Files
opm-simulators/opm/material/fluidmatrixinteractions/RegularizedBrooksCorey.hpp

520 lines
20 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
Copyright (C) 2009-2012 by Andreas Lauser
Copyright (C) 2010 by Philipp Nuske
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
/*!
* \file
* \copydoc Opm::RegularizedBrooksCorey
*/
#ifndef REGULARIZED_BROOKS_COREY_HPP
#define REGULARIZED_BROOKS_COREY_HPP
#include "BrooksCorey.hpp"
#include "RegularizedBrooksCoreyParams.hpp"
#include <opm/core/utility/Spline.hpp>
namespace Opm {
/*!
* \ingroup FluidMatrixInteractions
* \brief Implementation of the regularized Brooks-Corey capillary
pressure / relative permeability <-> saturation relation.
*
* This class bundles the "raw" curves as static members and doesn't
* concern itself converting absolute to effective saturations and
* vice versa.
*
* In order to avoid very steep gradients the marginal values are
* "regularized". This means that in stead of following the curve of
* the material law in these regions, some linear approximation is
* used. Doing this is not worse than following the material
* law. E.g. for very low wetting phase values the material laws
* predict infinite values for \f$p_c\f$ which is completely
* unphysical. In case of very high wetting phase saturations the
* difference between regularized and "pure" material law is not big.
*
* Regularizing has the additional benefit of being numerically
* friendly: Newton's method does not like infinite gradients.
*
* The implementation is accomplished as follows:
* - check whether we are in the range of regularization
- yes: use the regularization
- no: forward to the standard material law.
*
* \see BrooksCorey
*/
template <class TraitsT, class ParamsT = RegularizedBrooksCoreyParams<TraitsT> >
class RegularizedBrooksCorey : public TraitsT
{
typedef Opm::BrooksCorey<TraitsT, ParamsT> BrooksCorey;
public:
typedef TraitsT Traits;
typedef ParamsT Params;
typedef typename Traits::Scalar Scalar;
//! The number of fluid phases
static const int numPhases = Traits::numPhases;
static_assert(numPhases == 2,
"The regularized Brooks-Corey capillary pressure law only "
"applies to the case of two fluid phases");
//! Specify whether this material law implements the two-phase
//! convenience API
static const bool implementsTwoPhaseApi = true;
//! Specify whether this material law implements the two-phase
//! convenience API which only depends on the phase saturations
static const bool implementsTwoPhaseSatApi = true;
//! Specify whether the quantities defined by this material law
//! are saturation dependent
static const bool isSaturationDependent = true;
//! Specify whether the quantities defined by this material law
//! are dependent on the absolute pressure
static const bool isPressureDependent = false;
//! Specify whether the quantities defined by this material law
//! are temperature dependent
static const bool isTemperatureDependent = false;
//! Specify whether the quantities defined by this material law
//! are dependent on the phase composition
static const bool isCompositionDependent = false;
static_assert(Traits::numPhases == 2,
"The number of fluid phases must be two if you want to use "
"this material law!");
/*!
* \brief The capillary pressure-saturation curves depending on absolute saturations.
*
* \param values A random access container which stores the
* relative pressure of each fluid phase.
* \param params The parameter object expressing the coefficients
* required by the material law.
* \param fs The fluid state for which the capillary pressure
* ought to be calculated
*/
template <class Container, class FluidState>
static void capillaryPressures(Container &values, const Params &params, const FluidState &fs)
{
values[Traits::wPhaseIdx] = 0.0; // reference phase
values[Traits::nPhaseIdx] = pcnw(params, fs);
}
/*!
* \brief Calculate the saturations of the phases starting from
* their pressure differences.
*/
template <class Container, class FluidState>
static void saturations(Container &values, const Params &params, const FluidState &fs)
{
values[Traits::wPhaseIdx] = Sw(params, fs);
values[Traits::nPhaseIdx] = 1 - values[Traits::wPhaseIdx];
}
/*!
* \brief The relative permeability-saturation curves depending on absolute saturations.
*
* \param values A random access container which stores the
* relative permeability of each fluid phase.
* \param params The parameter object expressing the coefficients
* required by the material law.
* \param fs The fluid state for which the relative permeabilities
* ought to be calculated
*/
template <class Container, class FluidState>
static void relativePermeabilities(Container &values, const Params &params, const FluidState &fs)
{
values[Traits::wPhaseIdx] = krw(params, fs);
values[Traits::nPhaseIdx] = krn(params, fs);
}
/*!
