opm-simulators/opm/autodiff/FullyImplicitBlackoilSolver_impl.hpp

2346 lines
84 KiB
C++

/*
Copyright 2013 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/autodiff/FullyImplicitBlackoilSolver.hpp>
#include <opm/autodiff/AutoDiffBlock.hpp>
#include <opm/autodiff/AutoDiffHelpers.hpp>
#include <opm/autodiff/GridHelpers.hpp>
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
#include <opm/autodiff/GeoProps.hpp>
#include <opm/autodiff/WellDensitySegmented.hpp>
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
#include <opm/core/grid.h>
#include <opm/core/linalg/LinearSolverInterface.hpp>
#include <opm/core/props/rock/RockCompressibility.hpp>
#include <opm/core/simulator/BlackoilState.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/utility/Exceptions.hpp>
#include <opm/core/utility/Units.hpp>
#include <opm/core/well_controls.h>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <cassert>
#include <cmath>
#include <iostream>
#include <iomanip>
#include <limits>
//#include <fstream>
// A debugging utility.
#define DUMP(foo) \
do { \
std::cout << "==========================================\n" \
<< #foo ":\n" \
<< collapseJacs(foo) << std::endl; \
} while (0)
#define DUMPVAL(foo) \
do { \
std::cout << "==========================================\n" \
<< #foo ":\n" \
<< foo.value() << std::endl; \
} while (0)
#define DISKVAL(foo) \
do { \
std::ofstream os(#foo); \
os.precision(16); \
os << foo.value() << std::endl; \
} while (0)
namespace Opm {
typedef AutoDiffBlock<double> ADB;
typedef ADB::V V;
typedef ADB::M M;
typedef Eigen::Array<double,
Eigen::Dynamic,
Eigen::Dynamic,
Eigen::RowMajor> DataBlock;
namespace {
std::vector<int>
buildAllCells(const int nc)
{
std::vector<int> all_cells(nc);
for (int c = 0; c < nc; ++c) { all_cells[c] = c; }
return all_cells;
}
template<class Grid>
V computePerfPress(const Grid& grid, const Wells& wells, const V& rho, const double grav)
{
using namespace Opm::AutoDiffGrid;
const int nw = wells.number_of_wells;
const int nperf = wells.well_connpos[nw];
const int dim = dimensions(grid);
V wdp = V::Zero(nperf,1);
assert(wdp.size() == rho.size());
// Main loop, iterate over all perforations,
// using the following formula:
// wdp(perf) = g*(perf_z - well_ref_z)*rho(perf)
// where the total density rho(perf) is taken to be
// sum_p (rho_p*saturation_p) in the perforation cell.
// [although this is computed on the outside of this function].
for (int w = 0; w < nw; ++w) {
const double ref_depth = wells.depth_ref[w];
for (int j = wells.well_connpos[w]; j < wells.well_connpos[w + 1]; ++j) {
const int cell = wells.well_cells[j];
const double cell_depth = cellCentroid(grid, cell)[dim - 1];
wdp[j] = rho[j]*grav*(cell_depth - ref_depth);
}
}
return wdp;
}
template <class PU>
std::vector<bool>
activePhases(const PU& pu)
{
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
std::vector<bool> active(maxnp, false);
for (int p = 0; p < pu.MaxNumPhases; ++p) {
active[ p ] = pu.phase_used[ p ] != 0;
}
return active;
}
template <class PU>
std::vector<int>
active2Canonical(const PU& pu)
{
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
std::vector<int> act2can(maxnp, -1);
for (int phase = 0; phase < maxnp; ++phase) {
if (pu.phase_used[ phase ]) {
act2can[ pu.phase_pos[ phase ] ] = phase;
}
}
return act2can;
}
} // Anonymous namespace
template<class T>
void FullyImplicitBlackoilSolver<T>::SolverParameter::
reset()
{
// default values for the solver parameters
dp_max_rel_ = 1.0e9;
ds_max_ = 0.2;
dr_max_rel_ = 1.0e9;
relax_type_ = DAMPEN;
relax_max_ = 0.5;
relax_increment_ = 0.1;
relax_rel_tol_ = 0.2;
max_iter_ = 15;
max_residual_allowed_ = std::numeric_limits< double >::max();
}
template<class T>
FullyImplicitBlackoilSolver<T>::SolverParameter::
SolverParameter()
{
// set default values
reset();
}
template<class T>
FullyImplicitBlackoilSolver<T>::SolverParameter::
SolverParameter( const parameter::ParameterGroup& param )
{
// set default values
reset();
// overload with given parameters
dp_max_rel_ = param.getDefault("dp_max_rel", dp_max_rel_);
ds_max_ = param.getDefault("ds_max", ds_max_);
dr_max_rel_ = param.getDefault("dr_max_rel", dr_max_rel_);
relax_max_ = param.getDefault("relax_max", relax_max_);
max_iter_ = param.getDefault("max_iter", max_iter_);
max_residual_allowed_ = param.getDefault("max_residual_allowed", max_residual_allowed_);
std::string relaxation_type = param.getDefault("relax_type", std::string("dampen"));
if (relaxation_type == "dampen") {
relax_type_ = DAMPEN;
} else if (relaxation_type == "sor") {
relax_type_ = SOR;
} else {
OPM_THROW(std::runtime_error, "Unknown Relaxtion Type " << relaxation_type);
}
}
template<class T>
FullyImplicitBlackoilSolver<T>::
FullyImplicitBlackoilSolver(const SolverParameter& param,
const Grid& grid ,
const BlackoilPropsAdInterface& fluid,
const DerivedGeology& geo ,
const RockCompressibility* rock_comp_props,
const Wells* wells,
const NewtonIterationBlackoilInterface& linsolver,
const bool has_disgas,
const bool has_vapoil)
: grid_ (grid)
, fluid_ (fluid)
, geo_ (geo)
, rock_comp_props_(rock_comp_props)
, wells_ (wells)
, linsolver_ (linsolver)
, active_(activePhases(fluid.phaseUsage()))
, canph_ (active2Canonical(fluid.phaseUsage()))
, cells_ (buildAllCells(Opm::AutoDiffGrid::numCells(grid)))
, ops_ (grid)
, wops_ (wells_)
, has_disgas_(has_disgas)
, has_vapoil_(has_vapoil)
, param_( param )
, use_threshold_pressure_(false)
, rq_ (fluid.numPhases())
, phaseCondition_(AutoDiffGrid::numCells(grid))
, residual_ ( { std::vector<ADB>(fluid.numPhases(), ADB::null()),
ADB::null(),
ADB::null() } )
{
}
template<class T>
void
FullyImplicitBlackoilSolver<T>::
setThresholdPressures(const std::vector<double>& threshold_pressures_by_face)
{
const int num_faces = AutoDiffGrid::numFaces(grid_);
if (int(threshold_pressures_by_face.size()) != num_faces) {
OPM_THROW(std::runtime_error, "Illegal size of threshold_pressures_by_face input, must be equal to number of faces.");
}
use_threshold_pressure_ = true;
// Map to interior faces.
