opm-simulators/ebos/eclequilinitializer.hh
Andreas Lauser 436c9f8791 rename the "grid manager" to "vanguard"
IMO the term "vanguard" expresses better what these classes are
supposed to do: level the ground for the cavalry. Normally this simply
means to create and distribute a grid object, but it can become quite
a bit more complicated, as exemplified by the vanguard classes of
ebos..
2018-02-08 16:26:58 +01:00

164 lines
5.8 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/**
* \file
*
* \copydoc Ewoms::EclEquilInitializer
*/
#ifndef EWOMS_ECL_EQUIL_INITIALIZER_HH
#define EWOMS_ECL_EQUIL_INITIALIZER_HH
#include "equil/initstateequil.hh"
#include <ewoms/common/propertysystem.hh>
#include <opm/material/fluidstates/BlackOilFluidState.hpp>
#include <opm/material/fluidmatrixinteractions/EclMaterialLawManager.hpp>
#include <vector>
namespace Ewoms {
namespace Properties {
NEW_PROP_TAG(Simulator);
NEW_PROP_TAG(FluidSystem);
NEW_PROP_TAG(GridView);
NEW_PROP_TAG(Scalar);
NEW_PROP_TAG(MaterialLaw);
}
/*!
* \ingroup EclBlackOilSimulator
*
* \brief Computes the initial condition based on the EQUIL keyword from ECL.
*
* So far, it uses the "initStateEquil()" function from opm-core. Since this method is
* very much glued into the opm-core data structures, it should be reimplemented in the
* medium to long term for some significant memory savings and less significant
* performance improvements.
*/
template <class TypeTag>
class EclEquilInitializer
{
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef Opm::BlackOilFluidState<Scalar,
FluidSystem,
/*enableTemperature=*/true> ScalarFluidState;
enum { numPhases = FluidSystem::numPhases };
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
enum { numComponents = FluidSystem::numComponents };
enum { oilCompIdx = FluidSystem::oilCompIdx };
enum { gasCompIdx = FluidSystem::gasCompIdx };
enum { waterCompIdx = FluidSystem::waterCompIdx };
enum { dimWorld = GridView::dimensionworld };
public:
template <class EclMaterialLawManager>
EclEquilInitializer(const Simulator& simulator,
EclMaterialLawManager& materialLawManager)
: simulator_(simulator)
{
const auto& vanguard = simulator.vanguard();
unsigned numElems = vanguard.grid().size(0);
unsigned numCartesianElems = vanguard.cartesianSize();
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
EQUIL::DeckDependent::InitialStateComputer<TypeTag> initialState(materialLawManager,
vanguard.eclState(),
vanguard.grid(),
simulator.problem().gravity()[dimWorld - 1]);
// copy the result into the array of initial fluid states
initialFluidStates_.resize(numCartesianElems);
for (unsigned int elemIdx = 0; elemIdx < numElems; ++elemIdx) {
unsigned cartesianElemIdx = vanguard.cartesianIndex(elemIdx);
auto& fluidState = initialFluidStates_[cartesianElemIdx];
// get the PVT region index of the current element
unsigned regionIdx = simulator_.problem().pvtRegionIndex(elemIdx);
fluidState.setPvtRegionIndex(regionIdx);
// set the phase saturations
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (FluidSystem::phaseIsActive(phaseIdx))
fluidState.setSaturation(phaseIdx, initialState.saturation()[phaseIdx][elemIdx]);
else
fluidState.setSaturation(phaseIdx, 0.0);
}
if (FluidSystem::enableDissolvedGas())
fluidState.setRs(initialState.rs()[elemIdx]);
else
fluidState.setRs(0.0);
if (FluidSystem::enableVaporizedOil())
fluidState.setRv(initialState.rv()[elemIdx]);
else
fluidState.setRv(0.0);
// set the temperature
// TODO Get the temperature from the initialState
Scalar T = FluidSystem::surfaceTemperature;
fluidState.setTemperature(T);
// set the phase pressures.
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
fluidState.setPressure(phaseIdx, initialState.press()[phaseIdx][elemIdx]);
}
}
/*!
* \brief Return the initial thermodynamic state which should be used as the initial
* condition.
*
* This is supposed to correspond to hydrostatic conditions.
*/
const ScalarFluidState& initialFluidState(unsigned elemIdx) const
{
const auto& vanguard = simulator_.vanguard();
unsigned cartesianElemIdx = vanguard.cartesianIndex(elemIdx);
return initialFluidStates_[cartesianElemIdx];
}
protected:
const Simulator& simulator_;
std::vector<ScalarFluidState> initialFluidStates_;
};
} // namespace Ewoms
#endif