opm-simulators/opm/simulators/wells/WellState.cpp
2021-05-19 10:05:11 +02:00

418 lines
15 KiB
C++

/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/WellState.hpp>
#include <opm/simulators/wells/ParallelWellInfo.hpp>
#include <cassert>
#include <stdexcept>
namespace Opm
{
void WellState::init(const std::vector<double>& cellPressures,
const std::vector<Well>& wells_ecl,
const std::vector<ParallelWellInfo*>& parallel_well_info,
const std::vector<std::vector<PerforationData>>& well_perf_data,
const SummaryState& summary_state)
{
// clear old name mapping
wellMap_.clear();
well_perf_data_ = well_perf_data;
parallel_well_info_ = parallel_well_info;
{
// const int nw = wells->number_of_wells;
const int nw = wells_ecl.size();
const int np = this->phase_usage_.num_phases;
// const int np = wells->number_of_phases;
status_.assign(nw, Well::Status::OPEN);
bhp_.resize(nw, 0.0);
thp_.resize(nw, 0.0);
temperature_.resize(nw, 273.15 + 15.56); // standard condition temperature
wellrates_.resize(nw * np, 0.0);
int connpos = 0;
for (int w = 0; w < nw; ++w) {
const Well& well = wells_ecl[w];
// Initialize bhp(), thp(), wellRates(), temperature().
initSingleWell(cellPressures, w, well, *parallel_well_info[w], summary_state);
// Setup wellname -> well index mapping.
const int num_perf_this_well = well_perf_data[w].size();
std::string name = well.name();
assert( name.size() > 0 );
mapentry_t& wellMapEntry = wellMap_[name];
wellMapEntry[ 0 ] = w;
wellMapEntry[ 1 ] = connpos;
wellMapEntry[ 2 ] = num_perf_this_well;
connpos += num_perf_this_well;
}
// The perforation rates and perforation pressures are
// not expected to be consistent with bhp_ and wellrates_
// after init().
perfrates_.resize(connpos, 0.0);
perfpress_.resize(connpos, -1e100);
}
}
void WellState::resetConnectionTransFactors(const int well_index,
const std::vector<PerforationData>& well_perf_data)
{
if (this->well_perf_data_[well_index].size() != well_perf_data.size()) {
throw std::invalid_argument {
"Size mismatch for perforation data in well "
+ std::to_string(well_index)
};
}
auto connID = std::size_t{0};
auto dst = this->well_perf_data_[well_index].begin();
for (const auto& src : well_perf_data) {
if (dst->cell_index != src.cell_index) {
throw std::invalid_argument {
"Cell index mismatch in connection "
+ std::to_string(connID)
+ " of well "
+ std::to_string(well_index)
};
}
if (dst->satnum_id != src.satnum_id) {
throw std::invalid_argument {
"Saturation function table mismatch in connection "
+ std::to_string(connID)
+ " of well "
+ std::to_string(well_index)
};
}
dst->connection_transmissibility_factor =
src.connection_transmissibility_factor;
++dst;
++connID;
}
}
const ParallelWellInfo&
WellState::parallelWellInfo(std::size_t well_index) const
{
return *parallel_well_info_[well_index];
}
bool WellState::wellIsOwned(std::size_t well_index,
[[maybe_unused]] const std::string& wellName) const
{
const auto& well_info = parallelWellInfo(well_index);
assert(well_info.name() == wellName);
return well_info.isOwner();
}
bool WellState::wellIsOwned(const std::string& wellName) const
{
const auto& it = wellMap().find( wellName );
if (it == wellMap().end()) {
OPM_THROW(std::logic_error, "Could not find well " << wellName << " in well map");
}
const int well_index = it->second[0];
return wellIsOwned(well_index, wellName);
}
void WellState::shutWell(int well_index)
{
this->status_[well_index] = Well::Status::SHUT;
this->thp_[well_index] = 0;
this->bhp_[well_index] = 0;
const int np = numPhases();
for (int p = 0; p < np; ++p)
this->wellrates_[np * well_index + p] = 0;
}
void WellState::stopWell(int well_index)
{
this->status_[well_index] = Well::Status::STOP;
this->thp_[well_index] = 0;
}
void WellState::updateStatus(int well_index, Well::Status status)
{
switch (status) {
case Well::Status::OPEN:
this->openWell(well_index);
break;
case Well::Status::SHUT:
this->shutWell(well_index);
break;
case Well::Status::STOP:
this->stopWell(well_index);
break;
default:
throw std::logic_error("Invalid well status");
}
}
data::Wells WellState::report(const int* globalCellIdxMap,
const std::function<bool(const int)>& wasDynamicallyClosed) const
{
using rt = data::Rates::opt;
const auto& pu = this->phaseUsage();
data::Wells dw;
for( const auto& itr : this->wellMap_ ) {
const auto well_index = itr.second[ 0 ];
if ((this->status_[well_index] == Well::Status::SHUT) &&
! wasDynamicallyClosed(well_index))
{
continue;
}
const auto& pwinfo = *parallel_well_info_[well_index];
using WellT = std::remove_reference_t<decltype(dw[ itr.first ])>;
WellT dummyWell; // dummy if we are not owner
auto& well = pwinfo.isOwner() ? dw[ itr.first ] : dummyWell;
well.bhp = this->bhp(well_index);
well.thp = this->thp( well_index );
well.temperature = this->temperature( well_index );
const auto wellrate_index = well_index * pu.num_phases;
const auto& wv = this->wellRates();
if( pu.phase_used[BlackoilPhases::Aqua] ) {
well.rates.set( rt::wat, wv[ wellrate_index + pu.phase_pos[BlackoilPhases::Aqua] ] );
}
if( pu.phase_used[BlackoilPhases::Liquid] ) {
well.rates.set( rt::oil, wv[ wellrate_index + pu.phase_pos[BlackoilPhases::Liquid] ] );
}
if( pu.phase_used[BlackoilPhases::Vapour] ) {
well.rates.set( rt::gas, wv[ wellrate_index + pu.phase_pos[BlackoilPhases::Vapour] ] );
}
if (pwinfo.communication().size()==1)
{
reportConnections(well, pu, itr, globalCellIdxMap);
}
else
{
assert(pwinfo.communication().rank() != 0 || &dummyWell != &well);
// report the local connections
reportConnections(dummyWell, pu, itr, globalCellIdxMap);
// gather them to well on root.
gatherVectorsOnRoot(dummyWell.connections, well.connections,
pwinfo.communication());
}
}
return dw;
}
void WellState::reportConnections(data::Well& well,
const PhaseUsage&,
const WellMapType::value_type& itr,
const int* globalCellIdxMap) const
{
const auto well_index = itr.second[ 0 ];
const auto& pd = this->well_perf_data_[well_index];
const int num_perf_well = pd.size();
well.connections.resize(num_perf_well);
const auto * perf_rates = &this->perfRates()[itr.second[1]];
const auto * perf_pressure = &this->perfPress()[itr.second[1]];
for( int i = 0; i < num_perf_well; ++i ) {
const auto active_index = this->well_perf_data_[well_index][i].cell_index;
auto& connection = well.connections[ i ];
connection.index = globalCellIdxMap[active_index];
connection.pressure = perf_pressure[i];
connection.reservoir_rate = perf_rates[i];
connection.trans_factor = pd[i].connection_transmissibility_factor;
}
assert(num_perf_well == int(well.connections.size()));
}
template<class Communication>
void WellState::gatherVectorsOnRoot(const std::vector<data::Connection>& from_connections,
std::vector<data::Connection>& to_connections,
const Communication& comm) const
{
int size = from_connections.size();
std::vector<int> sizes;
std::vector<int> displ;
if (comm.rank()==0){
sizes.resize(comm.size());
}
comm.gather(&size, sizes.data(), 1, 0);
if (comm.rank()==0){
displ.resize(comm.size()+1, 0);
std::partial_sum(sizes.begin(), sizes.end(), displ.begin()+1);
to_connections.resize(displ.back());
}
comm.gatherv(from_connections.data(), size, to_connections.data(),
sizes.data(), displ.data(), 0);
}
void WellState::initSingleWell(const std::vector<double>& cellPressures,
const int w,
const Well& well,
const ParallelWellInfo& well_info,
const SummaryState& summary_state)
{
assert(well.isInjector() || well.isProducer());
// Set default zero initial well rates.
// May be overwritten below.
const auto& pu = this->phase_usage_;
const int np = pu.num_phases;
for (int p = 0; p < np; ++p) {
wellrates_[np*w + p] = 0.0;
}
if ( well.isInjector() ) {
temperature_[w] = well.injectionControls(summary_state).temperature;
}
const int num_perf_this_well = well_info.communication().sum(well_perf_data_[w].size());
if ( num_perf_this_well == 0 ) {
// No perforations of the well. Initialize to zero.