const int num_ifaces = ops_.internal_faces.size();
threshold_pressures_by_interior_face_.resize(num_ifaces);
for (int ii = 0; ii < num_ifaces; ++ii) {
threshold_pressures_by_interior_face_[ii] = threshold_pressures_by_face[ops_.internal_faces[ii]];
}
}
template<class T>
int
FullyImplicitBlackoilSolver<T>::
step(const double dt,
BlackoilState& x ,
WellStateFullyImplicitBlackoil& xw)
{
const V pvdt = geo_.poreVolume() / dt;
if (active_[Gas]) { updatePrimalVariableFromState(x); }
{
const SolutionState state = constantState(x, xw);
computeAccum(state, 0);
computeWellConnectionPressures(state, xw);
}
std::vector<std::vector<double>> residual_history;
assemble(pvdt, x, xw);
bool converged = false;
double omega = 1.;
residual_history.push_back(residuals());
int it = 0;
converged = getConvergence(dt,it);
const int sizeNonLinear = residual_.sizeNonLinear();
V dxOld = V::Zero(sizeNonLinear);
bool isOscillate = false;
bool isStagnate = false;
const enum RelaxType relaxtype = relaxType();
int linearIterations = 0;
while ((!converged) && (it < maxIter())) {
V dx = solveJacobianSystem();
// store number of linear iterations used
linearIterations += linsolver_.iterations();
detectNewtonOscillations(residual_history, it, relaxRelTol(), isOscillate, isStagnate);
if (isOscillate) {
omega -= relaxIncrement();
omega = std::max(omega, relaxMax());
std::cout << " Oscillating behavior detected: Relaxation set to " << omega << std::endl;
}
stablizeNewton(dx, dxOld, omega, relaxtype);
updateState(dx, x, xw);
assemble(pvdt, x, xw);
residual_history.push_back(residuals());
// increase iteration counter
++it;
converged = getConvergence(dt,it);
}
if (!converged) {
// the runtime_error is caught by the AdaptiveTimeStepping
OPM_THROW(std::runtime_error, "Failed to compute converged solution in " << it << " iterations.");
return -1;
}
return linearIterations;
}
template<class T>
FullyImplicitBlackoilSolver<T>::ReservoirResidualQuant::ReservoirResidualQuant()
: accum(2, ADB::null())
, mflux( ADB::null())
, b ( ADB::null())
, head ( ADB::null())
, mob ( ADB::null())
{
}
template<class T>
FullyImplicitBlackoilSolver<T>::SolutionState::SolutionState(const int np)
: pressure ( ADB::null())
, temperature( ADB::null())
, saturation(np, ADB::null())
, rs ( ADB::null())
, rv ( ADB::null())
, qs ( ADB::null())
, bhp ( ADB::null())
{
}
template<class T>
FullyImplicitBlackoilSolver<T>::
WellOps::WellOps(const Wells* wells)
: w2p(),
p2w()
{
if( wells )
{
w2p = M(wells->well_connpos[ wells->number_of_wells ], wells->number_of_wells);
p2w = M(wells->number_of_wells, wells->well_connpos[ wells->number_of_wells ]);
const int nw = wells->number_of_wells;
const int* const wpos = wells->well_connpos;
typedef Eigen::Triplet<double> Tri;
std::vector<Tri> scatter, gather;
scatter.reserve(wpos[nw]);
gather .reserve(wpos[nw]);
for (int w = 0, i = 0; w < nw; ++w) {
for (; i < wpos[ w + 1 ]; ++i) {
scatter.push_back(Tri(i, w, 1.0));
gather .push_back(Tri(w, i, 1.0));
}
}
w2p.setFromTriplets(scatter.begin(), scatter.end());
p2w.setFromTriplets(gather .begin(), gather .end());
}
}
template<class T>
typename FullyImplicitBlackoilSolver<T>::SolutionState
FullyImplicitBlackoilSolver<T>::constantState(const BlackoilState& x,
const WellStateFullyImplicitBlackoil& xw)
{
auto state = variableState(x, xw);
// HACK: throw away the derivatives. this may not be the most
// performant way to do things, but it will make the state
// automatically consistent with variableState() (and doing
// things automatically is all the rage in this module ;)
state.pressure = ADB::constant(state.pressure.value());
state.temperature = ADB::constant(state.temperature.value());
state.rs = ADB::constant(state.rs.value());
state.rv = ADB::constant(state.rv.value());
for (int phaseIdx= 0; phaseIdx < x.numPhases(); ++ phaseIdx)
state.saturation[phaseIdx] = ADB::constant(state.saturation[phaseIdx].value());
state.qs = ADB::constant(state.qs.value());
state.bhp = ADB::constant(state.bhp.value());
return state;
}
template<class T>
typename FullyImplicitBlackoilSolver<T>::SolutionState
FullyImplicitBlackoilSolver<T>::variableState(const BlackoilState& x,
const WellStateFullyImplicitBlackoil& xw)
{
using namespace Opm::AutoDiffGrid;
const int nc = numCells(grid_);
const int np = x.numPhases();
std::vector<V> vars0;
// p, Sw and Rs, Rv or Sg is used as primary depending on solution conditions
vars0.reserve(np + 1);
// Initial pressure.
assert (not x.pressure().empty());
const V p = Eigen::Map<const V>(& x.pressure()[0], nc, 1);
vars0.push_back(p);
// Initial saturation.
assert (not x.saturation().empty());
const DataBlock s = Eigen::Map<const DataBlock>(& x.saturation()[0], nc, np);
const Opm::PhaseUsage pu = fluid_.phaseUsage();
// We do not handle a Water/Gas situation correctly, guard against it.
assert (active_[ Oil]);
if (active_[ Water ]) {
const V sw = s.col(pu.phase_pos[ Water ]);
vars0.push_back(sw);
}
// store cell status in vectors
V isRs = V::Zero(nc,1);
V isRv = V::Zero(nc,1);
V isSg = V::Zero(nc,1);
if (active_[ Gas ]){
for (int c = 0; c < nc ; c++ ) {
switch (primalVariable_[c]) {
case PrimalVariables::RS:
isRs[c] = 1;
break;
case PrimalVariables::RV:
isRv[c] = 1;
break;
default:
isSg[c] = 1;
break;
}
}
// define new primary variable xvar depending on solution condition
V xvar(nc);
const V sg = s.col(pu.phase_pos[ Gas ]);
const V rs = Eigen::Map<const V>(& x.gasoilratio()[0], x.gasoilratio().size());
const V rv = Eigen::Map<const V>(& x.rv()[0], x.rv().size());
xvar = isRs*rs + isRv*rv + isSg*sg;
vars0.push_back(xvar);
}
// Initial well rates.
if( wellsActive() )
{
// Need to reshuffle well rates, from phase running fastest
// to wells running fastest.
const int nw = wells().number_of_wells;
// The transpose() below switches the ordering.
const DataBlock wrates = Eigen::Map<const DataBlock>(& xw.wellRates()[0], nw, np).transpose();
const V qs = Eigen::Map<const V>(wrates.data(), nw*np);
vars0.push_back(qs);
// Initial well bottom-hole pressure.
assert (not xw.bhp().empty());
const V bhp = Eigen::Map<const V>(& xw.bhp()[0], xw.bhp().size());
vars0.push_back(bhp);
}
else
{
// push null states for qs and bhp
vars0.push_back(V());
vars0.push_back(V());
}
std::vector<ADB> vars = ADB::variables(vars0);
SolutionState state(np);
// Pressure.
int nextvar = 0;
state.pressure = vars[ nextvar++ ];
// temperature
const V temp = Eigen::Map<const V>(& x.temperature()[0], x.temperature().size());
state.temperature = ADB::constant(temp);
// Saturations
const std::vector<int>& bpat = vars[0].blockPattern();
{
ADB so = ADB::constant(V::Ones(nc, 1), bpat);
if (active_[ Water ]) {
ADB& sw = vars[ nextvar++ ];
state.saturation[pu.phase_pos[ Water ]] = sw;
so -= sw;
}
if (active_[ Gas ]) {
// Define Sg Rs and Rv in terms of xvar.
// Xvar is only defined if gas phase is active
const ADB& xvar = vars[ nextvar++ ];
ADB& sg = state.saturation[ pu.phase_pos[ Gas ] ];
sg = isSg*xvar + isRv* so;
so -= sg;
if (active_[ Oil ]) {
// RS and RV is only defined if both oil and gas phase are active.
const ADB& sw = (active_[ Water ]
? state.saturation[ pu.phase_pos[ Water ] ]
: ADB::constant(V::Zero(nc, 1), bpat));
const std::vector<ADB> pressures = computePressures(state.pressure, sw, so, sg);
const ADB rsSat = fluidRsSat(pressures[ Oil ], so , cells_);
if (has_disgas_) {
state.rs = (1-isRs) * rsSat + isRs*xvar;
} else {
state.rs = rsSat;
}
const ADB rvSat = fluidRvSat(pressures[ Gas ], so , cells_);
if (has_vapoil_) {
state.rv = (1-isRv) * rvSat + isRv*xvar;
} else {
state.rv = rvSat;
}
}
}
if (active_[ Oil ]) {
// Note that so is never a primary variable.
state.saturation[pu.phase_pos[ Oil ]] = so;
}
}
// Qs.
state.qs = vars[ nextvar++ ];
// Bhp.
state.bhp = vars[ nextvar++ ];
assert(nextvar == int(vars.size()));
return state;
}
template<class T>
void
FullyImplicitBlackoilSolver<T>::computeAccum(const SolutionState& state,
const int aix )
{
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const ADB& press = state.pressure;
const ADB& temp = state.temperature;
const std::vector<ADB>& sat = state.saturation;
const ADB& rs = state.rs;
const ADB& rv = state.rv;
const std::vector<ADB> pressures = computePressures(state);
const std::vector<PhasePresence> cond = phaseCondition();
const ADB pv_mult = poroMult(press);
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
for (int phase = 0; phase < maxnp; ++phase) {
if (active_[ phase ]) {
const int pos = pu.phase_pos[ phase ];
rq_[pos].b = fluidReciprocFVF(phase, pressures[phase], temp, rs, rv, cond, cells_);
rq_[pos].accum[aix] = pv_mult * rq_[pos].b * sat[pos];
// DUMP(rq_[pos].b);
// DUMP(rq_[pos].accum[aix]);
}
}
if (active_[ Oil ] && active_[ Gas ]) {
// Account for gas dissolved in oil and vaporized oil
const int po = pu.phase_pos[ Oil ];
const int pg = pu.phase_pos[ Gas ];
// Temporary copy to avoid contribution of dissolved gas in the vaporized oil
// when both dissolved gas and vaporized oil are present.
const ADB accum_gas_copy =rq_[pg].accum[aix];
rq_[pg].accum[aix] += state.rs * rq_[po].accum[aix];
rq_[po].accum[aix] += state.rv * accum_gas_copy;
//DUMP(rq_[pg].accum[aix]);
}
}
template<class T>
void FullyImplicitBlackoilSolver<T>::computeWellConnectionPressures(const SolutionState& state,
const WellStateFullyImplicitBlackoil& xw)
{
if( ! wellsActive() ) return ;
using namespace Opm::AutoDiffGrid;
// 1. Compute properties required by computeConnectionPressureDelta().
