mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-28 03:53:49 -06:00
330 lines
14 KiB
C++
330 lines
14 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*****************************************************************************
|
|
* Copyright (C) 2007-2008 by Klaus Mosthaf *
|
|
* Copyright (C) 2007-2008 by Bernd Flemisch *
|
|
* Copyright (C) 2008-2009 by Andreas Lauser *
|
|
* Institute of Hydraulic Engineering *
|
|
* University of Stuttgart, Germany *
|
|
* email: <givenname>.<name>@iws.uni-stuttgart.de *
|
|
* *
|
|
* This program is free software: you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation, either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License for more details. *
|
|
* *
|
|
* You should have received a copy of the GNU General Public License *
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
|
|
*****************************************************************************/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \brief problem for the sequential tutorial
|
|
*/
|
|
#ifndef DUMUX_TUTORIALPROBLEM_DECOUPLED_HH // guardian macro /*@\label{tutorial-decoupled:guardian1}@*/
|
|
#define DUMUX_TUTORIALPROBLEM_DECOUPLED_HH // guardian macro /*@\label{tutorial-decoupled:guardian2}@*/
|
|
|
|
// the grid includes
|
|
#include <dune/grid/sgrid.hh>
|
|
|
|
// dumux 2p-decoupled environment
|
|
#include <dumux/decoupled/2p/impes/impesproblem2p.hh> /*@\label{tutorial-decoupled:parent-problem}@*/
|
|
#include <dumux/decoupled/2p/diffusion/fv/fvvelocity2p.hh>
|
|
#include <dumux/decoupled/2p/transport/fv/fvsaturation2p.hh>
|
|
#include <dumux/decoupled/2p/transport/fv/capillarydiffusion.hh>
|
|
|
|
// assign parameters dependent on space (e.g. spatial parameters)
|
|
#include "tutorialspatialparameters_decoupled.hh" /*@\label{tutorial-decoupled:spatialparameters}@*/
|
|
|
|
// the components that are used
|
|
#include <dumux/material/components/h2o.hh>
|
|
#include <dumux/material/components/oil.hh>
|
|
|
|
namespace Dumux
|
|
{
|
|
|
|
template<class TypeTag>
|
|
class TutorialProblemDecoupled;
|
|
|
|
//////////
|
|
// Specify the properties for the lens problem
|
|
//////////
|
|
namespace Properties
|
|
{
|
|
// create a new type tag for the problem
|
|
NEW_TYPE_TAG(TutorialProblemDecoupled, INHERITS_FROM(DecoupledTwoP, TutorialSpatialParametersDecoupled)); /*@\label{tutorial-decoupled:create-type-tag}@*/
|
|
|
|
// Set the problem property
|
|
SET_PROP(TutorialProblemDecoupled, Problem) /*@\label{tutorial-decoupled:set-problem}@*/
|
|
{
|
|
typedef Dumux::TutorialProblemDecoupled<TypeTag> type;
|
|
};
|
|
|
|
// Set the grid type
|
|
SET_PROP(TutorialProblemDecoupled, Grid) /*@\label{tutorial-decoupled:grid-begin}@*/
|
|
{
|
|
typedef Dune::SGrid<2, 2> type; /*@\label{tutorial-decoupled:set-grid-type}@*/
|
|
static type *create() /*@\label{tutorial-decoupled:create-grid-method}@*/
|
|
{
|
|
typedef typename type::ctype ctype;
|
|
Dune::FieldVector<int, 2> cellRes; // vector holding resolution of the grid
|
|
Dune::FieldVector<ctype, 2> lowerLeft(0.0); // Coordinate of lower left corner of the grid
|
|
Dune::FieldVector<ctype, 2> upperRight; // Coordinate of upper right corner of the grid
|
|
cellRes[0] = 100;
|
|
cellRes[1] = 1;
|
|
upperRight[0] = 300;
|
|
upperRight[1] = 60;
|
|
return new Dune::SGrid<2,2>(cellRes,
|
|
lowerLeft,
|
|
upperRight);
|
|
} /*@\label{tutorial-decoupled:grid-end}@*/
|
|
};
|
|
|
|
// Set the wetting phase
|
|
