mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-08 07:23:02 -06:00
1d9d70ee02
this function is very long and need to debug very carefully and it should be split for better readability for sure.
1108 lines
42 KiB
C++
1108 lines
42 KiB
C++
/*
|
|
Copyright 2017 SINTEF ICT, Applied Mathematics.
|
|
Copyright 2017 Statoil ASA.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
namespace Opm
|
|
{
|
|
template<typename TypeTag>
|
|
StandardWell<TypeTag>::
|
|
StandardWell(const Well* well, const int time_step, const Wells* wells)
|
|
: WellInterface<TypeTag>(well, time_step, wells)
|
|
, perf_densities_(numberOfPerforations())
|
|
, perf_pressure_diffs_(numberOfPerforations())
|
|
, well_variables_(numWellEq) // the number of the primary variables
|
|
{
|
|
duneB_.setBuildMode( Mat::row_wise );
|
|
duneC_.setBuildMode( Mat::row_wise );
|
|
invDuneD_.setBuildMode( Mat::row_wise );
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
init(const PhaseUsage* phase_usage_arg,
|
|
const std::vector<bool>* active_arg,
|
|
const VFPProperties* vfp_properties_arg,
|
|
const double gravity_arg,
|
|
const int num_cells)
|
|
{
|
|
WellInterface<TypeTag>(phase_usage_arg, active_arg,
|
|
vfp_properties_arg, gravity_arg, num_cells);
|
|
|
|
// setup sparsity pattern for the matrices
|
|
// TODO: C and B are opposite compared with the notations used in the paper.
|
|
//[A B^T [x = [ res
|
|
// C D] x_well] res_well]
|
|
// set the size of the matrices
|
|
invDuneD_.setSize(1, 1, 1);
|
|
duneC_.setSize(1, num_cells, numberOfPerforations());
|
|
duneB_.setSize(1, num_cells, numberOfPerforations());
|
|
|
|
for (auto row=invDuneD_.createbegin(), end = invDuneD_.createend(); row!=end; ++row) {
|
|
// Add nonzeros for diagonal
|
|
row.insert(row.index());
|
|
}
|
|
|
|
for (auto row = duneC_.createbegin(), end = duneC_.createend(); row!=end; ++row) {
|
|
// Add nonzeros for diagonal
|
|
for (int perf = 0 ; perf < numberOfPerforations(); ++perf) {
|
|
const int cell_idx = wellCells()[perf];
|
|
row.insert(cell_idx);
|
|
}
|
|
}
|
|
|
|
// make the B^T matrix
|
|
for (auto row = duneB_.createbegin(), end = duneB_.createend(); row!=end; ++row) {
|
|
for (int perf = 0; perf < numberOfPerforations(); ++perf) {
|
|
const int cell_idx = wellCells()[perf];
|
|
row.insert(cell_idx);
|
|
}
|
|
}
|
|
|
|
resWell_.resize(1);
|
|
|
|
// resize temporary class variables
|
|
Cx_.resize( duneC_.N() );
|
|
invDrw_.resize( invDuneD_.N() );
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
const std::vector<double>&
|
|
StandardWell<TypeTag>::
|
|
perfDensities() const
|
|
{
|
|
return perf_densities_;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
std::vector<double>&
|
|
StandardWell<TypeTag>::
|
|
perfDensities()
|
|
{
|
|
return perf_densities_;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
const std::vector<double>&
|
|
StandardWell<TypeTag>::
|
|
perfPressureDiffs() const
|
|
{
|
|
return perf_pressure_diffs_;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
std::vector<double>&
|
|
StandardWell<TypeTag>::
|
|
perfPressureDiffs()
|
|
{
|
|
return perf_pressure_diffs_;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void StandardWell<TypeTag>::
|
|
setWellVariables(const WellState& well_state)
|
|
{
|
|
const int nw = well_state.bhp().size();
|
|
const int numComp = numComponents();
|
|
for (int eqIdx = 0; eqIdx < numComp; ++eqIdx) {
|
|
const unsigned int idx = nw * eqIdx + indexOfWell();
|
|
assert( eqIdx < well_variables_.size() );
|
|
assert( idx < well_state.wellSolutions().size() );
|
|
|
|
well_variables_[eqIdx] = 0.0;
|
|
well_variables_[eqIdx].setValue(well_state.wellSolutions()[idx]);
|
|
well_variables_[eqIdx].setDerivative(numEq + eqIdx, 1.0);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename StandardWell<TypeTag>::EvalWell
|
|
StandardWell<TypeTag>::
|
|
getBhp() const
|
|
{
|
|
const WellControls* wc = wellControls();
|
|
if (well_controls_get_current_type(wc) == BHP) {
|
|
EvalWell bhp = 0.0;
|
|
const double target_rate = well_controls_get_current_target(wc);
|
|
bhp.setValue(target_rate);
|
|
return bhp;
|
|
} else if (well_controls_get_current_type(wc) == THP) {
|
|
const int control = well_controls_get_current(wc);
|
|
const double thp = well_controls_get_current_target(wc);
|
|
const double alq = well_controls_iget_alq(wc, control);
|
|
const int table_id = well_controls_iget_vfp(wc, control);
|
|
EvalWell aqua = 0.0;
|
|
EvalWell liquid = 0.0;
|
|
EvalWell vapour = 0.0;
|
|
EvalWell bhp = 0.0;
|
|
double vfp_ref_depth = 0.0;
|
|
|
|
const Opm::PhaseUsage& pu = phaseUsage();
|
|
|
|
if (active()[ Water ]) {
|
|
aqua = getQs(pu.phase_pos[ Water]);
|
|
}
|
|
if (active()[ Oil ]) {
