opm-simulators/flowexperimental/FlowExpNewtonMethod.hpp

281 lines
11 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::FlowExpNewtonMethod
*/
#ifndef OPM_FLOW_EXP_NEWTON_METHOD_HPP
#define OPM_FLOW_EXP_NEWTON_METHOD_HPP
#include <opm/common/Exceptions.hpp>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/models/blackoil/blackoilnewtonmethod.hh>
#include <opm/models/utils/signum.hh>
namespace Opm::Parameters {
// the tolerated amount of "incorrect" amount of oil per time step for the complete
// reservoir. this is scaled by the pore volume of the reservoir, i.e., larger reservoirs
// will tolerate larger residuals.
template<class Scalar>
struct EclNewtonSumTolerance { static constexpr Scalar value = 1e-5; };
// make all Newton iterations strict, i.e., the volumetric Newton tolerance must be
// always be upheld in the majority of the spatial domain. In this context, "majority"
// means 1 - EclNewtonRelaxedVolumeFraction.
struct EclNewtonStrictIterations { static constexpr int value = 100; };
// set fraction of the pore volume where the volumetric residual may be violated during
// strict Newton iterations
template<class Scalar>
struct EclNewtonRelaxedVolumeFraction { static constexpr Scalar value = 0.05; };
template<class Scalar>
struct EclNewtonSumToleranceExponent { static constexpr Scalar value = 1.0 / 3.0; };
// the maximum volumetric error of a cell in the relaxed region
template<class Scalar>
struct EclNewtonRelaxedTolerance { static constexpr Scalar value = NewtonTolerance<Scalar>::value * 1e6; };
} // namespace Opm::Parameters
namespace Opm {
/*!
* \brief A newton solver.
*/
template <class TypeTag>
class FlowExpNewtonMethod : public BlackOilNewtonMethod<TypeTag>
{
using ParentType = BlackOilNewtonMethod<TypeTag>;
using DiscNewtonMethod = GetPropType<TypeTag, Properties::DiscNewtonMethod>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
using GlobalEqVector = GetPropType<TypeTag, Properties::GlobalEqVector>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Linearizer = GetPropType<TypeTag, Properties::Linearizer>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
static constexpr unsigned numEq = getPropValue<TypeTag, Properties::NumEq>();
static constexpr int contiSolventEqIdx = Indices::contiSolventEqIdx;
static constexpr int contiPolymerEqIdx = Indices::contiPolymerEqIdx;
static constexpr int contiEnergyEqIdx = Indices::contiEnergyEqIdx;
friend NewtonMethod<TypeTag>;
friend DiscNewtonMethod;
friend ParentType;
public:
explicit FlowExpNewtonMethod(Simulator& simulator) : ParentType(simulator)
{
errorPvFraction_ = 1.0;
relaxedMaxPvFraction_ = Parameters::Get<Parameters::EclNewtonRelaxedVolumeFraction<Scalar>>();
sumTolerance_ = 0.0; // this gets determined in the error calculation proceedure
relaxedTolerance_ = Parameters::Get<Parameters::EclNewtonRelaxedTolerance<Scalar>>();
numStrictIterations_ = Parameters::Get<Parameters::EclNewtonStrictIterations>();
}
/*!
* \brief Register all run-time parameters for the Newton method.
*/
static void registerParameters()
{
ParentType::registerParameters();
Parameters::Register<Parameters::EclNewtonSumTolerance<Scalar>>
("The maximum error tolerated by the Newton "
"method for considering a solution to be converged");
Parameters::Register<Parameters::EclNewtonStrictIterations>
("The number of Newton iterations where the "
"volumetric error is considered.");
Parameters::Register<Parameters::EclNewtonRelaxedVolumeFraction<Scalar>>
("The fraction of the pore volume of the reservoir "
"where the volumetric error may be violated during strict Newton iterations.");
Parameters::Register<Parameters::EclNewtonSumToleranceExponent<Scalar>>
("The the exponent used to scale the sum tolerance by "
"the total pore volume of the reservoir.");
Parameters::Register<Parameters::EclNewtonRelaxedTolerance<Scalar>>
("The maximum error which the volumetric residual "
"may exhibit if it is in a 'relaxed' region during a strict iteration.");
}
/*!
* \brief Returns true if the error of the solution is below the
* tolerance.
