opm-simulators/examples/problems/fingerproblem.hh
Andreas Lauser 8e0e9e9d31 rename "(Volume|Flux)Variables" to "(In|Ex)tensiveQuantities"
"intensive" means that the value of these quantities at a given
spatial location does not depend on any value of the neighboring
intensive quantities. In contrast, "extensive" quantities depend in
the intensive quantities of the environment of the spatial location.

this change is necessary is because the previous nomenclature was very
specific to finite volume discretizations, but the models themselves
were already rather generic. (i.e., "volume variables" are the
intensive quantities of finite volume methods and "flux variables"
are the extensive ones.)
2014-06-24 18:24:09 +02:00

467 lines
14 KiB
C++

/*
Copyright (C) 2008-2013 by Andreas Lauser
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
/*!
* \file
*
* \copydoc Ewoms::FingerProblem
*/
#ifndef EWOMS_FINGER_PROBLEM_HH
#define EWOMS_FINGER_PROBLEM_HH
#include "fingergridmanager.hh"
#include <opm/material/fluidmatrixinteractions/RegularizedVanGenuchten.hpp>
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
#include <opm/material/fluidmatrixinteractions/ParkerLenhard.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/fluidsystems/TwoPhaseImmiscibleFluidSystem.hpp>
#include <opm/material/fluidstates/ImmiscibleFluidState.hpp>
#include <opm/material/components/SimpleH2O.hpp>
#include <opm/material/components/Air.hpp>
#include <ewoms/models/immiscible/immiscibleproperties.hh>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <vector>
#include <string>
namespace Ewoms {
template <class TypeTag>
class FingerProblem;
}
namespace Opm {
namespace Properties {
NEW_TYPE_TAG(FingerBaseProblem, INHERITS_FROM(FingerGridManager));
// declare the properties used by the finger problem
NEW_PROP_TAG(InitialWaterSaturation);
// Set the problem property
SET_TYPE_PROP(FingerBaseProblem, Problem, Ewoms::FingerProblem<TypeTag>);
// Set the wetting phase
SET_PROP(FingerBaseProblem, WettingPhase)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
public:
typedef Opm::LiquidPhase<Scalar, Opm::SimpleH2O<Scalar> > type;
};
// Set the non-wetting phase
SET_PROP(FingerBaseProblem, NonwettingPhase)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
public:
typedef Opm::GasPhase<Scalar, Opm::Air<Scalar> > type;
};
// Set the material Law
SET_PROP(FingerBaseProblem, MaterialLaw)
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef Opm::TwoPhaseMaterialTraits<Scalar,
/*wettingPhaseIdx=*/FluidSystem::wettingPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::nonWettingPhaseIdx> Traits;
// use the parker-lenhard hysteresis law
typedef Opm::ParkerLenhard<Traits> ParkerLenhard;
typedef ParkerLenhard type;
};
// Write the solutions of individual newton iterations?
SET_BOOL_PROP(FingerBaseProblem, NewtonWriteConvergence, false);
// Use forward differences instead of central differences
SET_INT_PROP(FingerBaseProblem, NumericDifferenceMethod, +1);
// Enable constraints
SET_INT_PROP(FingerBaseProblem, EnableConstraints, true);
// Enable gravity
SET_BOOL_PROP(FingerBaseProblem, EnableGravity, true);
// define the properties specific for the finger problem
SET_SCALAR_PROP(FingerBaseProblem, DomainSizeX, 0.1);
SET_SCALAR_PROP(FingerBaseProblem, DomainSizeY, 0.3);
SET_SCALAR_PROP(FingerBaseProblem, DomainSizeZ, 0.1);
SET_SCALAR_PROP(FingerBaseProblem, InitialWaterSaturation, 0.01);
SET_INT_PROP(FingerBaseProblem, CellsX, 20);
SET_INT_PROP(FingerBaseProblem, CellsY, 70);
SET_INT_PROP(FingerBaseProblem, CellsZ, 1);
// The default for the end time of the simulation
SET_SCALAR_PROP(FingerBaseProblem, EndTime, 1e3);
// The default for the initial time step size of the simulation
SET_SCALAR_PROP(FingerBaseProblem, InitialTimeStepSize, 10);
}} // namespace Opm, Properties
namespace Ewoms {
/*!