|
|
liquid = getQs(pu.phase_pos[ Oil ]);
|
|
}
|
|
if (active()[ Gas ]) {
|
|
vapour = getQs(pu.phase_pos[ Gas ]);
|
|
}
|
|
if (wellType() == INJECTOR) {
|
|
bhp = vfp_properties_->getInj()->bhp(table_id, aqua, liquid, vapour, thp);
|
|
vfp_ref_depth = vfp_properties_->getInj()->getTable(table_id)->getDatumDepth();
|
|
} else {
|
|
bhp = vfp_properties_->getProd()->bhp(table_id, aqua, liquid, vapour, thp, alq);
|
|
vfp_ref_depth = vfp_properties_->getProd()->getTable(table_id)->getDatumDepth();
|
|
}
|
|
|
|
// pick the density in the top layer
|
|
const double rho = perf_densities_[0];
|
|
// TODO: not sure whether it is always correct
|
|
const double well_ref_depth = perfDepth()[0];
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(well_ref_depth, vfp_ref_depth, rho, gravity_);
|
|
bhp -= dp;
|
|
return bhp;
|
|
}
|
|
|
|
return well_variables_[XvarWell];
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename StandardWell<TypeTag>::EvalWell
|
|
StandardWell<TypeTag>::
|
|
getQs(const int phase) const
|
|
{
|
|
EvalWell qs = 0.0;
|
|
|
|
const WellControls* wc = wellControls();
|
|
const int np = numberOfPhases();
|
|
const double target_rate = well_controls_get_current_target(wc);
|
|
|
|
// TODO: we need to introduce numComponents() for StandardWell
|
|
// assert(phase < numComponents());
|
|
const auto pu = phaseUsage();
|
|
|
|
// TODO: the formulation for the injectors decides it only work with single phase
|
|
// surface rate injection control. Improvement will be required.
|
|
if (wellType() == INJECTOR) {
|
|
// TODO: adding the handling related to solvent
|
|
/* if (has_solvent_ ) {
|
|
// TODO: investigate whether the use of the comp_frac is justified.
|
|
double comp_frac = 0.0;
|
|
if (compIdx == solventCompIdx) { // solvent
|
|
comp_frac = wells().comp_frac[np*wellIdx + pu.phase_pos[ Gas ]] * wsolvent(wellIdx);
|
|
} else if (compIdx == pu.phase_pos[ Gas ]) {
|
|
comp_frac = wells().comp_frac[np*wellIdx + compIdx] * (1.0 - wsolvent(wellIdx));
|
|
} else {
|
|
comp_frac = wells().comp_frac[np*wellIdx + compIdx];
|
|
}
|
|
if (comp_frac == 0.0) {
|
|
return qs; //zero
|
|
}
|
|
|
|
if (well_controls_get_current_type(wc) == BHP || well_controls_get_current_type(wc) == THP) {
|
|
return comp_frac * well_variables_[nw*XvarWell + wellIdx];
|
|
}
|
|
|
|
qs.setValue(comp_frac * target_rate);
|
|
return qs;
|
|
} */
|
|
const double comp_frac = compFrac()[phase];
|
|
if (comp_frac == 0.0) {
|
|
return qs;
|
|
}
|
|
|
|
if (well_controls_get_current_type(wc) == BHP || well_controls_get_current_type(wc) == THP) {
|
|
return well_variables_[XvarWell];
|
|
}
|
|
qs.setValue(target_rate);
|
|
return qs;
|
|
}
|
|
|
|
// Producers
|
|
if (well_controls_get_current_type(wc) == BHP || well_controls_get_current_type(wc) == THP ) {
|
|
return well_variables_[XvarWell] * wellVolumeFractionScaled(phase);
|
|
}
|
|
|
|
if (well_controls_get_current_type(wc) == SURFACE_RATE) {
|
|
// checking how many phases are included in the rate control
|
|
// to decide wheter it is a single phase rate control or not
|
|
const double* distr = well_controls_get_current_distr(wc);
|
|
int num_phases_under_rate_control = 0;
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
if (distr[phase] > 0.0) {
|
|
num_phases_under_rate_control += 1;
|
|
}
|
|
}
|
|
|
|
// there should be at least one phase involved
|
|
assert(num_phases_under_rate_control > 0);
|
|
|
|
// when it is a single phase rate limit
|
|
if (num_phases_under_rate_control == 1) {
|
|
|
|
// looking for the phase under control
|
|
int phase_under_control = -1;
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
if (distr[phase] > 0.0) {
|
|
phase_under_control = phase;
|
|
break;
|
|
}
|
|
}
|
|
|
|
assert(phase_under_control >= 0);
|
|
|
|
EvalWell wellVolumeFractionScaledPhaseUnderControl = wellVolumeFractionScaled(phase_under_control);
|
|
// TODO: handling solvent related later
|
|
/* if (has_solvent_ && phase_under_control == Gas) {
|
|
// for GRAT controlled wells solvent is included in the target
|
|
wellVolumeFractionScaledPhaseUnderControl += wellVolumeFractionScaled(solventCompIdx);
|
|
} */
|
|
|
|
if (phase == phase_under_control) {
|
|
/* if (has_solvent_ && phase_under_control == Gas) {
|
|
qs.setValue(target_rate * wellVolumeFractionScaled(Gas).value() / wellVolumeFractionScaledPhaseUnderControl.value() );
|
|
return qs;
|
|
} */
|
|
qs.setValue(target_rate);
|
|
return qs;
|
|
}
|
|
|
|
// TODO: not sure why the single phase under control will have near zero fraction
|
|
const double eps = 1e-6;
|
|
if (wellVolumeFractionScaledPhaseUnderControl < eps) {
|
|
return qs;
|
|
}
|
|
