opm-simulators/opm/autodiff/StandardWellsDense.hpp

423 lines
18 KiB
C++

/*
Copyright 2016 SINTEF ICT, Applied Mathematics.
Copyright 2016 - 2017 Statoil ASA.
Copyright 2017 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2016 - 2017 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_STANDARDWELLSDENSE_HEADER_INCLUDED
#define OPM_STANDARDWELLSDENSE_HEADER_INCLUDED
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/common/utility/platform_dependent/disable_warnings.h>
#include <opm/common/utility/platform_dependent/reenable_warnings.h>
#include <cassert>
#include <tuple>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <opm/core/wells.h>
#include <opm/core/wells/DynamicListEconLimited.hpp>
#include <opm/core/wells/WellCollection.hpp>
#include <opm/core/simulator/SimulatorReport.hpp>
#include <opm/autodiff/VFPProperties.hpp>
#include <opm/autodiff/VFPInjProperties.hpp>
#include <opm/autodiff/VFPProdProperties.hpp>
#include <opm/autodiff/WellHelpers.hpp>
#include <opm/autodiff/BlackoilModelEnums.hpp>
#include <opm/autodiff/WellDensitySegmented.hpp>
#include <opm/autodiff/BlackoilPropsAdFromDeck.hpp>
#include <opm/autodiff/BlackoilDetails.hpp>
#include <opm/autodiff/BlackoilModelParameters.hpp>
#include <opm/autodiff/WellStateFullyImplicitBlackoilDense.hpp>
#include <opm/autodiff/RateConverter.hpp>
#include <opm/autodiff/WellInterface.hpp>
#include <opm/autodiff/StandardWell.hpp>
#include<dune/common/fmatrix.hh>
#include<dune/istl/bcrsmatrix.hh>
#include<dune/istl/matrixmatrix.hh>
#include <opm/material/densead/Math.hpp>
#include <opm/material/densead/Evaluation.hpp>
#include <opm/simulators/WellSwitchingLogger.hpp>
#include <math.h>
namespace Opm {
enum WellVariablePositions {
XvarWell = 0,
WFrac = 1,
GFrac = 2,
SFrac = 3
};
/// Class for handling the standard well model.
template<typename TypeTag>
class StandardWellsDense {
public:
// --------- Types ---------
typedef WellStateFullyImplicitBlackoilDense WellState;
typedef BlackoilModelParameters ModelParameters;
typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, Indices) BlackoilIndices;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
static const int numEq = BlackoilIndices::numEq;
static const int numWellEq = GET_PROP_VALUE(TypeTag, EnablePolymer)? numEq-1 : numEq; // //numEq; //number of wellEq is only numEq for polymer
static const int contiSolventEqIdx = BlackoilIndices::contiSolventEqIdx;
static const int contiPolymerEqIdx = BlackoilIndices::contiPolymerEqIdx;
static const int solventSaturationIdx = BlackoilIndices::solventSaturationIdx;
static const int polymerConcentrationIdx = BlackoilIndices::polymerConcentrationIdx;
// TODO: where we should put these types, WellInterface or Well Model?
// or there is some other strategy, like TypeTag
typedef Dune::FieldVector<Scalar, numEq > VectorBlockType;
typedef Dune::FieldMatrix<Scalar, numEq, numEq > MatrixBlockType;
typedef Dune::BCRSMatrix <MatrixBlockType> Mat;
typedef Dune::BlockVector<VectorBlockType> BVector;
typedef DenseAd::Evaluation<Scalar, /*size=*/numEq + numWellEq> EvalWell;
typedef DenseAd::Evaluation<Scalar, /*size=*/numEq> Eval;
typedef Ewoms::BlackOilPolymerModule<TypeTag> PolymerModule;
// For the conversion between the surface volume rate and resrevoir voidage rate
using RateConverterType = RateConverter::
SurfaceToReservoirVoidage<BlackoilPropsAdFromDeck::FluidSystem, std::vector<int> >;
// --------- Public methods ---------
StandardWellsDense(const Wells* wells_arg,
WellCollection* well_collection,
const std::vector< const Well* >& wells_ecl,
const ModelParameters& param,
const RateConverterType& rate_converter,
const bool terminal_output,
const int current_index);
void init(const PhaseUsage phase_usage_arg,
const std::vector<bool>& active_arg,
const double gravity_arg,
const std::vector<double>& depth_arg,
const std::vector<double>& pv_arg,
long int global_nc,
const Grid& grid);
void setVFPProperties(const VFPProperties* vfp_properties_arg);
/// The number of components in the model.