// Note that some of the complexity of this part is due to the function
// taking std::vector<double> arguments, and not Eigen objects.
const int nperf = wells().well_connpos[wells().number_of_wells];
const std::vector<int> well_cells(wells().well_cells, wells().well_cells + nperf);
// Compute b, rsmax, rvmax values for perforations.
const std::vector<ADB> pressures = computePressures(state);
const ADB perf_temp = subset(state.temperature, well_cells);
std::vector<PhasePresence> perf_cond(nperf);
const std::vector<PhasePresence>& pc = phaseCondition();
for (int perf = 0; perf < nperf; ++perf) {
perf_cond[perf] = pc[well_cells[perf]];
}
const PhaseUsage& pu = fluid_.phaseUsage();
DataBlock b(nperf, pu.num_phases);
std::vector<double> rssat_perf(nperf, 0.0);
std::vector<double> rvsat_perf(nperf, 0.0);
if (pu.phase_used[BlackoilPhases::Aqua]) {
const ADB perf_press = subset(pressures[ Water ], well_cells);
const ADB bw = fluid_.bWat(perf_press, perf_temp, well_cells);
b.col(pu.phase_pos[BlackoilPhases::Aqua]) = bw.value();
}
assert(active_[Oil]);
const ADB perf_so = subset(state.saturation[pu.phase_pos[Oil]], well_cells);
if (pu.phase_used[BlackoilPhases::Liquid]) {
const ADB perf_rs = subset(state.rs, well_cells);
const ADB perf_press = subset(pressures[ Oil ], well_cells);
const ADB bo = fluid_.bOil(perf_press, perf_temp, perf_rs, perf_cond, well_cells);
b.col(pu.phase_pos[BlackoilPhases::Liquid]) = bo.value();
const V rssat = fluidRsSat(perf_press.value(), perf_so.value(), well_cells);
rssat_perf.assign(rssat.data(), rssat.data() + nperf);
}
if (pu.phase_used[BlackoilPhases::Vapour]) {
const ADB perf_rv = subset(state.rv, well_cells);
const ADB perf_press = subset(pressures[ Gas ], well_cells);
const ADB bg = fluid_.bGas(perf_press, perf_temp, perf_rv, perf_cond, well_cells);
b.col(pu.phase_pos[BlackoilPhases::Vapour]) = bg.value();
const V rvsat = fluidRvSat(perf_press.value(), perf_so.value(), well_cells);
rvsat_perf.assign(rvsat.data(), rvsat.data() + nperf);
}
// b is row major, so can just copy data.
std::vector<double> b_perf(b.data(), b.data() + nperf * pu.num_phases);
// Extract well connection depths.
const V depth = cellCentroidsZToEigen(grid_);
const V pdepth = subset(depth, well_cells);
std::vector<double> perf_depth(pdepth.data(), pdepth.data() + nperf);
// Surface density.
std::vector<double> surf_dens(fluid_.surfaceDensity(), fluid_.surfaceDensity() + pu.num_phases);
// Gravity
double grav = 0.0;
const double* g = geo_.gravity();
const int dim = dimensions(grid_);
if (g) {
// Guard against gravity in anything but last dimension.
for (int dd = 0; dd < dim - 1; ++dd) {
assert(g[dd] == 0.0);
}
grav = g[dim - 1];
}
// 2. Compute pressure deltas, and store the results.
std::vector<double> cdp = WellDensitySegmented
::computeConnectionPressureDelta(wells(), xw, fluid_.phaseUsage(),
b_perf, rssat_perf, rvsat_perf, perf_depth,
surf_dens, grav);
well_perforation_pressure_diffs_ = Eigen::Map<const V>(cdp.data(), nperf);
}
template<class T>
void
FullyImplicitBlackoilSolver<T>::
assemble(const V& pvdt,
const BlackoilState& x ,
WellStateFullyImplicitBlackoil& xw )
{
using namespace Opm::AutoDiffGrid;
// Create the primary variables.
SolutionState state = variableState(x, xw);
// DISKVAL(state.pressure);
// DISKVAL(state.saturation[0]);
// DISKVAL(state.saturation[1]);
// DISKVAL(state.saturation[2]);
// DISKVAL(state.rs);
// DISKVAL(state.rv);
// DISKVAL(state.qs);
// DISKVAL(state.bhp);
// -------- Mass balance equations --------
// Compute b_p and the accumulation term b_p*s_p for each phase,
// except gas. For gas, we compute b_g*s_g + Rs*b_o*s_o.
// These quantities are stored in rq_[phase].accum[1].
// The corresponding accumulation terms from the start of
// the timestep (b^0_p*s^0_p etc.) were already computed
// in step() and stored in rq_[phase].accum[0].
computeAccum(state, 1);
// Set up the common parts of the mass balance equations
// for each active phase.
const V transi = subset(geo_.transmissibility(), ops_.internal_faces);
const std::vector<ADB> kr = computeRelPerm(state);
const std::vector<ADB> pressures = computePressures(state);
for (int phaseIdx = 0; phaseIdx < fluid_.numPhases(); ++phaseIdx) {
computeMassFlux(phaseIdx, transi, kr[canph_[phaseIdx]], pressures[canph_[phaseIdx]], state);
// std::cout << "===== kr[" << phase << "] = \n" << std::endl;
// std::cout << kr[phase];
// std::cout << "===== rq_[" << phase << "].mflux = \n" << std::endl;
// std::cout << rq_[phase].mflux;
residual_.material_balance_eq[ phaseIdx ] =
pvdt*(rq_[phaseIdx].accum[1] - rq_[phaseIdx].accum[0])
+ ops_.div*rq_[phaseIdx].mflux;
// DUMP(ops_.div*rq_[phase].mflux);
// DUMP(residual_.material_balance_eq[phase]);
}
// -------- Extra (optional) rs and rv contributions to the mass balance equations --------
// Add the extra (flux) terms to the mass balance equations
// From gas dissolved in the oil phase (rs) and oil vaporized in the gas phase (rv)
// The extra terms in the accumulation part of the equation are already handled.
if (active_[ Oil ] && active_[ Gas ]) {
const int po = fluid_.phaseUsage().phase_pos[ Oil ];
const int pg = fluid_.phaseUsage().phase_pos[ Gas ];
const UpwindSelector<double> upwindOil(grid_, ops_,
rq_[po].head.value());
const ADB rs_face = upwindOil.select(state.rs);
const UpwindSelector<double> upwindGas(grid_, ops_,
rq_[pg].head.value());
const ADB rv_face = upwindGas.select(state.rv);
residual_.material_balance_eq[ pg ] += ops_.div * (rs_face * rq_[po].mflux);
residual_.material_balance_eq[ po ] += ops_.div * (rv_face * rq_[pg].mflux);
// DUMP(residual_.material_balance_eq[ Gas ]);
}
// Note: updateWellControls() can change all its arguments if
// a well control is switched.
updateWellControls(state.bhp, state.qs, xw);
V aliveWells;
addWellEq(state, xw, aliveWells);
addWellControlEq(state, xw, aliveWells);
}
template <class T>
void FullyImplicitBlackoilSolver<T>::addWellEq(const SolutionState& state,
WellStateFullyImplicitBlackoil& xw,
V& aliveWells)
{
if( ! wellsActive() ) return ;
const int nc = Opm::AutoDiffGrid::numCells(grid_);
const int np = wells().number_of_phases;
const int nw = wells().number_of_wells;
const int nperf = wells().well_connpos[nw];
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
V Tw = Eigen::Map<const V>(wells().WI, nperf);
const std::vector<int> well_cells(wells().well_cells, wells().well_cells + nperf);
// pressure diffs computed already (once per step, not changing per iteration)
const V& cdp = well_perforation_pressure_diffs_;
// Extract variables for perforation cell pressures
// and corresponding perforation well pressures.