return (target_rate * wellVolumeFractionScaled(phase) / wellVolumeFractionScaledPhaseUnderControl);
|
|
}
|
|
|
|
// when it is a combined two phase rate limit, such like LRAT
|
|
// we neec to calculate the rate for the certain phase
|
|
if (num_phases_under_rate_control == 2) {
|
|
EvalWell combined_volume_fraction = 0.;
|
|
for (int p = 0; p < np; ++p) {
|
|
if (distr[p] == 1.0) {
|
|
combined_volume_fraction += wellVolumeFractionScaled(p);
|
|
}
|
|
}
|
|
return (target_rate * wellVolumeFractionScaled(phase) / combined_volume_fraction);
|
|
}
|
|
|
|
// TODO: three phase surface rate control is not tested yet
|
|
if (num_phases_under_rate_control == 3) {
|
|
return target_rate * wellSurfaceVolumeFraction(phase);
|
|
}
|
|
} else if (well_controls_get_current_type(wc) == RESERVOIR_RATE) {
|
|
// ReservoirRate
|
|
return target_rate * wellVolumeFractionScaled(phase);
|
|
} else {
|
|
OPM_THROW(std::logic_error, "Unknown control type for well " << name());
|
|
}
|
|
|
|
// avoid warning of condition reaches end of non-void function
|
|
return qs;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename StandardWell<TypeTag>::EvalWell
|
|
StandardWell<TypeTag>::
|
|
wellVolumeFractionScaled(const int compIdx) const
|
|
{
|
|
// TODO: we should be able to set the g for the well based on the control type
|
|
// instead of using explicit code for g all the times
|
|
const WellControls* wc = wellControls();
|
|
if (well_controls_get_current_type(wc) == RESERVOIR_RATE) {
|
|
|
|
if (has_solvent && compIdx == solventCompIdx) {
|
|
return wellVolumeFraction(compIdx);
|
|
}
|
|
const double* distr = well_controls_get_current_distr(wc);
|
|
assert(compIdx < 3);
|
|
if (distr[compIdx] > 0.) {
|
|
return wellVolumeFraction(compIdx) / distr[compIdx];
|
|
} else {
|
|
// TODO: not sure why return EvalWell(0.) causing problem here
|
|
// Probably due to the wrong Jacobians.
|
|
return wellVolumeFraction(compIdx);
|
|
}
|
|
}
|
|
|
|
std::vector<double> g = {1, 1, 0.01, 0.01};
|
|
return (wellVolumeFraction(compIdx) / g[compIdx]);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename StandardWell<TypeTag>::EvalWell
|
|
StandardWell<TypeTag>::
|
|
wellVolumeFraction(const int compIdx) const
|
|
{
|
|
if (compIdx == Water) {
|
|
return well_variables_[WFrac];
|
|
}
|
|
|
|
if (compIdx == Gas) {
|
|
return well_variables_[GFrac];
|
|
}
|
|
|
|
if (compIdx == solventCompIdx) {
|
|
return well_variables_[SFrac];
|
|
}
|
|
|
|
// Oil fraction
|
|
EvalWell well_fraction = 1.0;
|
|
if (active()[Water]) {
|
|
well_fraction -= well_variables_[WFrac];
|
|
}
|
|
|
|
if (active()[Gas]) {
|
|
well_fraction -= well_variables_[GFrac];
|
|
}
|
|
if (has_solvent) {
|
|
well_fraction -= well_variables_[SFrac];
|
|
}
|
|
return well_fraction;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename StandardWell<TypeTag>::EvalWell
|
|
StandardWell<TypeTag>::
|
|
wellSurfaceVolumeFraction(const int compIdx) const
|
|
{
|
|
EvalWell sum_volume_fraction_scaled = 0.;
|
|
const int numComp = numComponents();
|
|
for (int idx = 0; idx < numComp; ++idx) {
|
|
sum_volume_fraction_scaled += wellVolumeFractionScaled(idx);
|
|
}
|
|
|
|
assert(sum_volume_fraction_scaled.value() != 0.);
|
|
|
|
return wellVolumeFractionScaled(compIdx) / sum_volume_fraction_scaled;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename StandardWell<TypeTag>::EvalWell
|
|
StandardWell<TypeTag>::
|
|
extendEval(const Eval& in) const
|
|
{
|
|
EvalWell out = 0.0;
|
|
out.setValue(in.value());
|
|
for(int eqIdx = 0; eqIdx < numEq;++eqIdx) {
|
|
out.setDerivative(eqIdx, in.derivative(flowToEbosPvIdx(eqIdx)));
|
|
}
|
|
return out;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
computePerfRate(const IntensiveQuantities& intQuants,
|
|
const std::vector<EvalWell>& mob_perfcells_dense,
|
|
const double Tw, const EvalWell& bhp, const double& cdp,
|
|
const bool& allow_cf, std::vector<EvalWell>& cq_s) const
|
|
{
|
|
const Opm::PhaseUsage& pu = phaseUsage();
|
|
const int np = numPhases();
|
|
const int numComp = numComponents();
|
|
std::vector<EvalWell> cmix_s(numComp,0.0);
|
|
for (int componentIdx = 0; componentIdx < numComp; ++componentIdx) {
|
|
cmix_s[componentIdx] = wellSurfaceVolumeFraction(componentIdx);
|
|
}
|
|
auto& fs = intQuants.fluidState();
|
|
|
|
EvalWell pressure = extendEval(fs.pressure(FluidSystem::oilPhaseIdx));
|
|
EvalWell rs = extendEval(fs.Rs());
|
|
EvalWell rv = extendEval(fs.Rv());
|
|
std::vector<EvalWell> b_perfcells_dense(numComp, 0.0);
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phase);
|
|
b_perfcells_dense[phase] = extendEval(fs.invB(ebosPhaseIdx));
|
|
}
|
|
if (has_solvent) {
|
|
b_perfcells_dense[solventCompIdx] = extendEval(intQuants.solventInverseFormationVolumeFactor());
