opm-simulators/opm/autodiff/WellStateFullyImplicitBlackoilDense.hpp
Tor Harald Sandve ce84a59b29 Remove reservoirState from BlackoilModelEbos
1) Use the solution variable directly in RelativeChange(...)
2) Add a method in the RateConverter that takes the simulator instead of the state.
3) Pass the reservoir pressure directly to the well initialization.
4) Move convertInput(...) to SimulatorFullyImplicitBlackoilEbos.hpp.
This code is only used to convert the initial reservoir state.
5) Modify  updateState(...). The solution variable is updated directly and adaptPrimaryVariable(...)
from ewoms is used to switch primary variables. An epsilon is passed to adaptPrimaryVarible(...) after a switch
of primary variables to make it harder to immediately switch back.

The following code used by flow_ebos still uses the reservoirState
1) the initialization
2) restart
3) output of the initial state
4) the step methods in AdaptiveTimeStepping and NonlinearSolver.
The reservoirState is not used by this methods, so after the initial step, an empty reservoirState is passed around in the code.
2017-08-17 11:13:00 +02:00

264 lines
9.9 KiB
C++

/*
Copyright 2016 IRIS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_WELLSTATEFULLYIMPLICITBLACKOILDENSE_HEADER_INCLUDED
#define OPM_WELLSTATEFULLYIMPLICITBLACKOILDENSE_HEADER_INCLUDED
#include <opm/core/wells.h>
#include <opm/core/well_controls.h>
#include <opm/core/simulator/WellState.hpp>
#include <opm/autodiff/BlackoilModelEnums.hpp>
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <vector>
#include <cassert>
#include <string>
#include <utility>
#include <map>
#include <algorithm>
#include <array>
#include <cmath>
namespace Opm
{
/// The state of a set of wells, tailored for use by the fully
/// implicit blackoil simulator.
class WellStateFullyImplicitBlackoilDense
: public WellStateFullyImplicitBlackoil
{
typedef WellStateFullyImplicitBlackoil BaseType;
public:
typedef BaseType :: WellMapType WellMapType;
using BaseType :: wellRates;
using BaseType :: bhp;
using BaseType :: perfPress;
using BaseType :: wellMap;
using BaseType :: numWells;
using BaseType :: numPhases;
using BaseType :: perfPhaseRates;
using BaseType :: currentControls;
/// Allocate and initialize if wells is non-null. Also tries
/// to give useful initial values to the bhp(), wellRates()
/// and perfPhaseRates() fields, depending on controls
template <class PrevWellState>
void init(const Wells* wells, const std::vector<double>& cellPressures, const PrevWellState& prevState, const PhaseUsage& pu)
{
// call init on base class
BaseType :: init(wells, cellPressures, prevState);
const int nw = wells->number_of_wells;
if (nw == 0) {
return;
}
const int nperf = wells->well_connpos[nw];
perfRateSolvent_.clear();
perfRateSolvent_.resize(nperf, 0.0);
if (pu.has_solvent) {
// intialize wells that have been there before
// order may change so the mapping is based on the well name
if( ! prevState.wellMap().empty() )
{
typedef typename WellMapType :: const_iterator const_iterator;
const_iterator end = prevState.wellMap().end();
for (int w = 0; w < nw; ++w) {
std::string name( wells->name[ w ] );
const_iterator it = prevState.wellMap().find( name );
if( it != end )
{
const int newIndex = w;
// perfSolventRates
int oldPerf_idx = (*it).second[ 1 ];
const int num_perf_old_well = (*it).second[ 2 ];
const int num_perf_this_well = wells->well_connpos[newIndex + 1] - wells->well_connpos[newIndex];
if( num_perf_old_well == num_perf_this_well )
{
for (int perf = wells->well_connpos[ newIndex ];
perf < wells->well_connpos[ newIndex + 1]; ++perf, ++oldPerf_idx )
{
perfRateSolvent()[ perf ] = prevState.perfRateSolvent()[ oldPerf_idx ];
}
}
}
}
}
}
// TODO: the reason to keep this is to avoid getting defaulted value BHP
// some facilities needed from opm-parser or opm-core
// It is a little tricky, since sometimes before applying group control, the only