int numComponents() const
{
if (numPhases() == 2) {
return 2;
}
int numComp = FluidSystem::numComponents;
if (has_solvent_) {
numComp ++;
}
return numComp;
}
SimulatorReport assemble(Simulator& ebosSimulator,
const int iterationIdx,
const double dt,
WellState& well_state);
void assembleWellEq(Simulator& ebosSimulator,
const double dt,
WellState& well_state,
bool only_wells);
void
getMobility(const Simulator& ebosSimulator,
const int w,
const int perf,
const int cell_idx,
std::vector<EvalWell>& mob) const;
void localInvert(Mat& istlA) const;
void print(Mat& istlA) const;
// substract Binv(D)rw from r;
void apply( BVector& r) const;
// subtract B*inv(D)*C * x from A*x
void apply(const BVector& x, BVector& Ax) const;
// apply well model with scaling of alpha
void applyScaleAdd(const Scalar alpha, const BVector& x, BVector& Ax) const;
// using the solution x to recover the solution xw for wells and applying
// xw to update Well State
void applySolutionWellState(const BVector& x, WellState& well_state) const;
int flowPhaseToEbosCompIdx( const int phaseIdx ) const;
int flowToEbosPvIdx( const int flowPv ) const;
int flowPhaseToEbosPhaseIdx( const int phaseIdx ) const;
std::vector<double>
extractPerfData(const std::vector<double>& in) const;
int numPhases() const;
int numCells() const;
void resetWellControlFromState(const WellState& xw) const;
const Wells& wells() const;
const Wells* wellsPointer() const;
/// return true if wells are available in the reservoir
bool wellsActive() const;
void setWellsActive(const bool wells_active);
/// return true if wells are available on this process
bool localWellsActive() const;
/// Density of each well perforation
const std::vector<double>& wellPerforationDensities() const;
/// Diff to bhp for each well perforation.
const std::vector<double>& wellPerforationPressureDiffs() const;
EvalWell extendEval(const Eval& in) const;
void setWellVariables(const WellState& xw);
void print(const EvalWell& in) const;
void computeAccumWells();
void computeWellFlux(const int& w, const double& Tw, const IntensiveQuantities& intQuants, const std::vector<EvalWell>& mob_perfcells_dense,
const EvalWell& bhp, const double& cdp, const bool& allow_cf, std::vector<EvalWell>& cq_s) const;
SimulatorReport solveWellEq(Simulator& ebosSimulator,
const double dt,
WellState& well_state);
void printIf(const int c, const double x, const double y, const double eps, const std::string type) const;
std::vector<double> residual() const;
bool getWellConvergence(Simulator& ebosSimulator,
const std::vector<Scalar>& B_avg) const;
void computeWellConnectionPressures(const Simulator& ebosSimulator,
const WellState& xw);
void updateWellControls(WellState& xw) const;
/// upate the dynamic lists related to economic limits
void updateListEconLimited(const Schedule& schedule,
const int current_step,
const Wells* wells_struct,
const WellState& well_state,
DynamicListEconLimited& list_econ_limited) const;
// Calculating well potentials for each well
// TODO: getBhp() will be refactored to reduce the duplication of the code calculating the bhp from THP.
void computeWellPotentials(const Simulator& ebosSimulator,
const WellState& well_state,
std::vector<double>& well_potentials) const;
// TODO: some preparation work, mostly related to group control and RESV,
// at the beginning of each time step (Not report step)
void prepareTimeStep(const Simulator& ebos_simulator,
WellState& well_state);
WellCollection* wellCollection() const;
const std::vector<double>&
wellPerfEfficiencyFactors() const;
void calculateEfficiencyFactors();
void computeWellVoidageRates(const WellState& well_state,
std::vector<double>& well_voidage_rates,
std::vector<double>& voidage_conversion_coeffs) const;
void applyVREPGroupControl(WellState& well_state) const;
void updateGroupControls(WellState& well_state) const;
protected:
bool wells_active_;
const Wells* wells_;
const std::vector< const Well* > wells_ecl_;
// the number of wells in this process
// trying not to use things from Wells struct
// TODO: maybe a better name to emphasize it is local?
const int number_of_wells_;
// a vector of all the wells.