|
|
}
|
|
|
|
// Pressure drawdown (also used to determine direction of flow)
|
|
EvalWell well_pressure = bhp + cdp;
|
|
EvalWell drawdown = pressure - well_pressure;
|
|
|
|
// producing perforations
|
|
if ( drawdown.value() > 0 ) {
|
|
//Do nothing if crossflow is not allowed
|
|
if (!allow_cf && wellType() == INJECTOR) {
|
|
return;
|
|
}
|
|
|
|
// compute component volumetric rates at standard conditions
|
|
for (int componentIdx = 0; componentIdx < numComp; ++componentIdx) {
|
|
const EvalWell cq_p = - Tw * (mob_perfcells_dense[componentIdx] * drawdown);
|
|
cq_s[componentIdx] = b_perfcells_dense[componentIdx] * cq_p;
|
|
}
|
|
|
|
if (active()[Oil] && active()[Gas]) {
|
|
const int oilpos = pu.phase_pos[Oil];
|
|
const int gaspos = pu.phase_pos[Gas];
|
|
const EvalWell cq_sOil = cq_s[oilpos];
|
|
const EvalWell cq_sGas = cq_s[gaspos];
|
|
cq_s[gaspos] += rs * cq_sOil;
|
|
cq_s[oilpos] += rv * cq_sGas;
|
|
}
|
|
|
|
} else {
|
|
//Do nothing if crossflow is not allowed
|
|
if (!allow_cf && wellType() == PRODUCER) {
|
|
return;
|
|
}
|
|
|
|
// Using total mobilities
|
|
EvalWell total_mob_dense = mob_perfcells_dense[0];
|
|
for (int componentIdx = 1; componentIdx < numComp; ++componentIdx) {
|
|
total_mob_dense += mob_perfcells_dense[componentIdx];
|
|
}
|
|
|
|
// injection perforations total volume rates
|
|
const EvalWell cqt_i = - Tw * (total_mob_dense * drawdown);
|
|
|
|
// compute volume ratio between connection at standard conditions
|
|
EvalWell volumeRatio = 0.0;
|
|
if (active()[Water]) {
|
|
const int watpos = pu.phase_pos[Water];
|
|
volumeRatio += cmix_s[watpos] / b_perfcells_dense[watpos];
|
|
}
|
|
|
|
if (has_solvent) {
|
|
volumeRatio += cmix_s[solventCompIdx] / b_perfcells_dense[solventCompIdx];
|
|
}
|
|
|
|
if (active()[Oil] && active()[Gas]) {
|
|
const int oilpos = pu.phase_pos[Oil];
|
|
const int gaspos = pu.phase_pos[Gas];
|
|
|
|
// Incorporate RS/RV factors if both oil and gas active
|
|
const EvalWell d = 1.0 - rv * rs;
|
|
|
|
if (d.value() == 0.0) {
|
|
OPM_THROW(Opm::NumericalProblem, "Zero d value obtained for well " << name() << " during flux calcuation"
|
|
<< " with rs " << rs << " and rv " << rv);
|
|
}
|
|
|
|
const EvalWell tmp_oil = (cmix_s[oilpos] - rv * cmix_s[gaspos]) / d;
|
|
//std::cout << "tmp_oil " <<tmp_oil << std::endl;
|
|
volumeRatio += tmp_oil / b_perfcells_dense[oilpos];
|
|
|
|
const EvalWell tmp_gas = (cmix_s[gaspos] - rs * cmix_s[oilpos]) / d;
|
|
//std::cout << "tmp_gas " <<tmp_gas << std::endl;
|
|
volumeRatio += tmp_gas / b_perfcells_dense[gaspos];
|
|
}
|
|
else {
|
|
if (active()[Oil]) {
|
|
const int oilpos = pu.phase_pos[Oil];
|
|
volumeRatio += cmix_s[oilpos] / b_perfcells_dense[oilpos];
|
|
}
|
|
if (active()[Gas]) {
|
|
const int gaspos = pu.phase_pos[Gas];
|
|
volumeRatio += cmix_s[gaspos] / b_perfcells_dense[gaspos];
|
|
}
|
|
}
|
|
|
|
// injecting connections total volumerates at standard conditions
|
|
EvalWell cqt_is = cqt_i/volumeRatio;
|
|
//std::cout << "volrat " << volumeRatio << " " << volrat_perf_[perf] << std::endl;
|
|
for (int componentIdx = 0; componentIdx < numComp; ++componentIdx) {
|
|
cq_s[componentIdx] = cmix_s[componentIdx] * cqt_is; // * b_perfcells_dense[phase];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
assembleWellEq(Simulator& ebosSimulator,
|
|
const double dt,
|
|
WellState& well_state,
|
|
bool only_wells)
|
|
{
|
|
// TODO: accessing well_state information is the only place to use nw at the moment
|
|
const int nw = well_state.bhp().size();
|
|
const int numComp = numComponents();
|
|
const int np = numPhases();
|
|
|
|
// clear all entries
|
|
duneB_ = 0.0;
|
|
duneC_ = 0.0;
|
|
invDuneD_ = 0.0;
|
|
resWell_ = 0.0;
|
|
|
|
auto& ebosJac = ebosSimulator.model().linearizer().matrix();
|
|
auto& ebosResid = ebosSimulator.model().linearizer().residual();
|
|
|
|
// TODO: it probably can be static member for StandardWell
|
|
const double volume = 0.002831684659200; // 0.1 cu ft;
|
|
|
|
const bool allow_cf = allow_cross_flow(ebosSimulator);
|
|
|
|
const EvalWell& bhp = getBhp();
|
|
|
|
for (int perf = 0; perf < numberOfPerforations(); ++perf) {
|
|
|
|
const int cell_idx = wellCells()[perf];
|
|
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
|
|
std::vector<EvalWell> cq_s(numComp,0.0);
|
|
std::vector<EvalWell> mob(numComp, 0.0);
|
|
getMobility(ebosSimulator, perf, mob);
|
|
computePerfRate(intQuants, mob, wellIndex()[perf], bhp, perfPressureDiffs()[perf], allow_cf, cq_s);
|
|
|
|
for (int componentIdx = 0; componentIdx < numComp; ++componentIdx) {
|
|
// the cq_s entering mass balance equations need to consider the efficiency factors.
