mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-25 10:40:21 -06:00
111 lines
3.2 KiB
C++
111 lines
3.2 KiB
C++
/*===========================================================================
|
|
//
|
|
// File: find_zero.cpp
|
|
//
|
|
// Created: 2013-04-29 11:58:29+0200
|
|
//
|
|
// Authors: Knut-Andreas Lie <Knut-Andreas.Lie@sintef.no>
|
|
// Halvor M. Nilsen <HalvorMoll.Nilsen@sintef.no>
|
|
// Atgeirr F. Rasmussen <atgeirr@sintef.no>
|
|
// Xavier Raynaud <Xavier.Raynaud@sintef.no>
|
|
// Bård Skaflestad <Bard.Skaflestad@sintef.no>
|
|
//
|
|
//==========================================================================*/
|
|
|
|
|
|
/*
|
|
Copyright 2013 SINTEF ICT, Applied Mathematics.
|
|
Copyright 2013 Statoil ASA.
|
|
|
|
This file is part of the Open Porous Media Project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <config.h>
|
|
|
|
#include <opm/autodiff/AutoDiff.hpp>
|
|
|
|
#include <iostream>
|
|
#include <cmath>
|
|
|
|
struct Func
|
|
{
|
|
template <typename T>
|
|
T operator()(T x) const
|
|
{
|
|
#if 1
|
|
T r = std::sqrt(std::cos(x * x) + x) - 1.2;
|
|
return r;
|
|
#else
|
|
return x;
|
|
// const int n = 6;
|
|
// double xv[6] = { 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 };
|
|
// double yv[6] = { -0.5, -0.3, -0.1, 0.1, 0.3, 0.5 };
|
|
// int interv = -1;
|
|
// for (int i = 0; i < n; ++i) {
|
|
// if (x < xv[i]) {
|
|
// interv = i - 1;
|
|
// break;
|
|
// }
|
|
// }
|
|
// T t = (x - xv[interv])/(xv[interv+1] - xv[interv]);
|
|
// return (1.0 - t)*yv[interv] + t*yv[interv+1];
|
|
#endif
|
|
}
|
|
};
|
|
|
|
// template <class ErrorPolicy = ThrowOnError>
|
|
class Newton
|
|
{
|
|
public:
|
|
/// Implements a scalar Newton solve.
|
|
template <class Functor>
|
|
inline static double solve(const Functor& f,
|
|
const double initial_guess,
|
|
const int max_iter,
|
|
const double tolerance,
|
|
int& iterations_used)
|
|
{
|
|
double x = initial_guess;
|
|
iterations_used = 0;
|
|
typedef Opm::AutoDiff<double> AD;
|
|
while (std::abs(f(x)) > tolerance && ++iterations_used < max_iter) {
|
|
AD xfad = AD::variable(x);
|
|
AD rfad = f(xfad);
|
|
x = x - rfad.val()/rfad.der();
|
|
}
|
|
return x;
|
|
}
|
|
};
|
|
|
|
|
|
int main()
|
|
try
|
|
{
|
|
int iter = 0;
|
|
const double atol = 1.0e-13;
|
|
const double soln = Newton::solve(Func(), 0.1, 30, atol, iter);
|
|
|
|
std::cout.precision(16);
|
|
std::cout << "Solution is: " << soln
|
|
<< " using " << iter << " iterations." << '\n';
|
|
std::cout << " f(x) = " << Func()(soln) << '\n';
|
|
}
|
|
catch (const std::exception &e) {
|
|
std::cerr << "Program threw an exception: " << e.what() << "\n";
|
|
throw;
|
|
}
|
|
|