*/
bool converged() const
{
if (errorPvFraction_ < relaxedMaxPvFraction_) {
return (this->error_ < relaxedTolerance_ && errorSum_ < sumTolerance_) ;
} else if (this->numIterations() > numStrictIterations_) {
return (this->error_ < relaxedTolerance_ && errorSum_ < sumTolerance_) ;
}
return this->error_ <= this->tolerance() && errorSum_ <= sumTolerance_;
}
void preSolve_(const SolutionVector&,
const GlobalEqVector& currentResidual)
{
const auto& constraintsMap = this->model().linearizer().constraintsMap();
this->lastError_ = this->error_;
Scalar newtonMaxError = Parameters::Get<Parameters::NewtonMaxError<Scalar>>();
// calculate the error as the maximum weighted tolerance of
// the solution's residual
this->error_ = 0.0;
Dune::FieldVector<Scalar, numEq> componentSumError;
std::fill(componentSumError.begin(), componentSumError.end(), 0.0);
Scalar sumPv = 0.0;
errorPvFraction_ = 0.0;
const Scalar dt = this->simulator_.timeStepSize();
for (unsigned dofIdx = 0; dofIdx < currentResidual.size(); ++dofIdx) {
// do not consider auxiliary DOFs for the error
if (dofIdx >= this->model().numGridDof()
|| this->model().dofTotalVolume(dofIdx) <= 0.0) {
continue;
}
if (!this->model().isLocalDof(dofIdx)) {
continue;
}
// also do not consider DOFs which are constraint
if (this->enableConstraints_()) {
if (constraintsMap.count(dofIdx) > 0) {
continue;
}
}
const auto& r = currentResidual[dofIdx];
Scalar pvValue = this->simulator_.problem().referencePorosity(dofIdx, /*timeIdx=*/0) *
this->model().dofTotalVolume(dofIdx);
sumPv += pvValue;
bool cnvViolated = false;
Scalar dofVolume = this->model().dofTotalVolume(dofIdx);
for (unsigned eqIdx = 0; eqIdx < r.size(); ++eqIdx) {
Scalar tmpError = r[eqIdx] * dt * this->model().eqWeight(dofIdx, eqIdx) / pvValue;
Scalar tmpError2 = r[eqIdx] * this->model().eqWeight(dofIdx, eqIdx);
// in the case of a volumetric formulation, the residual in the above is
// per cubic meter
if (getPropValue<TypeTag, Properties::UseVolumetricResidual>()) {
tmpError *= dofVolume;
tmpError2 *= dofVolume;
}
this->error_ = max(std::abs(tmpError), this->error_);
if (std::abs(tmpError) > this->tolerance_) {
cnvViolated = true;
}
componentSumError[eqIdx] += std::abs(tmpError2);
}
if (cnvViolated) {
errorPvFraction_ += pvValue;
}
}
// take the other processes into account
this->error_ = this->comm_.max(this->error_);
componentSumError = this->comm_.sum(componentSumError);
sumPv = this->comm_.sum(sumPv);
errorPvFraction_ = this->comm_.sum(errorPvFraction_);
componentSumError /= sumPv;
componentSumError *= dt;
errorPvFraction_ /= sumPv;
errorSum_ = 0;
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx) {
errorSum_ = std::max(std::abs(componentSumError[eqIdx]), errorSum_);
}
// scale the tolerance for the total error with the pore volume. by default, the
// exponent is 1/3, i.e., cubic root.
Scalar x = Parameters::Get<Parameters::EclNewtonSumTolerance<Scalar>>();
Scalar y = Parameters::Get<Parameters::EclNewtonSumToleranceExponent<Scalar>>();
sumTolerance_ = x*std::pow(sumPv, y);
this->endIterMsg() << " (max: " << this->tolerance_
<< ", violated for " << errorPvFraction_ * 100
<< "% of the pore volume), aggegate error: "
<< errorSum_ << " (max: " << sumTolerance_ << ")";
// make sure that the error never grows beyond the maximum
// allowed one
if (this->error_ > newtonMaxError) {
throw NumericalProblem("Newton: Error "+std::to_string(double(this->error_))
+ " is larger than maximum allowed error of "
+ std::to_string(double(newtonMaxError)));
}
// make sure that the error never grows beyond the maximum
// allowed one
if (errorSum_ > newtonMaxError) {
throw NumericalProblem("Newton: Sum of the error "+std::to_string(double(errorSum_))
+ " is larger than maximum allowed error of "
+ std::to_string(double(newtonMaxError)));
}
}
void endIteration_(SolutionVector& nextSolution,
const SolutionVector& currentSolution)
{
ParentType::endIteration_(nextSolution, currentSolution);
OpmLog::debug( "Newton iteration " + std::to_string(this->numIterations_) + ""
+ " error: " + std::to_string(double(this->error_))
+ this->endIterMsg().str());
this->endIterMsg().str("");
}
private:
Scalar errorPvFraction_;
Scalar errorSum_;
Scalar relaxedTolerance_;
Scalar relaxedMaxPvFraction_;
Scalar sumTolerance_;
int numStrictIterations_;
};
} // namespace Opm
#endif