|
|
const EvalWell cq_s_effective = cq_s[componentIdx] * well_efficiency_factor_;
|
|
|
|
if (!only_wells) {
|
|
// subtract sum of component fluxes in the reservoir equation.
|
|
// need to consider the efficiency factor
|
|
ebosResid[cell_idx][flowPhaseToEbosCompIdx(componentIdx)] -= cq_s_effective.value();
|
|
}
|
|
|
|
// subtract sum of phase fluxes in the well equations.
|
|
resWell_[0][componentIdx] -= cq_s[componentIdx].value();
|
|
|
|
// assemble the jacobians
|
|
for (int pvIdx = 0; pvIdx < numWellEq; ++pvIdx) {
|
|
if (!only_wells) {
|
|
// also need to consider the efficiency factor when manipulating the jacobians.
|
|
ebosJac[cell_idx][cell_idx][flowPhaseToEbosCompIdx(componentIdx)][flowToEbosPvIdx(pvIdx)] -= cq_s_effective.derivative(pvIdx);
|
|
duneB_[0][cell_idx][pvIdx][flowPhaseToEbosCompIdx(componentIdx)] -= cq_s_effective.derivative(pvIdx+numEq); // intput in transformed matrix
|
|
duneC_[0][cell_idx][componentIdx][flowToEbosPvIdx(pvIdx)] -= cq_s_effective.derivative(pvIdx);
|
|
}
|
|
invDuneD_[0][0][componentIdx][pvIdx] -= cq_s[componentIdx].derivative(pvIdx+numEq);
|
|
}
|
|
|
|
// add trivial equation for 2p cases (Only support water + oil)
|
|
if (numComp == 2) {
|
|
assert(!active()[ Gas ]);
|
|
invDuneD_[0][0][Gas][Gas] = 1.0;
|
|
}
|
|
|
|
// Store the perforation phase flux for later usage.
|
|
if (componentIdx == solventCompIdx) {// if (flowPhaseToEbosCompIdx(componentIdx) == Solvent)
|
|
well_state.perfRateSolvent()[perf] = cq_s[componentIdx].value();
|
|
} else {
|
|
well_state.perfPhaseRates()[perf*np + componentIdx] = cq_s[componentIdx].value();
|
|
}
|
|
}
|
|
|
|
// Store the perforation pressure for later usage.
|
|
well_state.perfPress()[perf] = well_state.bhp()[indexOfWell()] + perfPressureDiffs()[perf];
|
|
}
|
|
|
|
// add vol * dF/dt + Q to the well equations;
|
|
for (int componentIdx = 0; componentIdx < numComp; ++componentIdx) {
|
|
// TODO: the F0_ here is not initialized yet here, which should happen in the first iteration, so it should happen in the assemble function
|
|
EvalWell resWell_loc = (wellSurfaceVolumeFraction(componentIdx) - F0_[componentIdx]) * volume / dt;
|
|
resWell_loc += getQs(componentIdx);
|
|
for (int pvIdx = 0; pvIdx < numWellEq; ++pvIdx) {
|
|
invDuneD_[0][0][componentIdx][pvIdx] += resWell_loc.derivative(pvIdx+numEq);
|
|
}
|
|
resWell_[0][componentIdx] += resWell_loc.value();
|
|
}
|
|
|
|
// do the local inversion of D.