bhp_[w] = 0.;
thp_[w] = 0.;
return;
}
const auto inj_controls = well.isInjector() ? well.injectionControls(summary_state) : Well::InjectionControls(0);
const auto prod_controls = well.isProducer() ? well.productionControls(summary_state) : Well::ProductionControls(0);
const bool is_bhp = well.isInjector() ? (inj_controls.cmode == Well::InjectorCMode::BHP)
: (prod_controls.cmode == Well::ProducerCMode::BHP);
const double bhp_limit = well.isInjector() ? inj_controls.bhp_limit : prod_controls.bhp_limit;
const bool is_grup = well.isInjector() ? (inj_controls.cmode == Well::InjectorCMode::GRUP)
: (prod_controls.cmode == Well::ProducerCMode::GRUP);
const double inj_surf_rate = well.isInjector() ? inj_controls.surface_rate : 0.0; // To avoid a "maybe-uninitialized" warning.
const double local_pressure = well_perf_data_[w].empty() ?
0 : cellPressures[well_perf_data_[w][0].cell_index];
const double global_pressure = well_info.broadcastFirstPerforationValue(local_pressure);
if (well.getStatus() == Well::Status::OPEN) {
this->openWell(w);
}
if (well.getStatus() == Well::Status::STOP) {
// Stopped well:
// 1. Rates: zero well rates.
// 2. Bhp: assign bhp equal to bhp control, if
// applicable, otherwise assign equal to
// first perforation cell pressure.
if (is_bhp) {
bhp_[w] = bhp_limit;
} else {
bhp_[w] = global_pressure;
}
} else if (is_grup) {
// Well under group control.
// 1. Rates: zero well rates.
// 2. Bhp: initialize bhp to be a
// little above or below (depending on if
// the well is an injector or producer)
// pressure in first perforation cell.
const double safety_factor = well.isInjector() ? 1.01 : 0.99;
bhp_[w] = safety_factor * global_pressure;
} else {
// Open well, under own control:
// 1. Rates: initialize well rates to match
// controls if type is ORAT/GRAT/WRAT
// (producer) or RATE (injector).
// Otherwise, we cannot set the correct
// value here and initialize to zero rate.
if (well.isInjector()) {
if (inj_controls.cmode == Well::InjectorCMode::RATE) {
switch (inj_controls.injector_type) {
case InjectorType::WATER:
assert(pu.phase_used[BlackoilPhases::Aqua]);
wellrates_[np*w + pu.phase_pos[BlackoilPhases::Aqua]] = inj_surf_rate;
break;
case InjectorType::GAS:
assert(pu.phase_used[BlackoilPhases::Vapour]);
wellrates_[np*w + pu.phase_pos[BlackoilPhases::Vapour]] = inj_surf_rate;
break;
case InjectorType::OIL:
assert(pu.phase_used[BlackoilPhases::Liquid]);
wellrates_[np*w + pu.phase_pos[BlackoilPhases::Liquid]] = inj_surf_rate;
break;
case InjectorType::MULTI:
// Not currently handled, keep zero init.
break;
}
} else {
// Keep zero init.
}
} else {
assert(well.isProducer());
// Note negative rates for producing wells.
switch (prod_controls.cmode) {
case Well::ProducerCMode::ORAT:
assert(pu.phase_used[BlackoilPhases::Liquid]);
wellrates_[np*w + pu.phase_pos[BlackoilPhases::Liquid]] = -prod_controls.oil_rate;
break;
case Well::ProducerCMode::WRAT:
assert(pu.phase_used[BlackoilPhases::Aqua]);
wellrates_[np*w + pu.phase_pos[BlackoilPhases::Aqua]] = -prod_controls.water_rate;
break;
case Well::ProducerCMode::GRAT:
assert(pu.phase_used[BlackoilPhases::Vapour]);
wellrates_[np*w + pu.phase_pos[BlackoilPhases::Vapour]] = -prod_controls.gas_rate;
break;
default:
// Keep zero init.
break;
}
}
// 2. Bhp: initialize bhp to be target pressure if
// bhp-controlled well, otherwise set to a
// little above or below (depending on if
// the well is an injector or producer)
// pressure in first perforation cell.
if (is_bhp) {
bhp_[w] = bhp_limit;
} else {
const double safety_factor = well.isInjector() ? 1.01 : 0.99;
bhp_[w] = safety_factor * global_pressure;
}
}
// 3. Thp: assign thp equal to thp target/limit, if such a limit exists,
// otherwise keep it zero.
const bool has_thp = well.isInjector() ? inj_controls.hasControl(Well::InjectorCMode::THP)
: prod_controls.hasControl(Well::ProducerCMode::THP);
const double thp_limit = well.isInjector() ? inj_controls.thp_limit : prod_controls.thp_limit;
if (has_thp) {
thp_[w] = thp_limit;
}
}
} // namespace Opm