// eventually, the wells_ above should be gone.
// the name is just temporary
// later, might make share_ptr const later.
// TODO: forget why make it share_ptr instead of unique_ptr
std::vector<std::shared_ptr<WellInterface<TypeTag> > > well_container_;
// TODO: forgot why returning a vector here
void createWellContainer(const Wells* wells_arg);
// Well collection is used to enforce the group control
WellCollection* well_collection_;
ModelParameters param_;
bool terminal_output_;
bool has_solvent_;
bool has_polymer_;
int current_timeIdx_;
PhaseUsage phase_usage_;
std::vector<bool> active_;
const VFPProperties* vfp_properties_;
double gravity_;
const RateConverterType& rate_converter_;
// The efficiency factor for each connection. It is specified based on wells and groups,
// We calculate the factor for each connection for the computation of contributions to the mass balance equations.
// By default, they should all be one.
std::vector<double> well_perforation_efficiency_factors_;
// the depth of the all the cell centers
// for standard Wells, it the same with the perforation depth
std::vector<double> cell_depths_;
std::vector<double> pv_;
std::vector<double> well_perforation_densities_;
std::vector<double> well_perforation_pressure_diffs_;
std::vector<double> wpolymer_;
std::vector<double> wsolvent_;
std::vector<double> wells_rep_radius_;
std::vector<double> wells_perf_length_;
std::vector<double> wells_bore_diameter_;
std::vector<EvalWell> wellVariables_;
BVector resWell_;
long int global_nc_;
mutable BVector scaleAddRes_;
// protected methods
EvalWell getBhp(const int wellIdx) const;
EvalWell getQs(const int wellIdx, const int compIdx) const;
EvalWell wellVolumeFraction(const int wellIdx, const int compIdx) const;
EvalWell wellVolumeFractionScaled(const int wellIdx, const int compIdx) const;
// Q_p / (Q_w + Q_g + Q_o) for three phase cases.
EvalWell wellSurfaceVolumeFraction(const int well_index, const int compIdx) const;
bool checkRateEconLimits(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state,
const int well_number) const;
using WellMapType = typename WellState::WellMapType;
using WellMapEntryType = typename WellState::mapentry_t;
// a tuple type for ratio limit check.
// first value indicates whether ratio limit is violated, when the ratio limit is not violated, the following three
// values should not be used.
// second value indicates whehter there is only one connection left.
// third value indicates the indx of the worst-offending connection.
// the last value indicates the extent of the violation for the worst-offending connection, which is defined by
// the ratio of the actual value to the value of the violated limit.
using RatioCheckTuple = std::tuple<bool, bool, int, double>;
enum ConnectionIndex {
INVALIDCONNECTION = -10000
};
RatioCheckTuple checkRatioEconLimits(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state,
const WellMapEntryType& map_entry) const;
RatioCheckTuple checkMaxWaterCutLimit(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state,
const WellMapEntryType& map_entry) const;
void updateWellStateWithTarget(const WellControls* wc,
const int current,
const int well_index,
WellState& xw) const;
bool wellHasTHPConstraints(const int well_index) const;
// TODO: maybe we should provide a light version of computeWellFlux, which does not include the
// calculation of the derivatives
void computeWellRatesWithBhp(const Simulator& ebosSimulator,
const EvalWell& bhp,
const int well_index,
std::vector<double>& well_flux) const;
double mostStrictBhpFromBhpLimits(const int well_index) const;
// TODO: maybe it should be improved to be calculate general rates for THP control later
std::vector<double>
computeWellPotentialWithTHP(const Simulator& ebosSimulator,
const int well_index,
const double initial_bhp, // bhp from BHP constraints
const std::vector<double>& initial_potential) const;
double wsolvent(const int well_index) const;
double wpolymer(const int well_index) const;
void setupCompressedToCartesian(const int* global_cell, int number_of_cells, std::map<int,int>& cartesian_to_compressed ) const;
void computeRepRadiusPerfLength(const Grid& grid);
void computeAverageFormationFactor(Simulator& ebosSimulator,
std::vector<double>& B_avg) const;
void outputWellState(const WellState& well_state) const;
};
} // namespace Opm
#include "StandardWellsDense_impl.hpp"
#endif