const ADB p_perfcell = subset(state.pressure, well_cells);
// DUMPVAL(p_perfcell);
// DUMPVAL(state.bhp);
// DUMPVAL(ADB::constant(cdp));
// Pressure drawdown (also used to determine direction of flow)
const ADB drawdown = p_perfcell - (wops_.w2p * state.bhp + cdp);
// current injecting connections
auto connInjInx = drawdown.value() < 0;
// injector == 1, producer == 0
V isInj = V::Zero(nw);
for (int w = 0; w < nw; ++w) {
if (wells().type[w] == INJECTOR) {
isInj[w] = 1;
}
}
// // A cross-flow connection is defined as a connection which has opposite
// // flow-direction to the well total flow
// V isInjPerf = (wops_.w2p * isInj);
// auto crossFlowConns = (connInjInx != isInjPerf);
// bool allowCrossFlow = true;
// if (not allowCrossFlow) {
// auto closedConns = crossFlowConns;
// for (int c = 0; c < nperf; ++c) {
// if (closedConns[c]) {
// Tw[c] = 0;
// }
// }
// connInjInx = !closedConns;
// }
// TODO: not allow for crossflow
V isInjInx = V::Zero(nperf);
V isNotInjInx = V::Zero(nperf);
for (int c = 0; c < nperf; ++c){
if (connInjInx[c])
isInjInx[c] = 1;
else
isNotInjInx[c] = 1;
}
// HANDLE FLOW INTO WELLBORE
// compute phase volumerates standard conditions
std::vector<ADB> cq_ps(np, ADB::null());
for (int phase = 0; phase < np; ++phase) {
const ADB& wellcell_mob = subset ( rq_[phase].mob, well_cells);
const ADB cq_p = -(isNotInjInx * Tw) * (wellcell_mob * drawdown);
cq_ps[phase] = subset(rq_[phase].b,well_cells) * cq_p;
}
if (active_[Oil] && active_[Gas]) {
const int oilpos = pu.phase_pos[Oil];
const int gaspos = pu.phase_pos[Gas];
ADB cq_psOil = cq_ps[oilpos];
ADB cq_psGas = cq_ps[gaspos];
cq_ps[gaspos] += subset(state.rs,well_cells) * cq_psOil;
cq_ps[oilpos] += subset(state.rv,well_cells) * cq_psGas;
}
// phase rates at std. condtions
std::vector<ADB> q_ps(np, ADB::null());
for (int phase = 0; phase < np; ++phase) {
q_ps[phase] = wops_.p2w * cq_ps[phase];
}
// total rates at std
ADB qt_s = ADB::constant(V::Zero(nw), state.bhp.blockPattern());
for (int phase = 0; phase < np; ++phase) {
qt_s += subset(state.qs, Span(nw, 1, phase*nw));
}
// compute avg. and total wellbore phase volumetric rates at std. conds
const DataBlock compi = Eigen::Map<const DataBlock>(wells().comp_frac, nw, np);
std::vector<ADB> wbq(np, ADB::null());
ADB wbqt = ADB::constant(V::Zero(nw), state.pressure.blockPattern());
for (int phase = 0; phase < np; ++phase) {
const int pos = pu.phase_pos[phase];
wbq[phase] = (isInj * compi.col(pos)) * qt_s - q_ps[phase];
wbqt += wbq[phase];
}
// DUMPVAL(wbqt);
// check for dead wells
aliveWells = V::Constant(nw, 1.0);
for (int w = 0; w < nw; ++w) {
if (wbqt.value()[w] == 0) {
aliveWells[w] = 0.0;
}
}
// compute wellbore mixture at std conds
Selector<double> notDeadWells_selector(wbqt.value(), Selector<double>::Zero);
std::vector<ADB> mix_s(np, ADB::null());
for (int phase = 0; phase < np; ++phase) {
const int pos = pu.phase_pos[phase];
mix_s[phase] = notDeadWells_selector.select(ADB::constant(compi.col(pos)), wbq[phase]/wbqt);
}
// HANDLE FLOW OUT FROM WELLBORE
// Total mobilities
ADB mt = subset(rq_[0].mob,well_cells);
for (int phase = 1; phase < np; ++phase) {
mt += subset(rq_[phase].mob,well_cells);
}
// DUMPVAL(ADB::constant(isInjInx));
// DUMPVAL(ADB::constant(Tw));
// DUMPVAL(mt);
// DUMPVAL(drawdown);
// injection connections total volumerates
ADB cqt_i = -(isInjInx * Tw) * (mt * drawdown);
// compute volume ratio between connection at standard conditions
ADB volRat = ADB::constant(V::Zero(nperf), state.pressure.blockPattern());
std::vector<ADB> cmix_s(np, ADB::null());
for (int phase = 0; phase < np; ++phase) {
cmix_s[phase] = wops_.w2p * mix_s[phase];
}
ADB well_rv = subset(state.rv,well_cells);
ADB well_rs = subset(state.rs,well_cells);
ADB d = V::Constant(nperf,1.0) - well_rv * well_rs;
for (int phase = 0; phase < np; ++phase) {
ADB tmp = cmix_s[phase];
if (phase == Oil && active_[Gas]) {
const int gaspos = pu.phase_pos[Gas];
tmp = tmp - subset(state.rv,well_cells) * cmix_s[gaspos] / d;
}
if (phase == Gas && active_[Oil]) {
const int oilpos = pu.phase_pos[Oil];
tmp = tmp - subset(state.rs,well_cells) * cmix_s[oilpos] / d;
}
volRat += tmp / subset(rq_[phase].b,well_cells);
}
// DUMPVAL(cqt_i);
// DUMPVAL(volRat);
// injecting connections total volumerates at std cond
ADB cqt_is = cqt_i/volRat;
// connection phase volumerates at std cond
std::vector<ADB> cq_s(np, ADB::null());
for (int phase = 0; phase < np; ++phase) {
cq_s[phase] = cq_ps[phase] + (wops_.w2p * mix_s[phase])*cqt_is;
}
// DUMPVAL(mix_s[2]);
// DUMPVAL(cq_ps[2]);
// Add well contributions to mass balance equations
for (int phase = 0; phase < np; ++phase) {
residual_.material_balance_eq[phase] -= superset(cq_s[phase],well_cells,nc);
}
// Add WELL EQUATIONS
ADB qs = state.qs;
for (int phase = 0; phase < np; ++phase) {
qs -= superset(wops_.p2w * cq_s[phase], Span(nw, 1, phase*nw), nw*np);
}
V cq = superset(cq_s[0].value(), Span(nperf, np, 0), nperf*np);
for (int phase = 1; phase < np; ++phase) {
cq += superset(cq_s[phase].value(), Span(nperf, np, phase), nperf*np);
}
std::vector<double> cq_d(cq.data(), cq.data() + nperf*np);
xw.perfPhaseRates() = cq_d;
residual_.well_flux_eq = qs;
}
namespace
{
double rateToCompare(const ADB& well_phase_flow_rate,
const int well,
const int num_phases,
const double* distr)
{
const int num_wells = well_phase_flow_rate.size() / num_phases;
double rate = 0.0;
for (int phase = 0; phase < num_phases; ++phase) {
// Important: well_phase_flow_rate is ordered with all rates for first
// phase coming first, then all for second phase etc.
rate += well_phase_flow_rate.value()[well + phase*num_wells] * distr[phase];
}
return rate;
}
bool constraintBroken(const ADB& bhp,
const ADB& well_phase_flow_rate,
const int well,
const int num_phases,
const WellType& well_type,
const WellControls* wc,
const int ctrl_index)
{
const WellControlType ctrl_type = well_controls_iget_type(wc, ctrl_index);
const double target = well_controls_iget_target(wc, ctrl_index);
const double* distr = well_controls_iget_distr(wc, ctrl_index);
bool broken = false;
switch (well_type) {
case INJECTOR:
{
switch (ctrl_type) {
case BHP:
broken = bhp.value()[well] > target;
break;
case RESERVOIR_RATE: // Intentional fall-through
case SURFACE_RATE:
broken = rateToCompare(well_phase_flow_rate,
well, num_phases, distr) > target;
break;
}
}
break;
case PRODUCER:
{
switch (ctrl_type) {
case BHP:
broken = bhp.value()[well] < target;
break;
case RESERVOIR_RATE: // Intentional fall-through
case SURFACE_RATE:
// Note that the rates compared below are negative,
// so breaking the constraints means: too high flow rate
// (as for injection).
broken = rateToCompare(well_phase_flow_rate,
well, num_phases, distr) < target;
break;
}
}
break;
default:
OPM_THROW(std::logic_error, "Can only handle INJECTOR and PRODUCER wells.");
}
return broken;
}
} // anonymous namespace
template<class T>
void FullyImplicitBlackoilSolver<T>::updateWellControls(ADB& bhp,
ADB& well_phase_flow_rate,
WellStateFullyImplicitBlackoil& xw) const
{
if( ! wellsActive() ) return ;
std::string modestring[3] = { "BHP", "RESERVOIR_RATE", "SURFACE_RATE" };
// Find, for each well, if any constraints are broken. If so,
// switch control to first broken constraint.
const int np = wells().number_of_phases;
const int nw = wells().number_of_wells;
bool bhp_changed = false;
bool rates_changed = false;
for (int w = 0; w < nw; ++w) {
const WellControls* wc = wells().ctrls[w];
// The current control in the well state overrides
// the current control set in the Wells struct, which
// is instead treated as a default.
const int current = xw.currentControls()[w];
// Loop over all controls except the current one, and also
// skip any RESERVOIR_RATE controls, since we cannot
// handle those.
const int nwc = well_controls_get_num(wc);
int ctrl_index = 0;
for (; ctrl_index < nwc; ++ctrl_index) {
if (ctrl_index == current) {
// This is the currently used control, so it is
// used as an equation. So this is not used as an
// inequality constraint, and therefore skipped.
continue;
}
if (constraintBroken(bhp, well_phase_flow_rate, w, np, wells().type[w], wc, ctrl_index)) {
// ctrl_index will be the index of the broken constraint after the loop.
break;
}
}
if (ctrl_index != nwc) {
// Constraint number ctrl_index was broken, switch to it.
std::cout << "Switching control mode for well " << wells().name[w]
<< " from " << modestring[well_controls_iget_type(wc, current)]
<< " to " << modestring[well_controls_iget_type(wc, ctrl_index)] << std::endl;
xw.currentControls()[w] = ctrl_index;
// Also updating well state and primary variables.
// We can only be switching to BHP and SURFACE_RATE
// controls since we do not support RESERVOIR_RATE.
const double target = well_controls_iget_target(wc, ctrl_index);
const double* distr = well_controls_iget_distr(wc, ctrl_index);
switch (well_controls_iget_type(wc, ctrl_index)) {
case BHP:
xw.bhp()[w] = target;
bhp_changed = true;
break;
case RESERVOIR_RATE:
// No direct change to any observable quantity at
// surface condition. In this case, use existing
// flow rates as initial conditions as reservoir
// rate acts only in aggregate.
//
// Just record the fact that we need to recompute
// the 'well_phase_flow_rate'.
rates_changed = true;
break;
case SURFACE_RATE:
for (int phase = 0; phase < np; ++phase) {
if (distr[phase] > 0.0) {
xw.wellRates()[np*w + phase] = target * distr[phase];
}
}
rates_changed = true;
break;
}
}
}
// Update primary variables, if necessary.
if (bhp_changed) {
ADB::V new_bhp = Eigen::Map<ADB::V>(xw.bhp().data(), nw);
bhp = ADB::function(new_bhp, bhp.derivative());
}
if (rates_changed) {
// Need to reshuffle well rates, from phase running fastest
// to wells running fastest.
