sure that x is a valid array
|
|
template <unsigned int block_size>
|
|
void openclSolverBackend<block_size>::get_result(double *x) {
|
|
Timer t;
|
|
|
|
if (opencl_ilu_reorder != ILUReorder::NONE) {
|
|
queue->enqueueReadBuffer(d_x, CL_TRUE, 0, sizeof(double) * N, rb);
|
|
reorderBlockedVectorByPattern<block_size>(mat->Nb, rb, toOrder, x);
|
|
} else {
|
|
queue->enqueueReadBuffer(d_x, CL_TRUE, 0, sizeof(double) * N, x);
|
|
}
|
|
|
|
if (verbosity > 2) {
|
|
std::ostringstream out;
|
|
out << "openclSolver::get_result(): " << t.stop() << " s";
|
|
OpmLog::info(out.str());
|
|
}
|
|
} // end get_result()
|
|
|
|
|
|
template <unsigned int block_size>
|
|
SolverStatus openclSolverBackend<block_size>::solve_system(int N_, int nnz_, int dim, double *vals, int *rows, int *cols, double *b, WellContributions& wellContribs, BdaResult &res) {
|
|
if (initialized == false) {
|
|
initialize(N_, nnz_, dim, vals, rows, cols);
|
|
if (analysis_done == false) {
|
|
if (!analyse_matrix()) {
|
|
return SolverStatus::BDA_SOLVER_ANALYSIS_FAILED;
|
|
}
|
|
}
|
|
update_system(vals, b, wellContribs);
|
|
if (!create_preconditioner()) {
|
|
return SolverStatus::BDA_SOLVER_CREATE_PRECONDITIONER_FAILED;
|
|
}
|
|
copy_system_to_gpu();
|
|
} else {
|
|
update_system(vals, b, wellContribs);
|
|
if (!create_preconditioner()) {
|
|
return SolverStatus::BDA_SOLVER_CREATE_PRECONDITIONER_FAILED;
|
|
}
|
|
update_system_on_gpu();
|
|
}
|
|
solve_system(wellContribs, res);
|
|
return SolverStatus::BDA_SOLVER_SUCCESS;
|
|
}
|
|
|
|
|
|
#define INSTANTIATE_BDA_FUNCTIONS(n) \
|
|
template openclSolverBackend<n>::openclSolverBackend(int, int, double, unsigned int, unsigned int, ILUReorder); \
|
|
|
|
INSTANTIATE_BDA_FUNCTIONS(1);
|
|
INSTANTIATE_BDA_FUNCTIONS(2);
|
|
INSTANTIATE_BDA_FUNCTIONS(3);
|
|
INSTANTIATE_BDA_FUNCTIONS(4);
|
|
INSTANTIATE_BDA_FUNCTIONS(5);
|
|
INSTANTIATE_BDA_FUNCTIONS(6);
|
|
|
|
#undef INSTANTIATE_BDA_FUNCTIONS
|
|
|
|
} // namespace bda
|