* \brief The derivative of all capillary pressures in regard to
* a given phase saturation.
*/
template <class ContainerT, class FluidState>
static void dCapillaryPressures_dSaturation(ContainerT &values,
const Params &params,
const FluidState &state,
int satPhaseIdx)
{
values[Traits::wPhaseIdx] = 0;
values[Traits::nPhaseIdx] = 0;
if (satPhaseIdx == Traits::wPhaseIdx)
values[Traits::nPhaseIdx] = twoPhaseSatDPcnw_dSw(params, state.saturation(Traits::wPhaseIdx));
}
/*!
* \brief The derivative of all capillary pressures in regard to
* a given phase pressure.
*/
template <class ContainerT, class FluidState>
static void dCapillaryPressures_dPressure(ContainerT &values,
const Params &params,
const FluidState &state,
int pPhaseIdx)
{
// -> not pressure dependent
for (int pcPhaseIdx = 0; pcPhaseIdx < numPhases; ++pcPhaseIdx)
values[pcPhaseIdx] = 0.0;
}
/*!
* \brief The derivative of all capillary pressures in regard to
* temperature.
*/
template <class ContainerT, class FluidState>
static void dCapillaryPressures_dTemperature(ContainerT &values,
const Params &params,
const FluidState &state)
{
// -> not temperature dependent
for (int pcPhaseIdx = 0; pcPhaseIdx < numPhases; ++pcPhaseIdx)
values[pcPhaseIdx] = 0.0;
}
/*!
* \brief The derivative of all capillary pressures in regard to
* a given mole fraction of a component in a phase.
*/
template <class ContainerT, class FluidState>
static void dCapillaryPressures_dMoleFraction(ContainerT &values,
const Params &params,
const FluidState &state,
int phaseIdx,
int compIdx)
{
// -> not composition dependent
for (int pcPhaseIdx = 0; pcPhaseIdx < numPhases; ++pcPhaseIdx)
values[pcPhaseIdx] = 0.0;
}
/*!
* \brief The derivative of all relative permeabilities in regard to
* a given phase saturation.
*/
template <class ContainerT, class FluidState>
static void dRelativePermeabilities_dSaturation(ContainerT &values,
const Params &params,
const FluidState &state,
int satPhaseIdx)
{
if (satPhaseIdx == Traits::wPhaseIdx) {
values[Traits::wPhaseIdx] = twoPhaseSatDKrw_dSw(params, state.saturation(Traits::wPhaseIdx));
values[Traits::nPhaseIdx] = 0;
}
else {
values[Traits::wPhaseIdx] = 0;
values[Traits::nPhaseIdx] = - twoPhaseSatDKrn_dSw(params, 1 - state.saturation(Traits::nPhaseIdx));
}
}
/*!
* \brief The derivative of all relative permeabilities in regard to
* a given phase pressure.
*/
template <class ContainerT, class FluidState>
static void dRelativePermeabilities_dPressure(ContainerT &values,
const Params &params,
const FluidState &state,
int pPhaseIdx)
{
// -> not pressure dependent
for (int krPhaseIdx = 0; krPhaseIdx < numPhases; ++krPhaseIdx)
values[krPhaseIdx] = 0.0;
}
/*!
* \brief The derivative of all relative permeabilities in regard to
* temperature.
*/
template <class ContainerT, class FluidState>
static void dRelativePermeabilities_dTemperature(ContainerT &values,
const Params &params,
const FluidState &state)
{
// -> not temperature dependent
for (int krPhaseIdx = 0; krPhaseIdx < numPhases; ++krPhaseIdx)
values[krPhaseIdx] = 0.0;
}
/*!
* \brief The derivative of all relative permeabilities in regard to
* a given mole fraction of a component in a phase.
*/
template <class ContainerT, class FluidState>
static void dRelativePermeabilities_dMoleFraction(ContainerT &values,
const Params &params,
const FluidState &state,
int phaseIdx,
int compIdx)
{
// -> not composition dependent
for (int krPhaseIdx = 0; krPhaseIdx < numPhases; ++krPhaseIdx)
values[krPhaseIdx] = 0.0;
}
/*!
* \brief A regularized Brooks-Corey capillary pressure-saturation
* curve.