// The transpose() below switches the ordering.
const DataBlock wrates = Eigen::Map<const DataBlock>(xw.wellRates().data(), nw, np).transpose();
const ADB::V new_qs = Eigen::Map<const V>(wrates.data(), nw*np);
well_phase_flow_rate = ADB::function(new_qs, well_phase_flow_rate.derivative());
}
}
template<class T>
void FullyImplicitBlackoilSolver<T>::addWellControlEq(const SolutionState& state,
const WellStateFullyImplicitBlackoil& xw,
const V& aliveWells)
{
if( ! wellsActive() ) return;
const int np = wells().number_of_phases;
const int nw = wells().number_of_wells;
V bhp_targets = V::Zero(nw);
V rate_targets = V::Zero(nw);
M rate_distr(nw, np*nw);
for (int w = 0; w < nw; ++w) {
const WellControls* wc = wells().ctrls[w];
// The current control in the well state overrides
// the current control set in the Wells struct, which
// is instead treated as a default.
const int current = xw.currentControls()[w];
switch (well_controls_iget_type(wc, current)) {
case BHP:
{
bhp_targets (w) = well_controls_iget_target(wc, current);
rate_targets(w) = -1e100;
}
break;
case RESERVOIR_RATE: // Intentional fall-through
case SURFACE_RATE:
{
// RESERVOIR and SURFACE rates look the same, from a
// high-level point of view, in the system of
// simultaneous linear equations.
const double* const distr =
well_controls_iget_distr(wc, current);
for (int p = 0; p < np; ++p) {
rate_distr.insert(w, p*nw + w) = distr[p];
}
bhp_targets (w) = -1.0e100;
rate_targets(w) = well_controls_iget_target(wc, current);
}
break;
}
}
const ADB bhp_residual = state.bhp - bhp_targets;
const ADB rate_residual = rate_distr * state.qs - rate_targets;
// Choose bhp residual for positive bhp targets.
Selector<double> bhp_selector(bhp_targets);
residual_.well_eq = bhp_selector.select(bhp_residual, rate_residual);
// For wells that are dead (not flowing), and therefore not communicating
// with the reservoir, we set the equation to be equal to the well's total
// flow. This will be a solution only if the target rate is also zero.
M rate_summer(nw, np*nw);
for (int w = 0; w < nw; ++w) {
for (int phase = 0; phase < np; ++phase) {
rate_summer.insert(w, phase*nw + w) = 1.0;
}
}
Selector<double> alive_selector(aliveWells, Selector<double>::NotEqualZero);
residual_.well_eq = alive_selector.select(residual_.well_eq, rate_summer * state.qs);
// DUMP(residual_.well_eq);
}
template<class T>
V FullyImplicitBlackoilSolver<T>::solveJacobianSystem() const
{
return linsolver_.computeNewtonIncrement(residual_);
}
namespace {
struct Chop01 {
double operator()(double x) const { return std::max(std::min(x, 1.0), 0.0); }
};
double infinityNorm( const ADB& a )
{
if( a.value().size() > 0 ) {
return a.value().matrix().lpNorm<Eigen::Infinity> ();
}
else { // this situation can occur when no wells are present
return 0.0;
}
}
}
template<class T>
void FullyImplicitBlackoilSolver<T>::updateState(const V& dx,
BlackoilState& state,
WellStateFullyImplicitBlackoil& well_state)
{
using namespace Opm::AutoDiffGrid;
const int np = fluid_.numPhases();
const int nc = numCells(grid_);
const int nw = wellsActive() ? wells().number_of_wells : 0;
const V null;
assert(null.size() == 0);
const V zero = V::Zero(nc);
const V one = V::Constant(nc, 1.0);
const SolutionState sol_state_old = constantState(state, well_state);
const std::vector<ADB> pressures_old = computePressures(sol_state_old);
// store cell status in vectors
V isRs = V::Zero(nc,1);
V isRv = V::Zero(nc,1);
V isSg = V::Zero(nc,1);
if (active_[Gas]) {
for (int c = 0; c < nc; ++c) {
switch (primalVariable_[c]) {
case PrimalVariables::RS:
isRs[c] = 1;
break;
case PrimalVariables::RV:
isRv[c] = 1;
break;
default:
isSg[c] = 1;
break;
}
}
}
// Extract parts of dx corresponding to each part.
const V dp = subset(dx, Span(nc));
int varstart = nc;
const V dsw = active_[Water] ? subset(dx, Span(nc, 1, varstart)) : null;
varstart += dsw.size();
const V dxvar = active_[Gas] ? subset(dx, Span(nc, 1, varstart)): null;
varstart += dxvar.size();
const V dqs = subset(dx, Span(np*nw, 1, varstart));
varstart += dqs.size();
const V dbhp = subset(dx, Span(nw, 1, varstart));
varstart += dbhp.size();
assert(varstart == dx.size());
// Pressure update.
const double dpmaxrel = dpMaxRel();
const V p_old = Eigen::Map<const V>(&state.pressure()[0], nc, 1);
const V absdpmax = dpmaxrel*p_old.abs();
const V dp_limited = sign(dp) * dp.abs().min(absdpmax);
const V p = (p_old - dp_limited).max(zero);
std::copy(&p[0], &p[0] + nc, state.pressure().begin());
// Saturation updates.
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const DataBlock s_old = Eigen::Map<const DataBlock>(& state.saturation()[0], nc, np);
const double dsmax = dsMax();
V so;
V sw;
V sg;
{
V maxVal = zero;
V dso = zero;
if (active_[Water]){
maxVal = dsw.abs().max(maxVal);
dso = dso - dsw;
}
V dsg;
if (active_[Gas]){
dsg = isSg * dxvar - isRv * dsw;
maxVal = dsg.abs().max(maxVal);
dso = dso - dsg;
}
maxVal = dso.abs().max(maxVal);
V step = dsmax/maxVal;
step = step.min(1.);
if (active_[Water]) {
const int pos = pu.phase_pos[ Water ];
const V sw_old = s_old.col(pos);
sw = sw_old - step * dsw;
}
if (active_[Gas]) {
const int pos = pu.phase_pos[ Gas ];
const V sg_old = s_old.col(pos);
sg = sg_old - step * dsg;
}
const int pos = pu.phase_pos[ Oil ];
const V so_old = s_old.col(pos);
so = so_old - step * dso;
}
// Appleyard chop process.
auto ixg = sg < 0;
for (int c = 0; c < nc; ++c) {
if (ixg[c]) {
sw[c] = sw[c] / (1-sg[c]);
so[c] = so[c] / (1-sg[c]);
sg[c] = 0;
}
}
auto ixo = so < 0;
for (int c = 0; c < nc; ++c) {
if (ixo[c]) {
sw[c] = sw[c] / (1-so[c]);
sg[c] = sg[c] / (1-so[c]);
so[c] = 0;
}
}
auto ixw = sw < 0;
for (int c = 0; c < nc; ++c) {
if (ixw[c]) {
so[c] = so[c] / (1-sw[c]);
sg[c] = sg[c] / (1-sw[c]);
sw[c] = 0;
}
}
const V sumSat = sw + so + sg;
sw = sw / sumSat;
so = so / sumSat;
sg = sg / sumSat;
// Update the state
for (int c = 0; c < nc; ++c) {
state.saturation()[c*np + pu.phase_pos[ Water ]] = sw[c];
}
for (int c = 0; c < nc; ++c) {
state.saturation()[c*np + pu.phase_pos[ Gas ]] = sg[c];
}
if (active_[ Oil ]) {
const int pos = pu.phase_pos[ Oil ];
for (int c = 0; c < nc; ++c) {
state.saturation()[c*np + pos] = so[c];
}
}
// Update rs and rv
const double drmaxrel = drMaxRel();
V rs;
if (has_disgas_) {
const V rs_old = Eigen::Map<const V>(&state.gasoilratio()[0], nc);
const V drs = isRs * dxvar;
const V drs_limited = sign(drs) * drs.abs().min(rs_old.abs()*drmaxrel);
rs = rs_old - drs_limited;
}
V rv;
if (has_vapoil_) {
const V rv_old = Eigen::Map<const V>(&state.rv()[0], nc);
const V drv = isRv * dxvar;
const V drv_limited = sign(drv) * drv.abs().min(rv_old.abs()*drmaxrel);
rv = rv_old - drv_limited;
}
// Sg is used as primal variable for water only cells.
const double epsilon = std::sqrt(std::numeric_limits<double>::epsilon());
auto watOnly = sw > (1 - epsilon);
// phase translation sg <-> rs
std::fill(primalVariable_.begin(), primalVariable_.end(), PrimalVariables::Sg);
if (has_disgas_) {
const V rsSat0 = fluidRsSat(p_old, s_old.col(pu.phase_pos[Oil]), cells_);
const V rsSat = fluidRsSat(p, so, cells_);
// The obvious case
auto hasGas = (sg > 0 && isRs == 0);
// Set oil saturated if previous rs is sufficiently large
const V rs_old = Eigen::Map<const V>(&state.gasoilratio()[0], nc);
auto gasVaporized = ( (rs > rsSat * (1+epsilon) && isRs == 1 ) && (rs_old > rsSat0 * (1-epsilon)) );
auto useSg = watOnly || hasGas || gasVaporized;
for (int c = 0; c < nc; ++c) {
if (useSg[c]) {
rs[c] = rsSat[c];
} else {
primalVariable_[c] = PrimalVariables::RS;
}
}
}
// phase transitions so <-> rv
if (has_vapoil_) {
// The gas pressure is needed for the rvSat calculations
const SolutionState sol_state = constantState(state, well_state);
const std::vector<ADB> pressures = computePressures(sol_state);
const V rvSat0 = fluidRvSat(pressures_old[ Gas ].value(), s_old.col(pu.phase_pos[Oil]), cells_);
const V rvSat = fluidRvSat(pressures[ Gas ].value(), so, cells_);
// The obvious case
auto hasOil = (so > 0 && isRv == 0);
// Set oil saturated if previous rv is sufficiently large
const V rv_old = Eigen::Map<const V>(&state.rv()[0], nc);
auto oilCondensed = ( (rv > rvSat * (1+epsilon) && isRv == 1) && (rv_old > rvSat0 * (1-epsilon)) );
auto useSg = watOnly || hasOil || oilCondensed;
for (int c = 0; c < nc; ++c) {
if (useSg[c]) {
rv[c] = rvSat[c];
} else {
primalVariable_[c] = PrimalVariables::RV;
}
}
}
// Update the state
if (has_disgas_) {
std::copy(&rs[0], &rs[0] + nc, state.gasoilratio().begin());
}
if (has_vapoil_) {
std::copy(&rv[0], &rv[0] + nc, state.rv().begin());
}
if( wellsActive() )
{
// Qs update.