* \ingroup TestProblems
*
* \brief Two-phase problem featuring some gravity-driven saturation
* fingers.
*
* The domain of this problem is sized 10cm times 1m and is initially
* dry. Water is then injected at three locations on the top of the
* domain which leads to gravity fingering. The boundary conditions
* used are no-flow for the left and right and top of the domain and
* free-flow at the bottom. This problem uses the Parker-Lenhard
* hystersis model which might lead to non-monotonic saturation in the
* fingers if the right material parameters is chosen and the spatial
* discretization is fine enough.
*/
template <class TypeTag>
class FingerProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
{
//!\cond SKIP_THIS
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, WettingPhase) WettingPhase;
typedef typename GET_PROP_TYPE(TypeTag, NonwettingPhase) NonwettingPhase;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Constraints) Constraints;
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
enum {
// number of phases
// phase indices
wettingPhaseIdx = FluidSystem::wettingPhaseIdx,
nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx,
// equation indices
contiWettingEqIdx = Indices::conti0EqIdx + wettingPhaseIdx,
// Grid and world dimension
dim = GridView::dimension,
dimWorld = GridView::dimensionworld
};
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
typedef typename GET_PROP(TypeTag, MaterialLaw)::ParkerLenhard ParkerLenhard;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
typedef typename GridView::ctype CoordScalar;
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
//!\endcond
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
FingerProblem(Simulator &simulator)
: ParentType(simulator)
{
eps_ = 3e-6;
FluidSystem::init();
temperature_ = 273.15 + 20; // -> 20°C
}
/*!
* \name Auxiliary methods
*/
//! \{
/*!
* \copydoc VcfvProblem::name
*/
std::string name() const
{ return std::string("finger_") + Model::name(); }
/*!
* \copydoc FvBaseMultiPhaseProblem::registerParameters
*/
static void registerParameters()
{
ParentType::registerParameters();
EWOMS_REGISTER_PARAM(TypeTag, Scalar, InitialWaterSaturation,
"The initial saturation in the domain [] of the "
"wetting phase");
}
/*!
* \copydoc VcfvProblem::init
*/
void init()
{
// parameters for the Van Genuchten law of the main imbibition
// and the main drainage curves.
micParams_.setVgAlpha(0.0037);
micParams_.setVgN(4.7);
micParams_.finalize();
mdcParams_.setVgAlpha(0.0037);
mdcParams_.setVgN(4.7);
mdcParams_.finalize();
// initialize the material parameter objects of the individual
// finite volumes
int n = this->model().numDof();
materialParams_.resize(n);
for (int i = 0; i < n; ++i) {
materialParams_[i].setMicParams(&micParams_);
materialParams_[i].setMdcParams(&mdcParams_);
materialParams_[i].setSwr(0.0);
materialParams_[i].setSnr(0.1);
materialParams_[i].finalize();
ParkerLenhard::reset(materialParams_[i]);
}
K_ = this->toDimMatrix_(4.6e-10);
setupInitialFluidState_();
ParentType::init();
}
/*!
* \copydoc VcfvProblem::postTimeStep
*/
void postTimeStep()
{
// update the history of the hysteresis law
ElementContext elemCtx(this->simulator());
auto elemIt = this->gridView().template begin<0>();
const auto &elemEndIt = this->gridView().template end<0>();
for (; elemIt != elemEndIt; ++elemIt) {
elemCtx.updateAll(*elemIt);
for (int scvIdx = 0; scvIdx < elemCtx.numDof(/*timeIdx=*/0); ++scvIdx) {
int globalIdx = elemCtx.globalSpaceIndex(scvIdx, /*timeIdx=*/0);
const auto &fs = elemCtx.intensiveQuantities(scvIdx, /*timeIdx=*/0).fluidState();
ParkerLenhard::update(materialParams_[globalIdx], fs);
}
}
}
//! \}
/*!
* \name Soil parameters
*/
//! \{
/*!