// available constraints in the well_controls is the defaulted BHP value, and it
// is really not desirable to use this value to enter the Newton iterations.
setWellSolutions(pu);
}
/// Set wellSolutions() based on the base class members.
void setWellSolutions(const PhaseUsage& pu)
{
// Set nw and np, or return if no wells.
if (wells_.get() == nullptr) {
return;
}
const int nw = wells_->number_of_wells;
if (nw == 0) {
return;
}
const int np = wells_->number_of_phases;
const int numComp = pu.has_solvent? np+1:np;
well_solutions_.clear();
well_solutions_.resize(nw * numComp, 0.0);
std::vector<double> g = {1.0,1.0,0.01};
for (int w = 0; w < nw; ++w) {
WellControls* wc = wells_->ctrls[w];
// The current control in the well state overrides
// the current control set in the Wells struct, which
// is instead treated as a default.
const int current = currentControls()[w];
well_controls_set_current( wc, current);
const WellType& well_type = wells_->type[w];
switch (well_controls_iget_type(wc, current)) {
case THP: // Intentional fall-through
case BHP:
if (well_type == INJECTOR) {
for (int p = 0; p < np; ++p) {
well_solutions_[w] += wellRates()[np*w + p] * wells_->comp_frac[np*w + p];
}
} else {
for (int p = 0; p < np; ++p) {
well_solutions_[w] += g[p] * wellRates()[np*w + p];
}
}
break;
case RESERVOIR_RATE: // Intentional fall-through
case SURFACE_RATE:
wellSolutions()[w] = bhp()[w];
break;
}
double total_rates = 0.0;
for (int p = 0; p < np; ++p) {
total_rates += g[p] * wellRates()[np*w + p];
}
const int waterpos = pu.phase_pos[Water];
const int gaspos = pu.phase_pos[Gas];
assert(np > 2 || (np == 2 && !pu.phase_used[Gas]));
// assumes the gas fractions are stored after water fractions
if(std::abs(total_rates) > 0) {
if( pu.phase_used[Water] ) {
wellSolutions()[nw + w] = g[Water] * wellRates()[np*w + waterpos] / total_rates;
}
if( pu.phase_used[Gas] ) {
wellSolutions()[2*nw + w] = g[Gas] * (wellRates()[np*w + gaspos] - solventWellRate(w)) / total_rates ;
}
if( pu.has_solvent) {
wellSolutions()[3*nw + w] = g[Gas] * solventWellRate(w) / total_rates;
}
} else {
if( pu.phase_used[Water] ) {
wellSolutions()[nw + w] = wells_->comp_frac[np*w + waterpos];
}
if( pu.phase_used[Gas] ) {
wellSolutions()[2*nw + w] = wells_->comp_frac[np*w + gaspos];
}
if (pu.has_solvent) {
wellSolutions()[3*nw + w] = 0;
}
}
}
}
template <class State>
void resize(const Wells* wells, const State& state, const PhaseUsage& pu ) {
const WellStateFullyImplicitBlackoilDense dummy_state{}; // Init with an empty previous state only resizes
init(wells, state.pressure(), dummy_state, pu) ;
}
/// One rate per phase and well connection.
std::vector<double>& wellSolutions() { return well_solutions_; }
const std::vector<double>& wellSolutions() const { return well_solutions_; }
/// One rate pr well connection.
std::vector<double>& perfRateSolvent() { return perfRateSolvent_; }
const std::vector<double>& perfRateSolvent() const { return perfRateSolvent_; }
/// One rate pr well
double solventWellRate(const int w) const {
double solvent_well_rate = 0.0;
for (int perf = wells_->well_connpos[w]; perf < wells_->well_connpos[w+1]; ++perf ) {
solvent_well_rate += perfRateSolvent_[perf];
}
return solvent_well_rate;
}
data::Wells report(const PhaseUsage& pu) const override {
data::Wells res = BaseType::report(pu);
const int nw = WellState::numWells();
// If there are now wells numPhases throws a floating point
// exception.
if (nw == 0) {
return res;
}
if (pu.has_solvent) {
// add solvent component
for( int w = 0; w < nw; ++w ) {
using rt = data::Rates::opt;
res.at( wells_->name[ w ]).rates.set( rt::solvent, solventWellRate(w) );
}
}
return res;
}
private:
std::vector<double> well_solutions_;
std::vector<double> perfRateSolvent_;
};
} // namespace Opm
#endif // OPM_WELLSTATEFULLYIMPLICITBLACKOILDENSE_HEADER_INCLUDED