// Since we need to update the wellrates, that are ordered by wells,
// from dqs which are ordered by phase, the simplest is to compute
// dwr, which is the data from dqs but ordered by wells.
const DataBlock wwr = Eigen::Map<const DataBlock>(dqs.data(), np, nw).transpose();
const V dwr = Eigen::Map<const V>(wwr.data(), nw*np);
const V wr_old = Eigen::Map<const V>(&well_state.wellRates()[0], nw*np);
const V wr = wr_old - dwr;
std::copy(&wr[0], &wr[0] + wr.size(), well_state.wellRates().begin());
// Bhp update.
const V bhp_old = Eigen::Map<const V>(&well_state.bhp()[0], nw, 1);
const V dbhp_limited = sign(dbhp) * dbhp.abs().min(bhp_old.abs()*dpmaxrel);
const V bhp = bhp_old - dbhp_limited;
std::copy(&bhp[0], &bhp[0] + bhp.size(), well_state.bhp().begin());
}
// Update phase conditions used for property calculations.
updatePhaseCondFromPrimalVariable();
}
template<class T>
std::vector<ADB>
FullyImplicitBlackoilSolver<T>::computeRelPerm(const SolutionState& state) const
{
using namespace Opm::AutoDiffGrid;
const int nc = numCells(grid_);
const std::vector<int>& bpat = state.pressure.blockPattern();
const ADB null = ADB::constant(V::Zero(nc, 1), bpat);
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const ADB sw = (active_[ Water ]
? state.saturation[ pu.phase_pos[ Water ] ]
: null);
const ADB so = (active_[ Oil ]
? state.saturation[ pu.phase_pos[ Oil ] ]
: null);
const ADB sg = (active_[ Gas ]
? state.saturation[ pu.phase_pos[ Gas ] ]
: null);
return fluid_.relperm(sw, so, sg, cells_);
}
template<class T>
std::vector<ADB>
FullyImplicitBlackoilSolver<T>::computePressures(const SolutionState& state) const
{
using namespace Opm::AutoDiffGrid;
const int nc = numCells(grid_);
const std::vector<int>& bpat = state.pressure.blockPattern();
const ADB null = ADB::constant(V::Zero(nc, 1), bpat);
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const ADB& sw = (active_[ Water ]
? state.saturation[ pu.phase_pos[ Water ] ]
: null);
const ADB& so = (active_[ Oil ]
? state.saturation[ pu.phase_pos[ Oil ] ]
: null);
const ADB& sg = (active_[ Gas ]
? state.saturation[ pu.phase_pos[ Gas ] ]
: null);
return computePressures(state.pressure, sw, so, sg);
}
template <class T>
std::vector<ADB>
FullyImplicitBlackoilSolver<T>::
computePressures(const ADB& po,
const ADB& sw,
const ADB& so,
const ADB& sg) const
{
// convert the pressure offsets to the capillary pressures
std::vector<ADB> pressure = fluid_.capPress(sw, so, sg, cells_);
for (int phaseIdx = 0; phaseIdx < BlackoilPhases::MaxNumPhases; ++phaseIdx) {
// The reference pressure is always the liquid phase (oil) pressure.
if (phaseIdx == BlackoilPhases::Liquid)
continue;
pressure[phaseIdx] = pressure[phaseIdx] - pressure[BlackoilPhases::Liquid];
}
// Since pcow = po - pw, but pcog = pg - po,
// we have
// pw = po - pcow
// pg = po + pcgo
// This is an unfortunate inconsistency, but a convention we must handle.
for (int phaseIdx = 0; phaseIdx < BlackoilPhases::MaxNumPhases; ++phaseIdx) {
if (phaseIdx == BlackoilPhases::Aqua) {
pressure[phaseIdx] = po - pressure[phaseIdx];
} else {
pressure[phaseIdx] += po;
}
}
return pressure;
}
template<class T>
std::vector<ADB>
FullyImplicitBlackoilSolver<T>::computeRelPermWells(const SolutionState& state,
const DataBlock& well_s,
const std::vector<int>& well_cells) const
{
const int nw = wells().number_of_wells;
const int nperf = wells().well_connpos[nw];
const std::vector<int>& bpat = state.pressure.blockPattern();
const ADB null = ADB::constant(V::Zero(nperf), bpat);
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const ADB sw = (active_[ Water ]
? ADB::constant(well_s.col(pu.phase_pos[ Water ]), bpat)
: null);
const ADB so = (active_[ Oil ]
? ADB::constant(well_s.col(pu.phase_pos[ Oil ]), bpat)
: null);
const ADB sg = (active_[ Gas ]
? ADB::constant(well_s.col(pu.phase_pos[ Gas ]), bpat)
: null);
return fluid_.relperm(sw, so, sg, well_cells);
}
template<class T>
void
FullyImplicitBlackoilSolver<T>::computeMassFlux(const int actph ,
const V& transi,
const ADB& kr ,
const ADB& phasePressure,
const SolutionState& state)
{
const int canonicalPhaseIdx = canph_[ actph ];
const std::vector<PhasePresence> cond = phaseCondition();
const ADB tr_mult = transMult(state.pressure);
const ADB mu = fluidViscosity(canonicalPhaseIdx, phasePressure, state.temperature, state.rs, state.rv,cond, cells_);
rq_[ actph ].mob = tr_mult * kr / mu;
const ADB rho = fluidDensity(canonicalPhaseIdx, phasePressure, state.temperature, state.rs, state.rv,cond, cells_);
ADB& head = rq_[ actph ].head;
// compute gravity potensial using the face average as in eclipse and MRST
const ADB rhoavg = ops_.caver * rho;
ADB dp = ops_.ngrad * phasePressure - geo_.gravity()[2] * (rhoavg * (ops_.ngrad * geo_.z().matrix()));
if (use_threshold_pressure_) {
applyThresholdPressures(dp);
}
head = transi*dp;
//head = transi*(ops_.ngrad * phasePressure) + gflux;
UpwindSelector<double> upwind(grid_, ops_, head.value());
const ADB& b = rq_[ actph ].b;
const ADB& mob = rq_[ actph ].mob;
rq_[ actph ].mflux = upwind.select(b * mob) * head;
// DUMP(rq_[ actph ].mob);
// DUMP(rq_[ actph ].mflux);
}
template<class T>
void
FullyImplicitBlackoilSolver<T>::applyThresholdPressures(ADB& dp)
{
// We support reversible threshold pressures only.
// Method: if the potential difference is lower (in absolute
// value) than the threshold for any face, then the potential
// (and derivatives) is set to zero. If it is above the
// threshold, the threshold pressure is subtracted from the
// absolute potential (the potential is moved towards zero).
// Identify the set of faces where the potential is under the
// threshold, that shall have zero flow. Storing the bool
// Array as a V (a double Array) with 1 and 0 elements, a
// 1 where flow is allowed, a 0 where it is not.
const V high_potential = (dp.value().abs() >= threshold_pressures_by_interior_face_).template cast<double>();
// Create a sparse vector that nullifies the low potential elements.
const M keep_high_potential = spdiag(high_potential);
// Find the current sign for the threshold modification
const V sign_dp = sign(dp.value());
const V threshold_modification = sign_dp * threshold_pressures_by_interior_face_;
// Modify potential and nullify where appropriate.