|
|
localInvert( invDuneD_ );
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
StandardWell<TypeTag>::
|
|
allow_cross_flow(const Simulator& ebosSimulator) const
|
|
{
|
|
if (allowCrossFlow()) {
|
|
return true;
|
|
}
|
|
|
|
// TODO: investigate the justification of the following situation
|
|
|
|
// check for special case where all perforations have cross flow
|
|
// then the wells must allow for cross flow
|
|
for (int perf = 0; perf < numberOfPerforations(); ++perf) {
|
|
const int cell_idx = wellCells()[perf];
|
|
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
|
|
const auto& fs = intQuants.fluidState();
|
|
EvalWell pressure = extendEval(fs.pressure(FluidSystem::oilPhaseIdx));
|
|
EvalWell bhp = getBhp();
|
|
|
|
// Pressure drawdown (also used to determine direction of flow)
|
|
EvalWell well_pressure = bhp + perfPressureDiffs()[perf];
|
|
EvalWell drawdown = pressure - well_pressure;
|
|
|
|
if (drawdown.value() < 0 && wellType() == INJECTOR) {
|
|
return false;
|
|
}
|
|
|
|
if (drawdown.value() > 0 && wellType() == PRODUCER) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
getMobility(const Simulator& ebosSimulator,
|
|
const int perf,
|
|
std::vector<EvalWell>& mob) const
|
|
{
|
|
const int np = numberOfPhases();
|
|
const int cell_idx = wellCells()[perf];
|
|
assert (int(mob.size()) == numComponents());
|
|
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
|
|
const auto& materialLawManager = ebosSimulator.problem().materialLawManager();
|
|
|
|
// either use mobility of the perforation cell or calcualte its own
|
|
// based on passing the saturation table index
|
|
const int satid = saturationTableNumber()[perf] - 1;
|
|
const int satid_elem = materialLawManager->satnumRegionIdx(cell_idx);
|
|
if( satid == satid_elem ) { // the same saturation number is used. i.e. just use the mobilty from the cell
|
|
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phase);
|
|
mob[phase] = extendEval(intQuants.mobility(ebosPhaseIdx));
|
|
}
|
|
if (has_solvent) {
|
|
mob[solventCompIdx] = extendEval(intQuants.solventMobility());
|
|
}
|
|
} else {
|
|
|
|
const auto& paramsCell = materialLawManager->connectionMaterialLawParams(satid, cell_idx);
|
|
Eval relativePerms[3] = { 0.0, 0.0, 0.0 };
|
|
MaterialLaw::relativePermeabilities(relativePerms, paramsCell, intQuants.fluidState());
|
|
|
|
// reset the satnumvalue back to original
|
|
materialLawManager->connectionMaterialLawParams(satid_elem, cell_idx);
|
|
|
|
// compute the mobility
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phase);
|
|
mob[phase] = extendEval(relativePerms[ebosPhaseIdx] / intQuants.fluidState().viscosity(ebosPhaseIdx));
|
|
}
|
|
|
|
// this may not work if viscosity and relperms has been modified?
|
|
if (has_solvent) {
|
|
OPM_THROW(std::runtime_error, "individual mobility for wells does not work in combination with solvent");
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
updateWellState(const BVector& dwells,
|
|
const BlackoilModelParameters& param,
|
|
WellState& well_state) const
|
|
{
|
|
const int np = numberOfPhases();
|
|
const int nw = well_state.bhp().size();
|
|
const double dFLimit = param.dbhp_max_rel_;
|
|
const double dBHPLimit = param.dwell_fraction_max_;
|
|
|
|
std::vector<double> xvar_well_old(numWellEq);
|
|
// TODO: better way to handle this?
|
|
for (int i = 0; i < numWellEq; ++i) {
|
|
xvar_well_old[i] = well_state.wellSolutions()[i * nw + indexOfWell()];
|
|
}
|
|
|
|
// update the second and third well variable (The flux fractions)
|
|
std::vector<double> F(np,0.0);
|
|
if (active()[ Water ]) {
|
|
const int sign2 = dwells[0][WFrac] > 0 ? 1: -1;
|
|
const double dx2_limited = sign2 * std::min(std::abs(dwells[0][WFrac]),dFLimit);
|
|
well_state.wellSolutions()[WFrac * nw + indexOfWell()] = xvar_well_old[WFrac] - dx2_limited;
|
|
}
|
|
|
|
if (active()[ Gas ]) {
|
|
const int sign3 = dwells[0][GFrac] > 0 ? 1: -1;
|
|
const double dx3_limited = sign3 * std::min(std::abs(dwells[0][GFrac]),dFLimit);
|
|
well_state.wellSolutions()[GFrac*nw + indexOfWell()] = xvar_well_old[GFrac] - dx3_limited;
|
|
}
|
|
|
|
if (has_solvent) {
|
|
const int sign4 = dwells[0][SFrac] > 0 ? 1: -1;
|
|
const double dx4_limited = sign4 * std::min(std::abs(dwells[0][SFrac]),dFLimit);
|
|
well_state.wellSolutions()[SFrac*nw + indexOfWell()] = xvar_well_old[SFrac] - dx4_limited;
|
|
}
|
|
|
|
assert(active()[ Oil ]);
|
|
F[Oil] = 1.0;
|
|
|
|
if (active()[ Water ]) {
|
|
F[Water] = well_state.wellSolutions()[WFrac*nw + indexOfWell()];
|
|
F[Oil] -= F[Water];
|
|
}
|
|
|
|
if (active()[ Gas ]) {
|
|
F[Gas] = well_state.wellSolutions()[GFrac*nw + indexOfWell()];
|
|
F[Oil] -= F[Gas];
|
|
}
|
|
|
|
double F_solvent = 0.0;
|
|
if (has_solvent) {
|
|
F_solvent = well_state.wellSolutions()[SFrac*nw + indexOfWell()];
|
|
F[Oil] -= F_solvent;
|
|
}
|
|
|
|
if (active()[ Water ]) {
|
|
if (F[Water] < 0.0) {
|
|
if (active()[ Gas ]) {
|
|
F[Gas] /= (1.0 - F[Water]);
|
|
}
|
|
if (has_solvent) {
|
|
F_solvent /= (1.0 - F[Water]);
|
|
}
|
|
F[Oil] /= (1.0 - F[Water]);
|
|
F[Water] = 0.0;
|
|
}
|
|
}
|
|
|
|
if (active()[ Gas ]) {
|
|
if (F[Gas] < 0.0) {
|
|
if (active()[ Water ]) {
|
|
F[Water] /= (1.0 - F[Gas]);
|
|
}
|
|
if (has_solvent) {
|
|
F_solvent /= (1.0 - F[Gas]);
|
|
}
|
|
F[Oil] /= (1.0 - F[Gas]);
|
|
F[Gas] = 0.0;
|
|
}
|
|
}
|
|
|
|
if (F[Oil] < 0.0) {
|
|
if (active()[ Water ]) {
|
|
F[Water] /= (1.0 - F[Oil]);
|
|
}
|
|
if (active()[ Gas ]) {
|
|
F[Gas] /= (1.0 - F[Oil]);
|
|
}
|
|
if (has_solvent) {
|
|
F_solvent /= (1.0 - F[Oil]);
|
|
}
|
|
F[Oil] = 0.0;
|
|
}
|
|
|
|
if (active()[ Water ]) {
|
|
well_state.wellSolutions()[WFrac*nw + indexOfWell()] = F[Water];
|
|
}
|
|
if (active()[ Gas ]) {
|
|
well_state.wellSolutions()[GFrac*nw + indexOfWell()] = F[Gas];
|
|
}
|
|
if(has_solvent) {
|
|
well_state.wellSolutions()[SFrac*nw + indexOfWell()] = F_solvent;
|
|
}
|
|
|
|
// F_solvent is added to F_gas. This means that well_rate[Gas] also contains solvent.