SET_PROP(TutorialProblemDecoupled, WettingPhase) /*@\label{tutorial-decoupled:2p-system-start}@*/
|
|
{
|
|
private:
|
|
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
|
|
public:
|
|
typedef Dumux::LiquidPhase<Scalar, Dumux::H2O<Scalar> > type; /*@\label{tutorial-decoupled:wettingPhase}@*/
|
|
};
|
|
|
|
// Set the non-wetting phase
|
|
SET_PROP(TutorialProblemDecoupled, NonwettingPhase)
|
|
{
|
|
private:
|
|
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
|
|
public:
|
|
typedef Dumux::LiquidPhase<Scalar, Dumux::Oil<Scalar> > type; /*@\label{tutorial-decoupled:nonwettingPhase}@*/
|
|
}; /*@\label{tutorial-decoupled:2p-system-end}@*/
|
|
|
|
// Set the model properties
|
|
SET_PROP(TutorialProblemDecoupled, TransportModel) /*@\label{tutorial-decoupled:TransportModel}@*/
|
|
{
|
|
typedef Dumux::FVSaturation2P<TTAG(TutorialProblemDecoupled)> type;
|
|
};
|
|
|
|
SET_PROP(TutorialProblemDecoupled, PressureModel) /*@\label{tutorial-decoupled:PressureModel}@*/
|
|
{
|
|
typedef Dumux::FVVelocity2P<TTAG(TutorialProblemDecoupled)> type;
|
|
};
|
|
|
|
// model-specific settings
|
|
SET_INT_PROP(TutorialProblemDecoupled, VelocityFormulation,
|
|
GET_PROP_TYPE(TypeTag, PTAG(Indices))::velocityW); /*@\label{tutorial-decoupled:velocityFormulation}@*/
|
|
|
|
|
|
SET_TYPE_PROP(TutorialProblemDecoupled, DiffusivePart,
|
|
Dumux::CapillaryDiffusion<TypeTag>); /*@\label{tutorial-decoupled:DiffusivePart}@*/
|
|
|
|
SET_SCALAR_PROP(TutorialProblemDecoupled, CFLFactor, 0.5); /*@\label{tutorial-decoupled:cfl}@*/
|
|
|
|
// Disable gravity
|
|
SET_BOOL_PROP(TutorialProblemDecoupled, EnableGravity, false); /*@\label{tutorial-decoupled:gravity}@*/
|
|
} /*@\label{tutorial-decoupled:propertysystem-end}@*/
|
|
|
|
/*! \ingroup DecoupledProblems
|
|
* @brief Problem class for the decoupled tutorial
|
|
*/
|
|
template<class TypeTag>
|
|
class TutorialProblemDecoupled: public IMPESProblem2P<TypeTag> /*@\label{tutorial-decoupled:def-problem}@*/
|
|
{
|
|
typedef IMPESProblem2P<TypeTag> ParentType;
|
|
typedef typename GET_PROP_TYPE(TypeTag, PTAG(GridView)) GridView;
|
|
typedef typename GET_PROP_TYPE(TypeTag, PTAG(TimeManager)) TimeManager;
|
|
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Indices)) Indices;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, PTAG(FluidSystem)) FluidSystem;
|
|
typedef typename GET_PROP_TYPE(TypeTag, PTAG(FluidState)) FluidState;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, PTAG(BoundaryTypes)) BoundaryTypes;
|
|
typedef typename GET_PROP(TypeTag, PTAG(SolutionTypes)) SolutionTypes;
|
|
typedef typename SolutionTypes::PrimaryVariables PrimaryVariables;
|
|
|
|
enum
|
|
{
|
|
dim = GridView::dimension, dimWorld = GridView::dimensionworld
|
|
};
|
|
|
|
enum
|
|
{
|
|
wPhaseIdx = Indices::wPhaseIdx,
|
|
nPhaseIdx = Indices::nPhaseIdx,
|
|
pWIdx = Indices::pwIdx,
|
|
SwIdx = Indices::SwIdx,
|
|
pressEqIdx = Indices::pressEqIdx,
|
|
satEqIdx = Indices::satEqIdx
|
|
};
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
|
|
|
|
typedef typename GridView::Traits::template Codim<0>::Entity Element;
|
|
typedef typename GridView::Intersection Intersection;
|
|
typedef Dune::FieldVector<Scalar, dimWorld> GlobalPosition;
|
|
typedef Dune::FieldVector<Scalar, dim> LocalPosition;
|
|
|
|
public:
|
|
TutorialProblemDecoupled(TimeManager &timeManager, const GridView &gridView)
|
|
: ParentType(timeManager, gridView) /*@\label{tutorial-decoupled:constructor-problem}@*/
|
|
{ }
|
|
|
|
//! The problem name.