dp = keep_high_potential * (dp - threshold_modification);
}
template<class T>
double
FullyImplicitBlackoilSolver<T>::residualNorm() const
{
double globalNorm = 0;
std::vector<ADB>::const_iterator quantityIt = residual_.material_balance_eq.begin();
const std::vector<ADB>::const_iterator endQuantityIt = residual_.material_balance_eq.end();
for (; quantityIt != endQuantityIt; ++quantityIt) {
const double quantityResid = (*quantityIt).value().matrix().norm();
if (!std::isfinite(quantityResid)) {
const int trouble_phase = quantityIt - residual_.material_balance_eq.begin();
OPM_THROW(Opm::NumericalProblem,
"Encountered a non-finite residual in material balance equation "
<< trouble_phase);
}
globalNorm = std::max(globalNorm, quantityResid);
}
globalNorm = std::max(globalNorm, residual_.well_flux_eq.value().matrix().norm());
globalNorm = std::max(globalNorm, residual_.well_eq.value().matrix().norm());
return globalNorm;
}
template<class T>
std::vector<double>
FullyImplicitBlackoilSolver<T>::residuals() const
{
std::vector<double> residual;
std::vector<ADB>::const_iterator massBalanceIt = residual_.material_balance_eq.begin();
const std::vector<ADB>::const_iterator endMassBalanceIt = residual_.material_balance_eq.end();
for (; massBalanceIt != endMassBalanceIt; ++massBalanceIt) {
const double massBalanceResid = infinityNorm( (*massBalanceIt) );
if (!std::isfinite(massBalanceResid)) {
OPM_THROW(Opm::NumericalProblem,
"Encountered a non-finite residual");
}
residual.push_back(massBalanceResid);
}
// the following residuals are not used in the oscillation detection now
const double wellFluxResid = infinityNorm( residual_.well_flux_eq );
if (!std::isfinite(wellFluxResid)) {
OPM_THROW(Opm::NumericalProblem,
"Encountered a non-finite residual");
}
residual.push_back(wellFluxResid);
const double wellResid = infinityNorm( residual_.well_eq );
if (!std::isfinite(wellResid)) {
OPM_THROW(Opm::NumericalProblem,
"Encountered a non-finite residual");
}
residual.push_back(wellResid);
return residual;
}
template<class T>
void
FullyImplicitBlackoilSolver<T>::detectNewtonOscillations(const std::vector<std::vector<double>>& residual_history,
const int it, const double relaxRelTol,
bool& oscillate, bool& stagnate) const
{
// The detection of oscillation in two primary variable results in the report of the detection
// of oscillation for the solver.
// Only the saturations are used for oscillation detection for the black oil model.
// Stagnate is not used for any treatment here.
if ( it < 2 ) {
oscillate = false;
stagnate = false;
return;
}
stagnate = true;
int oscillatePhase = 0;
const std::vector<double>& F0 = residual_history[it];
const std::vector<double>& F1 = residual_history[it - 1];
const std::vector<double>& F2 = residual_history[it - 2];
for (int p= 0; p < fluid_.numPhases(); ++p){
const double d1 = std::abs((F0[p] - F2[p]) / F0[p]);
const double d2 = std::abs((F0[p] - F1[p]) / F0[p]);
oscillatePhase += (d1 < relaxRelTol) && (relaxRelTol < d2);
// Process is 'stagnate' unless at least one phase
// exhibits significant residual change.
stagnate = (stagnate && !(std::abs((F1[p] - F2[p]) / F2[p]) > 1.0e-3));
}
oscillate = (oscillatePhase > 1);
}
template<class T>
void
FullyImplicitBlackoilSolver<T>::stablizeNewton(V& dx, V& dxOld, const double omega,
const RelaxType relax_type) const
{
// The dxOld is updated with dx.
// If omega is equal to 1., no relaxtion will be appiled.
const V tempDxOld = dxOld;
dxOld = dx;
switch (relax_type) {
case DAMPEN:
if (omega == 1.) {
return;
}
dx = dx*omega;
return;
case SOR:
if (omega == 1.) {
return;
}
dx = dx*omega + (1.-omega)*tempDxOld;
return;
default:
OPM_THROW(std::runtime_error, "Can only handle DAMPEN and SOR relaxation type.");
}
return;
}
template<class T>
double
FullyImplicitBlackoilSolver<T>::convergenceReduction(const Eigen::Array<double, Eigen::Dynamic, MaxNumPhases>& B,
const Eigen::Array<double, Eigen::Dynamic, MaxNumPhases>& tempV,
const Eigen::Array<double, Eigen::Dynamic, MaxNumPhases>& R,
std::array<double,MaxNumPhases>& R_sum,
std::array<double,MaxNumPhases>& maxCoeff,
std::array<double,MaxNumPhases>& B_avg,
int nc) const
{
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
// Do the global reductions
for(int idx=0; idx<MaxNumPhases; ++idx)
{
if (active_[idx]) {
B_avg[pu.phase_pos[idx]] = B.sum()/nc;
maxCoeff[pu.phase_pos[idx]]=tempV.col(pu.phase_pos[idx]).maxCoeff();
R_sum[pu.phase_pos[idx]] = R.col(pu.phase_pos[idx]).sum();
}else{
R_sum[pu.phase_pos[idx]] = B_avg[pu.phase_pos[idx]] = maxCoeff[pu.phase_pos[idx]] =0.;
}
}
// Compute total pore volume
const V pv = geo_.poreVolume();
return pv.sum();
}
template<class T>
bool
FullyImplicitBlackoilSolver<T>::getConvergence(const double dt, const int iteration)
{
const double tol_mb = 1.0e-7;
const double tol_cnv = 1.0e-3;
const int nc = Opm::AutoDiffGrid::numCells(grid_);
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const V pv = geo_.poreVolume();
const std::vector<PhasePresence> cond = phaseCondition();
std::array<double,MaxNumPhases> CNV = {{0., 0., 0.}};
std::array<double,MaxNumPhases> R_sum = {{0., 0., 0.}};
std::array<double,MaxNumPhases> B_avg = {{0., 0., 0.}};
std::array<double,MaxNumPhases> maxCoeff = {{0., 0., 0.}};
std::array<double,MaxNumPhases> mass_balance_residual = {{0., 0., 0.}};
std::size_t cols = MaxNumPhases; // needed to pass the correct type to Eigen
Eigen::Array<V::Scalar, Eigen::Dynamic, MaxNumPhases> B(nc, cols);
Eigen::Array<V::Scalar, Eigen::Dynamic, MaxNumPhases> R(nc, cols);
Eigen::Array<V::Scalar, Eigen::Dynamic, MaxNumPhases> tempV(nc, cols);
for(int idx=0; idx<MaxNumPhases; ++idx)
{
if (active_[idx]) {
const int pos = pu.phase_pos[idx];
const ADB& tempB = rq_[pos].b;
B.col(pos) = 1./tempB.value();
R.col(pos) = residual_.material_balance_eq[pos].value();
tempV.col(pos) = R.col(pos).abs()/pv;
}
}
const double pvSum = convergenceReduction(B, tempV, R, B_avg, maxCoeff, R_sum, nc);
bool converged_MB = true;
bool converged_CNV = true;
// Finish computation
for(int idx=0; idx<MaxNumPhases; ++idx)
{
CNV[idx] = B_avg[pu.phase_pos[idx]] * dt * maxCoeff[pu.phase_pos[idx]];
mass_balance_residual[idx] = std::abs(B_avg[pu.phase_pos[idx]]*R_sum[pu.phase_pos[idx]]) * dt / pvSum;
converged_MB = converged_MB && (mass_balance_residual[idx] < tol_mb);
converged_CNV = converged_CNV && (CNV[idx] < tol_cnv);
}
double residualWellFlux = infinityNorm(residual_.well_flux_eq);
double residualWell = infinityNorm(residual_.well_eq);
bool converged_Well = (residualWellFlux < 1./Opm::unit::day) && (residualWell < Opm::unit::barsa);
bool converged = converged_MB && converged_CNV && converged_Well;
// if one of the residuals is NaN, throw exception, so that the solver can be restarted
if( std::isnan(mass_balance_residual[Water]) || mass_balance_residual[Water] > maxResidualAllowed() ||
std::isnan(mass_balance_residual[Oil]) || mass_balance_residual[Oil] > maxResidualAllowed() ||
std::isnan(mass_balance_residual[Gas]) || mass_balance_residual[Gas] > maxResidualAllowed() ||
std::isnan(CNV[Water]) || CNV[Water] > maxResidualAllowed() ||
std::isnan(CNV[Oil]) || CNV[Oil] > maxResidualAllowed() ||
std::isnan(CNV[Gas]) || CNV[Gas] > maxResidualAllowed() ||
std::isnan(residualWellFlux) || residualWellFlux > maxResidualAllowed() ||
std::isnan(residualWell) || residualWell > maxResidualAllowed() )
{
OPM_THROW(Opm::NumericalProblem,"One of the residuals is NaN or to large!");
}
if (iteration == 0) {
std::cout << "\nIter MB(OIL) MB(WATER) MB(GAS) CNVW CNVO CNVG WELL-FLOW WELL-CNTRL\n";
}
const std::streamsize oprec = std::cout.precision(3);
const std::ios::fmtflags oflags = std::cout.setf(std::ios::scientific);
std::cout << std::setw(4) << iteration
<< std::setw(11) << mass_balance_residual[Water]
<< std::setw(11) << mass_balance_residual[Oil]
<< std::setw(11) << mass_balance_residual[Gas]
<< std::setw(11) << CNV[Water]
<< std::setw(11) << CNV[Oil]
<< std::setw(11) << CNV[Gas]
<< std::setw(11) << residualWellFlux
<< std::setw(11) << residualWell
<< std::endl;
std::cout.precision(oprec);
std::cout.flags(oflags);
return converged;
}
template<class T>
ADB
FullyImplicitBlackoilSolver<T>::fluidViscosity(const int phase,
const ADB& p ,
const ADB& temp ,
const ADB& rs ,
const ADB& rv ,
const std::vector<PhasePresence>& cond,
const std::vector<int>& cells) const
{
switch (phase) {
case Water:
return fluid_.muWat(p, temp, cells);
case Oil: {
return fluid_.muOil(p, temp, rs, cond, cells);
}
case Gas:
return fluid_.muGas(p, temp, rv, cond, cells);
default:
OPM_THROW(std::runtime_error, "Unknown phase index " << phase);
}
}
template<class T>
ADB
FullyImplicitBlackoilSolver<T>::fluidReciprocFVF(const int phase,
const ADB& p ,
const ADB& temp ,
const ADB& rs ,
const ADB& rv ,
const std::vector<PhasePresence>& cond,
const std::vector<int>& cells) const
{
switch (phase) {
case Water:
return fluid_.bWat(p, temp, cells);
case Oil: {
return fluid_.bOil(p, temp, rs, cond, cells);
}
case Gas:
return fluid_.bGas(p, temp, rv, cond, cells);
default:
OPM_THROW(std::runtime_error, "Unknown phase index " << phase);
}
}
template<class T>
ADB
FullyImplicitBlackoilSolver<T>::fluidDensity(const int phase,
const ADB& p ,
const ADB& temp ,
const ADB& rs ,
const ADB& rv ,
const std::vector<PhasePresence>& cond,
const std::vector<int>& cells) const
{
const double* rhos = fluid_.surfaceDensity();
ADB b = fluidReciprocFVF(phase, p, temp, rs, rv, cond, cells);
ADB rho = V::Constant(p.size(), 1, rhos[phase]) * b;
if (phase == Oil && active_[Gas]) {
// It is correct to index into rhos with canonical phase indices.