|
|
// More testing is needed to make sure this is correct for well groups and THP.
|
|
if (has_solvent){
|
|
F[Gas] += F_solvent;
|
|
}
|
|
|
|
// The interpretation of the first well variable depends on the well control
|
|
const WellControls* wc = wellControls();
|
|
|
|
// TODO: we should only maintain one current control either from the well_state or from well_controls struct.
|
|
// Either one can be more favored depending on the final strategy for the initilzation of the well control
|
|
const int current = well_state.currentControls()[indexOfWell()];
|
|
const double target_rate = well_controls_iget_target(wc, current);
|
|
|
|
std::vector<double> g = {1,1,0.01};
|
|
if (well_controls_iget_type(wc, current) == RESERVOIR_RATE) {
|
|
const double* distr = well_controls_iget_distr(wc, current);
|
|
for (int p = 0; p < np; ++p) {
|
|
if (distr[p] > 0.) { // For injection wells, there only one non-zero distr value
|
|
F[p] /= distr[p];
|
|
} else {
|
|
F[p] = 0.;
|
|
}
|
|
}
|
|
} else {
|
|
for (int p = 0; p < np; ++p) {
|
|
F[p] /= g[p];
|
|
}
|
|
}
|
|
|
|
switch (well_controls_iget_type(wc, current)) {
|
|
case THP: // The BHP and THP both uses the total rate as first well variable.
|
|
case BHP:
|
|
{
|
|
well_state.wellSolutions()[nw*XvarWell + indexOfWell()] = xvar_well_old[XvarWell] - dwells[0][XvarWell];
|
|
|
|
switch (wellType()) {
|
|
case INJECTOR:
|
|
for (int p = 0; p < np; ++p) {
|
|
const double comp_frac = compFrac()[p];
|
|
well_state.wellRates()[indexOfWell() * np + p] = comp_frac * well_state.wellSolutions()[nw*XvarWell + indexOfWell()];
|
|
}
|
|
break;
|
|
case PRODUCER:
|
|
for (int p = 0; p < np; ++p) {
|
|
well_state.wellRates()[indexOfWell() * np + p] = well_state.wellSolutions()[nw*XvarWell + indexOfWell()] * F[p];
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (well_controls_iget_type(wc, current) == THP) {
|
|
|
|
// Calculate bhp from thp control and well rates
|
|
double aqua = 0.0;
|
|
double liquid = 0.0;
|
|
double vapour = 0.0;
|
|
|
|
const Opm::PhaseUsage& pu = phaseUsage();
|
|
|
|
if (active()[ Water ]) {
|
|
aqua = well_state.wellRates()[indexOfWell() * np + pu.phase_pos[ Water ] ];
|
|
}
|
|
if (active()[ Oil ]) {
|
|
liquid = well_state.wellRates()[indexOfWell() * np + pu.phase_pos[ Oil ] ];
|
|
}
|
|
if (active()[ Gas ]) {
|
|
vapour = well_state.wellRates()[indexOfWell() * np + pu.phase_pos[ Gas ] ];
|
|
}
|
|
|
|
const int vfp = well_controls_iget_vfp(wc, current);
|
|
const double& thp = well_controls_iget_target(wc, current);
|
|
const double& alq = well_controls_iget_alq(wc, current);
|
|
|
|
// Set *BHP* target by calculating bhp from THP
|
|
const WellType& well_type = wellType();
|
|
// pick the density in the top layer
|
|
const double rho = perf_densities_[0];
|
|
const double well_ref_depth = perfDepth()[0];
|
|
|
|
if (well_type == INJECTOR) {
|
|
const double vfp_ref_depth = vfp_properties_->getInj()->getTable(vfp)->getDatumDepth();
|
|
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(well_ref_depth, vfp_ref_depth, rho, gravity_);
|
|
|
|
well_state.bhp()[indexOfWell()] = vfp_properties_->getInj()->bhp(vfp, aqua, liquid, vapour, thp) - dp;
|
|
}
|
|
else if (well_type == PRODUCER) {
|
|
const double vfp_ref_depth = vfp_properties_->getProd()->getTable(vfp)->getDatumDepth();
|
|
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(well_ref_depth, vfp_ref_depth, rho, gravity_);
|
|
|
|
well_state.bhp()[indexOfWell()] = vfp_properties_->getProd()->bhp(vfp, aqua, liquid, vapour, thp, alq) - dp;
|
|
}
|
|
else {
|
|
OPM_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well");
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case SURFACE_RATE: // Both rate controls use bhp as first well variable
|
|
case RESERVOIR_RATE:
|
|
{
|
|
const int sign1 = dwells[0][XvarWell] > 0 ? 1: -1;
|
|
const double dx1_limited = sign1 * std::min(std::abs(dwells[0][XvarWell]),std::abs(xvar_well_old[nw*XvarWell + indexOfWell()])*dBHPLimit);
|
|
well_state.wellSolutions()[nw*XvarWell + indexOfWell()] = std::max(xvar_well_old[nw*XvarWell + indexOfWell()] - dx1_limited,1e5);