|
|
/*! This is used as a prefix for files generated by the simulation.
|
|
*/
|
|
const char *name() const /*@\label{tutorial-decoupled:name}@*/
|
|
{
|
|
return "tutorial_decoupled";
|
|
}
|
|
|
|
//! Returns true if a restart file should be written.
|
|
/* The default behaviour is to write no restart file.
|
|
*/
|
|
bool shouldWriteRestartFile() const /*@\label{tutorial-decoupled:restart}@*/
|
|
{
|
|
return false;
|
|
}
|
|
|
|
//! Returns true if the current solution should be written to disk (i.e. as a VTK file)
|
|
/*! The default behaviour is to write out every the solution for
|
|
* very time step. Else, change divisor.
|
|
*/
|
|
bool shouldWriteOutput() const /*@\label{tutorial-decoupled:output}@*/
|
|
{
|
|
return this->timeManager().timeStepIndex() > 0 &&
|
|
(this->timeManager().timeStepIndex() % 1 == 0);
|
|
}
|
|
|
|
//! Returns the temperature within the domain at position globalPos.
|
|
/*! This problem assumes a temperature of 10 degrees Celsius.
|
|
*
|
|
* \param element The finite volume element
|
|
*
|
|
* Alternatively, the function temperatureAtPos(const GlobalPosition& globalPos) could be defined, where globalPos
|
|
* is the vector including the global coordinates of the finite volume.
|
|
*/
|
|
Scalar temperature(const Element& element) const /*@\label{tutorial-decoupled:temperature}@*/
|
|
{
|
|
return 273.15 + 10; // -> 10°C
|
|
}
|
|
|
|
//! Returns a constant pressure to enter material laws at position globalPos.
|
|
/* For incrompressible simulations, a constant pressure is necessary
|
|
* to enter the material laws to gain a constant density etc. In the compressible
|
|
* case, the pressure is used for the initialization of material laws.
|
|
*
|
|
* \param element The finite volume element
|
|
*
|
|
* Alternatively, the function referencePressureAtPos(const GlobalPosition& globalPos) could be defined, where globalPos
|
|
* is the vector including the global coordinates of the finite volume.
|
|
*/
|
|
Scalar referencePressure(const Element& element) const /*@\label{tutorial-decoupled:refPressure}@*/
|
|
{
|
|
return 2e5;
|
|
}
|
|
|
|
//! Source of mass \f$ [\frac{kg}{m^3 \cdot s}] \f$ of a finite volume.
|
|
/*! Evaluate the source term for all phases within a given
|
|
* volume.
|
|
*
|
|
* \param values Includes sources for the two phases
|
|
* \param element The finite volume element
|
|
*
|
|
* The method returns the mass generated (positive) or
|
|
* annihilated (negative) per volume unit.
|
|
*
|
|
* Alternatively, the function sourceAtPos(PrimaryVariables &values, const GlobalPosition& globalPos) could be defined, where globalPos
|
|
* is the vector including the global coordinates of the finite volume.
|
|
*/
|
|
void source(PrimaryVariables &values, const Element& element) const /*@\label{tutorial-decoupled:source}@*/
|
|
{
|
|
values = 0;
|
|
}
|
|
|
|
//! Type of boundary conditions at position globalPos.