* \copydoc FvBaseMultiPhaseProblem::temperature
*/
template <class Context>
Scalar temperature(const Context &context, int spaceIdx, int timeIdx) const
{ return temperature_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*/
template <class Context>
const DimMatrix &intrinsicPermeability(const Context &context, int spaceIdx,
int timeIdx) const
{ return K_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*/
template <class Context>
Scalar porosity(const Context &context, int spaceIdx, int timeIdx) const
{ return 0.4; }
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template <class Context>
const MaterialLawParams &materialLawParams(const Context &context,
int spaceIdx, int timeIdx) const
{
int globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return materialParams_[globalSpaceIdx];
}
//! \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc VcfvProblem::boundary
*/
template <class Context>
void boundary(BoundaryRateVector &values, const Context &context,
int spaceIdx, int timeIdx) const
{
const GlobalPosition &pos = context.cvCenter(spaceIdx, timeIdx);
if (onLeftBoundary_(pos) || onRightBoundary_(pos)
|| onLowerBoundary_(pos)) {
values.setNoFlow();
}
else {
assert(onUpperBoundary_(pos));
values.setFreeFlow(context, spaceIdx, timeIdx, initialFluidState_);
};
// override the value for the liquid phase by forced
// imbibition of water on inlet boundary segments
if (onInlet_(pos)) {
values[contiWettingEqIdx] = -0.001; // [kg/(m^2 s)]
}
}
//! \}
/*!
* \name Volumetric terms
*/
//! \{
/*!
* \copydoc VcfvProblem::initial
*/
template <class Context>
void initial(PrimaryVariables &values, const Context &context, int spaceIdx,
int timeIdx) const
{
// assign the primary variables
values.assignNaive(initialFluidState_);
}
/*!
* \copydoc VcfvProblem::constraints
*/
template <class Context>
void constraints(Constraints &constraints, const Context &context,
int spaceIdx, int timeIdx) const
{
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
if (onUpperBoundary_(pos) && !onInlet_(pos)) {
constraints.setAllConstraint();
constraints.assignNaive(initialFluidState_);
}
else if (onLowerBoundary_(pos)) {
constraints.setAllConstraint();
constraints.assignNaive(initialFluidState_);
}
}
/*!
* \copydoc VcfvProblem::source
*
* For this problem, the source term of all components is 0
* everywhere.
*/
template <class Context>
void source(RateVector &rate, const Context &context, int spaceIdx,
int timeIdx) const
{ rate = Scalar(0.0); }
//! \}
private:
bool onLeftBoundary_(const GlobalPosition &pos) const
{ return pos[0] < this->boundingBoxMin()[0] + eps_; }
bool onRightBoundary_(const GlobalPosition &pos) const
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
bool onLowerBoundary_(const GlobalPosition &pos) const
{ return pos[1] < this->boundingBoxMin()[1] + eps_; }
bool onUpperBoundary_(const GlobalPosition &pos) const
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
bool onInlet_(const GlobalPosition &pos) const
{
Scalar width = this->boundingBoxMax()[0] - this->boundingBoxMin()[0];
Scalar lambda = (this->boundingBoxMax()[0] - pos[0]) / width;
if (!onUpperBoundary_(pos))
return false;
Scalar xInject[] = { 0.25, 0.75 };
Scalar injectLen[] = { 0.1, 0.1 };
for (unsigned i = 0; i < sizeof(xInject) / sizeof(Scalar); ++i) {
if (xInject[i] - injectLen[i] / 2 < lambda
&& lambda < xInject[i] + injectLen[i] / 2)
return true;
}
return false;
}
void setupInitialFluidState_()
{
auto &fs = initialFluidState_;
fs.setPressure(wettingPhaseIdx, /*pressure=*/1e5);
Scalar Sw = EWOMS_GET_PARAM(TypeTag, Scalar, InitialWaterSaturation);
fs.setSaturation(wettingPhaseIdx, Sw);
fs.setSaturation(nonWettingPhaseIdx, 1 - Sw);
fs.setTemperature(temperature_);
// set the absolute pressures
Scalar pn = 1e5;
fs.setPressure(nonWettingPhaseIdx, pn);
fs.setPressure(wettingPhaseIdx, pn);
}
DimMatrix K_;
typename MaterialLawParams::VanGenuchtenParams micParams_;
typename MaterialLawParams::VanGenuchtenParams mdcParams_;
std::vector<MaterialLawParams> materialParams_;
Opm::ImmiscibleFluidState<Scalar, FluidSystem> initialFluidState_;
Scalar temperature_;
Scalar eps_;
};
} // namespace Ewoms
#endif