|
|
well_state.bhp()[indexOfWell()] = well_state.wellSolutions()[nw*XvarWell + indexOfWell()];
|
|
|
|
if (well_controls_iget_type(wc, current) == SURFACE_RATE) {
|
|
if (wellType() == PRODUCER) {
|
|
|
|
const double* distr = well_controls_iget_distr(wc, current);
|
|
|
|
double F_target = 0.0;
|
|
for (int p = 0; p < np; ++p) {
|
|
F_target += distr[p] * F[p];
|
|
}
|
|
for (int p = 0; p < np; ++p) {
|
|
well_state.wellRates()[np * indexOfWell() + p] = F[p] * target_rate / F_target;
|
|
}
|
|
} else {
|
|
|
|
for (int p = 0; p < np; ++p) {
|
|
well_state.wellRates()[indexOfWell() * np + p] = compFrac()[p] * target_rate;
|
|
}
|
|
}
|
|
} else { // RESERVOIR_RATE
|
|
for (int p = 0; p < np; ++p) {
|
|
well_state.wellRates()[np * indexOfWell() + p] = F[p] * target_rate;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
} // end of switch (well_controls_iget_type(wc, current))
|
|
|
|
// for the wells having a THP constaint, we should update their thp value
|
|
// If it is under THP control, it will be set to be the target value. Otherwise,
|
|
// the thp value will be calculated based on the bhp value, assuming the bhp value is correctly calculated.
|
|
const int nwc = well_controls_get_num(wc);
|
|
// Looping over all controls until we find a THP constraint
|
|
int ctrl_index = 0;
|
|
for ( ; ctrl_index < nwc; ++ctrl_index) {
|
|
if (well_controls_iget_type(wc, ctrl_index) == THP) {
|
|
// the current control
|
|
const int current = well_state.currentControls()[indexOfWell()];
|
|
// If under THP control at the moment
|
|
if (current == ctrl_index) {
|
|
const double thp_target = well_controls_iget_target(wc, current);
|
|
well_state.thp()[indexOfWell()] = thp_target;
|
|
} else { // otherwise we calculate the thp from the bhp value
|
|
double aqua = 0.0;
|
|
double liquid = 0.0;
|
|
double vapour = 0.0;
|
|
|
|
const Opm::PhaseUsage& pu = phaseUsage();
|
|
|
|
if (active()[ Water ]) {
|
|
aqua = well_state.wellRates()[indexOfWell()*np + pu.phase_pos[ Water ] ];
|
|
}
|
|
if (active()[ Oil ]) {
|
|
liquid = well_state.wellRates()[indexOfWell()*np + pu.phase_pos[ Oil ] ];
|
|
}
|
|
if (active()[ Gas ]) {
|
|
vapour = well_state.wellRates()[indexOfWell()*np + pu.phase_pos[ Gas ] ];
|
|
}
|
|
|
|
const double alq = well_controls_iget_alq(wc, ctrl_index);
|
|
const int table_id = well_controls_iget_vfp(wc, ctrl_index);
|
|
|
|
const WellType& well_type = wellType();
|
|
const double rho = perf_densities_[0];
|
|
const double well_ref_depth = perfDepth()[0];
|
|
if (well_type == INJECTOR) {
|
|
const double vfp_ref_depth = vfp_properties_->getInj()->getTable(table_id)->getDatumDepth();
|
|
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(well_ref_depth, vfp_ref_depth, rho, gravity_);
|
|
|
|
const double bhp = well_state.bhp()[indexOfWell()];
|
|
|
|
well_state.thp()[indexOfWell()] = vfp_properties_->getInj()->thp(table_id, aqua, liquid, vapour, bhp + dp);
|
|
} else if (well_type == PRODUCER) {
|
|
const double vfp_ref_depth = vfp_properties_->getProd()->getTable(table_id)->getDatumDepth();
|
|
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(well_ref_depth, vfp_ref_depth, rho, gravity_);
|
|
|
|
const double bhp = well_state.bhp()[indexOfWell()];
|
|
|
|
well_state.thp()[indexOfWell()] = vfp_properties_->getProd()->thp(table_id, aqua, liquid, vapour, bhp + dp, alq);
|
|
} else {
|
|
OPM_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well");
|
|
}
|
|
}
|
|
|
|
// the THP control is found, we leave the loop now
|
|
break;
|
|
}
|
|
} // end of for loop for seaching THP constraints
|
|
|
|
// no THP constraint found
|
|
if (ctrl_index == nwc) { // not finding a THP contstraints
|
|
well_state.thp()[indexOfWell()] = 0.0;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWell<TypeTag>::
|
|
localInvert(Mat& istlA) const
|
|
{
|
|
for (auto row = istlA.begin(), rowend = istlA.end(); row != rowend; ++row ) {
|
|
for (auto col = row->begin(), colend = row->end(); col != colend; ++col ) {
|
|
//std::cout << (*col) << std::endl;
|
|
(*col).invert();
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|