rho += V::Constant(p.size(), 1, rhos[Gas]) * rs * b;
}
if (phase == Gas && active_[Oil]) {
// It is correct to index into rhos with canonical phase indices.
rho += V::Constant(p.size(), 1, rhos[Oil]) * rv * b;
}
return rho;
}
template<class T>
V
FullyImplicitBlackoilSolver<T>::fluidRsSat(const V& p,
const V& satOil,
const std::vector<int>& cells) const
{
return fluid_.rsSat(p, satOil, cells);
}
template<class T>
ADB
FullyImplicitBlackoilSolver<T>::fluidRsSat(const ADB& p,
const ADB& satOil,
const std::vector<int>& cells) const
{
return fluid_.rsSat(p, satOil, cells);
}
template<class T>
V
FullyImplicitBlackoilSolver<T>::fluidRvSat(const V& p,
const V& satOil,
const std::vector<int>& cells) const
{
return fluid_.rvSat(p, satOil, cells);
}
template<class T>
ADB
FullyImplicitBlackoilSolver<T>::fluidRvSat(const ADB& p,
const ADB& satOil,
const std::vector<int>& cells) const
{
return fluid_.rvSat(p, satOil, cells);
}
template<class T>
ADB
FullyImplicitBlackoilSolver<T>::poroMult(const ADB& p) const
{
const int n = p.size();
if (rock_comp_props_ && rock_comp_props_->isActive()) {
V pm(n);
V dpm(n);
for (int i = 0; i < n; ++i) {
pm[i] = rock_comp_props_->poroMult(p.value()[i]);
dpm[i] = rock_comp_props_->poroMultDeriv(p.value()[i]);
}
ADB::M dpm_diag = spdiag(dpm);
const int num_blocks = p.numBlocks();
std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
fastSparseProduct(dpm_diag, p.derivative()[block], jacs[block]);
}
return ADB::function(pm, jacs);
} else {
return ADB::constant(V::Constant(n, 1.0), p.blockPattern());
}
}
template<class T>
ADB
FullyImplicitBlackoilSolver<T>::transMult(const ADB& p) const
{
const int n = p.size();
if (rock_comp_props_ && rock_comp_props_->isActive()) {
V tm(n);
V dtm(n);
for (int i = 0; i < n; ++i) {
tm[i] = rock_comp_props_->transMult(p.value()[i]);
dtm[i] = rock_comp_props_->transMultDeriv(p.value()[i]);
}
ADB::M dtm_diag = spdiag(dtm);
const int num_blocks = p.numBlocks();
std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
fastSparseProduct(dtm_diag, p.derivative()[block], jacs[block]);
}
return ADB::function(tm, jacs);
} else {
return ADB::constant(V::Constant(n, 1.0), p.blockPattern());
}
}
/*
template<class T>
void
FullyImplicitBlackoilSolver<T>::
classifyCondition(const SolutionState& state,
std::vector<PhasePresence>& cond ) const
{
const PhaseUsage& pu = fluid_.phaseUsage();
if (active_[ Gas ]) {
// Oil/Gas or Water/Oil/Gas system
const int po = pu.phase_pos[ Oil ];
const int pg = pu.phase_pos[ Gas ];
const V& so = state.saturation[ po ].value();
const V& sg = state.saturation[ pg ].value();
cond.resize(sg.size());
for (V::Index c = 0, e = sg.size(); c != e; ++c) {
if (so[c] > 0) { cond[c].setFreeOil (); }
if (sg[c] > 0) { cond[c].setFreeGas (); }
if (active_[ Water ]) { cond[c].setFreeWater(); }
}
}
else {
// Water/Oil system
assert (active_[ Water ]);
const int po = pu.phase_pos[ Oil ];
const V& so = state.saturation[ po ].value();
cond.resize(so.size());
for (V::Index c = 0, e = so.size(); c != e; ++c) {
cond[c].setFreeWater();
if (so[c] > 0) { cond[c].setFreeOil(); }
}
}
} */
template<class T>
void
FullyImplicitBlackoilSolver<T>::classifyCondition(const BlackoilState& state)
{
using namespace Opm::AutoDiffGrid;
const int nc = numCells(grid_);
const int np = state.numPhases();
const PhaseUsage& pu = fluid_.phaseUsage();
const DataBlock s = Eigen::Map<const DataBlock>(& state.saturation()[0], nc, np);
if (active_[ Gas ]) {
// Oil/Gas or Water/Oil/Gas system
const V so = s.col(pu.phase_pos[ Oil ]);
const V sg = s.col(pu.phase_pos[ Gas ]);
for (V::Index c = 0, e = sg.size(); c != e; ++c) {
if (so[c] > 0) { phaseCondition_[c].setFreeOil (); }
if (sg[c] > 0) { phaseCondition_[c].setFreeGas (); }
if (active_[ Water ]) { phaseCondition_[c].setFreeWater(); }
}
}
else {
// Water/Oil system
assert (active_[ Water ]);
const V so = s.col(pu.phase_pos[ Oil ]);
for (V::Index c = 0, e = so.size(); c != e; ++c) {
phaseCondition_[c].setFreeWater();
if (so[c] > 0) { phaseCondition_[c].setFreeOil(); }
}
}
}
template<class T>
void
FullyImplicitBlackoilSolver<T>::updatePrimalVariableFromState(const BlackoilState& state)
{
using namespace Opm::AutoDiffGrid;
const int nc = numCells(grid_);
const int np = state.numPhases();
const PhaseUsage& pu = fluid_.phaseUsage();
const DataBlock s = Eigen::Map<const DataBlock>(& state.saturation()[0], nc, np);
// Water/Oil/Gas system
assert (active_[ Gas ]);
// reset the primary variables if RV and RS is not set Sg is used as primary variable.
primalVariable_.resize(nc);
std::fill(primalVariable_.begin(), primalVariable_.end(), PrimalVariables::Sg);
const V sg = s.col(pu.phase_pos[ Gas ]);
const V so = s.col(pu.phase_pos[ Oil ]);
const V sw = s.col(pu.phase_pos[ Water ]);
const double epsilon = std::sqrt(std::numeric_limits<double>::epsilon());
auto watOnly = sw > (1 - epsilon);
auto hasOil = so > 0;
auto hasGas = sg > 0;
// For oil only cells Rs is used as primal variable. For cells almost full of water
// the default primal variable (Sg) is used.
if (has_disgas_) {
for (V::Index c = 0, e = sg.size(); c != e; ++c) {
if ( !watOnly[c] && hasOil[c] && !hasGas[c] ) {primalVariable_[c] = PrimalVariables::RS; }
}
}
// For gas only cells Rv is used as primal variable. For cells almost full of water
// the default primal variable (Sg) is used.
if (has_vapoil_) {
for (V::Index c = 0, e = so.size(); c != e; ++c) {
if ( !watOnly[c] && hasGas[c] && !hasOil[c] ) {primalVariable_[c] = PrimalVariables::RV; }
}
}
updatePhaseCondFromPrimalVariable();
}
/// Update the phaseCondition_ member based on the primalVariable_ member.
template<class T>
void
FullyImplicitBlackoilSolver<T>::updatePhaseCondFromPrimalVariable()
{
if (! active_[Gas]) {
OPM_THROW(std::logic_error, "updatePhaseCondFromPrimarVariable() logic requires active gas phase.");
}
const int nc = primalVariable_.size();
for (int c = 0; c < nc; ++c) {
phaseCondition_[c] = PhasePresence(); // No free phases.
phaseCondition_[c].setFreeWater(); // Not necessary for property calculation usage.
switch (primalVariable_[c]) {
case PrimalVariables::Sg:
phaseCondition_[c].setFreeOil();
phaseCondition_[c].setFreeGas();
break;
case PrimalVariables::RS:
phaseCondition_[c].setFreeOil();
break;
case PrimalVariables::RV:
phaseCondition_[c].setFreeGas();
break;
default:
OPM_THROW(std::logic_error, "Unknown primary variable enum value in cell " << c << ": " << primalVariable_[c]);
}
}
}
} // namespace Opm