*
* This is a regularized variant of the Brooks-Corey curve. For
* wetting phase saturations between a lower threshold saturation
* and \f$S_w=1\f$, for other wetting phase saturations it is
* regularized in a way which removes the singularity at
* \f$S_w=0\f$, avoids kinks and allows the capillary pressure to
* reach arbitrary values. (Albeit, to reach a given capillary
* pressure, the saturations can become unphysical). The
* regularization is done in the following way:
*
* - For wetting phase saturations lower than the threshold
* saturation, the \f$p_c(S_w)\f$ curve is extrapolated using a
* straight line exhibiting the slope unregularized capillary
* pressure curve at the threshold saturation.
* - For wetting phase saturations larger than 1, the Brooks-Corey
* curve is extrapolated using a straight line that exhibits the
* slope of the unregularized Brooks-Corey curve at \f$S_w =
* 1\f$
*
* \sa BrooksCorey::pcnw
*/
template <class FluidState>
static Scalar pcnw(const Params &params, const FluidState &fs)
{ return twoPhaseSatPcnw(params, fs.saturation(Traits::wPhaseIdx)); }
static Scalar twoPhaseSatPcnw(const Params &params, Scalar Sw)
{
const Scalar Sthres = params.thresholdSw();
// make sure that the capilary pressure observes a
// derivative != 0 for 'illegal' saturations. This is
// required for example by newton solvers (if the
// derivative is calculated numerically) in order to get the
// saturation moving to the right direction if it
// temporarily is in an 'illegal' range.
if (Sw <= Sthres) {
Scalar m = BrooksCorey::twoPhaseSatDPcnw_dSw(params, Sthres);
Scalar pcnw_SwLow = BrooksCorey::twoPhaseSatPcnw(params, Sthres);
return pcnw_SwLow + m*(Sw - Sthres);
}
else if (Sw > 1.0) {
Scalar m = BrooksCorey::twoPhaseSatDPcnw_dSw(params, 1.0);
Scalar pcnw_SwHigh = params.entryPressure();
return pcnw_SwHigh + m*(Sw - 1.0);
}
// if the effective saturation is in an 'reasonable'
// range, we use the real Brooks-Corey law...
return BrooksCorey::twoPhaseSatPcnw(params, Sw);
}
/*!
* \brief A regularized Brooks-Corey saturation-capillary pressure
* curve.
*
* This is the inverse of the pcnw() method.
*/
template <class FluidState>
static Scalar Sw(const Params &params, const FluidState &fs)
{
Scalar pcnw = fs.pressure(Traits::nPhaseIdx) - fs.pressure(Traits::wPhaseIdx);
return twoPhaseSatSw(params, pcnw);
}
static Scalar twoPhaseSatSw(const Params &params, Scalar pcnw)
{
const Scalar Sthres = params.thresholdSw();
// calculate the saturation which corrosponds to the
// saturation in the non-regularized version of the
// Brooks-Corey law. If the input capillary pressure is
// smaller than the entry pressure, make sure that we will
// regularize.
Scalar Sw = 1.5;
if (pcnw >= params.entryPressure())
Sw = BrooksCorey::twoPhaseSatSw(params, pcnw);
// make sure that the capilary pressure observes a
// derivative != 0 for 'illegal' saturations. This is
// required for example by newton solvers (if the
// derivative calculated numerically) in order to get the
// saturation moving to the right direction if it
// temporarily is in an 'illegal' range.
if (Sw <= Sthres) {
// invert the low saturation regularization of pcnw()
Scalar m = BrooksCorey::twoPhaseSatDPcnw_dSw(params, Sthres);
Scalar pcnw_SwLow = BrooksCorey::twoPhaseSatPcnw(params, Sthres);
return Sthres + (pcnw - pcnw_SwLow)/m;
}
else if (Sw > 1.0) {
Scalar m = BrooksCorey::twoPhaseSatDPcnw_dSw(params, 1.0);
Scalar pcnw_SwHigh = BrooksCorey::twoPhaseSatPcnw(params, 1.0);
return 1.0 + (pcnw - pcnw_SwHigh)/m;;
}
return BrooksCorey::twoPhaseSatSw(params, pcnw);
}
/*!
* \brief Calculate the non-wetting phase saturations depending on
* the phase pressures.
*/
template <class FluidState>
static Scalar Sn(const Params &params, const FluidState &fs)
{ return 1 - Sw(params, fs); }
static Scalar twoPhaseSatSn(const Params &params, Scalar pcnw)
{ return 1 - twoPhaseSatSw(params, pcnw); }
/*!