|
|
/*! Defines the type the boundary condition for the pressure equation,
|
|
* either pressure (dirichlet) or flux (neumann),
|
|
* and for the transport equation,
|
|
* either saturation (dirichlet) or flux (neumann).
|
|
*
|
|
* \param bcTypes Includes the types of boundary conditions
|
|
* \param globalPos The position of the center of the finite volume
|
|
*
|
|
* Alternatively, the function boundaryTypes(PrimaryVariables &values, const Intersection& intersection) could be defined,
|
|
* where intersection is the boundary intersection.
|
|
*/
|
|
void boundaryTypesAtPos(BoundaryTypes &bcTypes, const GlobalPosition& globalPos) const /*@\label{tutorial-decoupled:bctype}@*/
|
|
{
|
|
if (globalPos[0] < this->bboxMin()[0] + eps_)
|
|
{
|
|
bcTypes.setDirichlet(pressEqIdx);
|
|
bcTypes.setDirichlet(satEqIdx);
|
|
// bcTypes.setAllDirichlet(); // alternative if the same BC is used for both types of equations
|
|
}
|
|
// all other boundaries
|
|
else
|
|
{
|
|
bcTypes.setNeumann(pressEqIdx);
|
|
bcTypes.setNeumann(satEqIdx);
|
|
// bcTypes.setAllNeumann(); // alternative if the same BC is used for both types of equations
|
|
}
|
|
}
|
|
//! Value for dirichlet boundary condition at position globalPos.
|
|
/*! In case of a dirichlet BC for the pressure equation the pressure \f$ [Pa] \f$, and for the transport equation the saturation [-]
|
|
* have to be defined on boundaries.
|
|
*
|
|
* \param values Values of primary variables at the boundary
|
|
* \param intersection The boundary intersection
|
|
*
|
|
* Alternatively, the function dirichletAtPos(PrimaryVariables &values, const GlobalPosition& globalPos) could be defined, where globalPos
|
|
* is the vector including the global coordinates of the finite volume.
|
|
*/
|
|
void dirichlet(PrimaryVariables &values, const Intersection& intersection) const /*@\label{tutorial-decoupled:dirichlet}@*/
|
|
{
|
|
values[pWIdx] = 2e5;
|
|
values[SwIdx] = 1.0;
|
|
}
|
|
//! Value for neumann boundary condition \f$ [\frac{kg}{m^3 \cdot s}] \f$ at position globalPos.
|
|
/*! In case of a neumann boundary condition, the flux of matter
|
|
* is returned as a vector.
|
|
*
|
|
* \param values Boundary flux values for the different phases
|
|
* \param globalPos The position of the center of the finite volume
|
|
*
|
|
* Alternatively, the function neumann(PrimaryVariables &values, const Intersection& intersection) could be defined,
|
|
* where intersection is the boundary intersection.
|
|
*/
|
|
void neumannAtPos(PrimaryVariables &values, const GlobalPosition& globalPos) const /*@\label{tutorial-decoupled:neumann}@*/
|
|
{
|
|
values = 0;
|
|
if (globalPos[0] > this->bboxMax()[0] - eps_)
|
|
{
|
|
values[nPhaseIdx] = 3e-2;
|
|
}
|
|
}
|
|
//! Initial condition at position globalPos.
|
|
/*! Only initial values for saturation have to be given!
|
|
*
|
|
* \param values Values of primary variables
|
|
* \param element The finite volume element
|
|
*
|
|
* Alternatively, the function initialAtPos(PrimaryVariables &values, const GlobalPosition& globalPos) could be defined, where globalPos
|
|
* is the vector including the global coordinates of the finite volume.
|
|
*/
|
|
void initial(PrimaryVariables &values,
|
|
const Element &element) const /*@\label{tutorial-decoupled:initial}@*/
|
|
{
|
|
values = 0;
|
|
}
|
|
|
|
private:
|
|
static constexpr Scalar eps_ = 1e-6;
|
|
};
|
|
} //end namespace
|
|
|
|
#endif
|