* \brief The derivative of the regularized Brooks-Corey capillary
* pressure-saturation curve.
*/
static Scalar twoPhaseSatDPcnw_dSw(const Params &params, Scalar Sw)
{
const Scalar Sthres = params.thresholdSw();
// derivative of the regualarization
if (Sw <= Sthres) {
// calculate the slope of the straight line used in pcnw()
Scalar m = BrooksCorey::twoPhaseSatDPcnw_dSw(params, Sthres);
return m;
}
else if (Sw > 1.0) {
// calculate the slope of the straight line used in pcnw()
Scalar m = BrooksCorey::twoPhaseSatDPcnw_dSw(params, 1.0);
return m;
}
return BrooksCorey::twoPhaseSatDPcnw_dSw(params, Sw);
}
/*!
* \brief The derivative of the regularized Brooks-Corey
* saturation-capillary pressure curve.
*/
static Scalar twoPhaseSatDSw_dpcnw(const Params &params, Scalar pcnw)
{
const Scalar Sthres = params.thresholdSw();
// calculate the saturation which corresponds to the
// saturation in the non-regularized version of the
// Brooks-Corey law
Scalar Sw;
if (pcnw < params.entryPressure())
Sw = 1.5; // make sure we regularize (see below)
else
Sw = BrooksCorey::Sw(params, pcnw);
// derivative of the regularization
if (Sw <= Sthres) {
// calculate the slope of the straight line used in pcnw()
Scalar m = BrooksCorey::dPcnw_dSw(params, Sthres);
return 1/m;
}
else if (Sw > 1.0) {
// calculate the slope of the straight line used in pcnw()
Scalar m = BrooksCorey::dPcnw_dSw(params, 1.0);
return 1/m;
}
return 1.0/BrooksCorey::dPcnw_dSw(params, Sw);
}
/*!
* \brief Regularized version of the relative permeability of the
* wetting phase of the Brooks-Corey curves.
*
* The approach for regularization is very similar to the one of
* the capillary pressure, but it does not avoid kinks:
* - For wetting phase saturations between 0 and 1, use the
* unregularized Brooks-Corey wetting phase relative
* permeability
* - For wetting phase saturations smaller than 0, return 0
* - For wetting phase saturations larger than 1, return 1
*
* \sa BrooksCorey::krw
*/
template <class FluidState>
static Scalar krw(const Params &params, const FluidState &fs)
{ return twoPhaseSatKrw(params, fs.saturation(Traits::wPhaseIdx)); }
static Scalar twoPhaseSatKrw(const Params &params, Scalar Sw)
{
if (Sw <= 0.0)
return 0.0;
else if (Sw >= 1.0)
return 1.0;
return BrooksCorey::twoPhaseSatKrw(params, Sw);
}
static Scalar twoPhaseSatDKrw_dSw(const Params &params, Scalar Sw)
{
if (Sw <= 0.0 || Sw >= 1.0)
return 0.0;
return BrooksCorey::twoPhaseSatDKrw_dSw(params, Sw);
}
/*!
* \brief Regularized version of the relative permeability of the
* non-wetting phase of the Brooks-Corey curves.
*
* The approach for regularization is very similar to the one of
* the capillary pressure, but it does not avoid kinks:
* - For wetting phase saturations between 0 and 1, use the
* unregularized Brooks-Corey non-wetting phase relative
* permeability
* - For wetting phase saturations smaller than 0, return 1
* - For wetting phase saturations larger than 1, return 0
*
* \sa BrooksCorey::krn
*/
template <class FluidState>
static Scalar krn(const Params &params, const FluidState &fs)
{ return twoPhaseSatKrn(params, 1.0 - fs.saturation(Traits::nPhaseIdx)); }
static Scalar twoPhaseSatKrn(const Params &params, Scalar Sw)
{
if (Sw >= 1.0)
return 0.0;
else if (Sw <= 0.0)
return 1.0;
return BrooksCorey::twoPhaseSatKrn(params, Sw);
}
static Scalar twoPhaseSatDKrn_dSw(const Params &params, Scalar Sw)
{
if (Sw <= 0.0 || Sw >= 1.0)
return 0.0;
return BrooksCorey::twoPhaseSatDKrn_dSw(params, Sw);
}
};
} // namespace Opm
#endif