opm-simulators/applications/ebos/eclproblem.hh
2015-05-21 16:18:45 +02:00

1257 lines
48 KiB
C++

/*
Copyright (C) 2014 by Andreas Lauser
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
/*!
* \file
*
* \copydoc Ewoms::EclProblem
*/
#ifndef EWOMS_ECL_PROBLEM_HH
#define EWOMS_ECL_PROBLEM_HH
#include <opm/material/localad/Evaluation.hpp>
#include "eclgridmanager.hh"
#include "eclwellmanager.hh"
#include "eclwriter.hh"
#include "eclsummarywriter.hh"
#include "ecloutputblackoilmodule.hh"
#include "ecltransmissibility.hh"
#include "ecldummygradientcalculator.hh"
#include "eclfluxmodule.hh"
#include "ecldeckunits.hh"
#include <ewoms/models/blackoil/blackoilmodel.hh>
#include <ewoms/disc/ecfv/ecfvdiscretization.hh>
#include <opm/material/fluidmatrixinteractions/PiecewiseLinearTwoPhaseMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/SplineTwoPhaseMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/EclDefaultMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidsystems/blackoilpvt/DryGasPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/WetGasPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/LiveOilPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/DeadOilPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/ConstantCompressibilityOilPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/ConstantCompressibilityWaterPvt.hpp>
// for this simulator to make sense, dune-cornerpoint and opm-parser
// must be available
#include <dune/grid/CpGrid.hpp>
#include <opm/parser/eclipse/Deck/Deck.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <boost/date_time.hpp>
#include <vector>
#include <string>
namespace Ewoms {
template <class TypeTag>
class EclProblem;
}
namespace Ewoms {
namespace Properties {
NEW_TYPE_TAG(EclBaseProblem, INHERITS_FROM(EclGridManager, EclOutputBlackOil));
// Write all solutions for visualization, not just the ones for the
// report steps...
NEW_PROP_TAG(EnableWriteAllSolutions);
// The number of time steps skipped between writing two consequtive restart files
NEW_PROP_TAG(RestartWritingInterval);
// Set the problem property
SET_TYPE_PROP(EclBaseProblem, Problem, Ewoms::EclProblem<TypeTag>);
// Select the element centered finite volume method as spatial discretization
SET_TAG_PROP(EclBaseProblem, SpatialDiscretizationSplice, EcfvDiscretization);
// Set the material Law
SET_PROP(EclBaseProblem, MaterialLaw)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef Opm::TwoPhaseMaterialTraits<Scalar,
/*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::oilPhaseIdx,
Evaluation> OilWaterTraits;
typedef Opm::TwoPhaseMaterialTraits<Scalar,
/*wettingPhaseIdx=*/FluidSystem::oilPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::gasPhaseIdx,
Evaluation> GasOilTraits;
typedef Opm::ThreePhaseMaterialTraits<Scalar,
/*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::oilPhaseIdx,
/*gasPhaseIdx=*/FluidSystem::gasPhaseIdx,
Evaluation> Traits;
typedef typename Opm::PiecewiseLinearTwoPhaseMaterial<OilWaterTraits> OilWaterLaw;
typedef typename Opm::PiecewiseLinearTwoPhaseMaterial<GasOilTraits> GasOilLaw;
// typedef typename Opm::SplineTwoPhaseMaterial<OilWaterTraits> OilWaterLaw;
// typedef typename Opm::SplineTwoPhaseMaterial<GasOilTraits> GasOilLaw;
public:
typedef Opm::EclDefaultMaterial<Traits, GasOilLaw, OilWaterLaw> type;
};
// Enable gravity
SET_BOOL_PROP(EclBaseProblem, EnableGravity, true);
// Reuse the last linearization if possible?
SET_BOOL_PROP(EclBaseProblem, EnableLinearizationRecycling, false);
// Only relinearize the parts where the current solution is sufficiently "bad"
SET_BOOL_PROP(EclBaseProblem, EnablePartialRelinearization, false);
// only write the solutions for the report steps to disk
SET_BOOL_PROP(EclBaseProblem, EnableWriteAllSolutions, false);
// The default for the end time of the simulation [s]
//
// By default, stop it after the universe will probably have stopped
// to exist. (the ECL problem will finish the simulation explicitly
// after it simulated the last episode specified in the deck.)
SET_SCALAR_PROP(EclBaseProblem, EndTime, 1e100);
// The default for the initial time step size of the simulation [s].
//
// The chosen value means that the size of the first time step is the
// one of the initial episode (if the length of the initial episode is
// not millions of trillions of years, that is...)
SET_SCALAR_PROP(EclBaseProblem, InitialTimeStepSize, 1e100);
// increase the default raw tolerance for the newton solver to 10^-4 because this is what
// everone else seems to be doing...
SET_SCALAR_PROP(EclBaseProblem, NewtonRawTolerance, 1e-4);
// Disable the VTK output by default for this problem ...
SET_BOOL_PROP(EclBaseProblem, EnableVtkOutput, false);
// ... but enable the ECL output by default
SET_BOOL_PROP(EclBaseProblem, EnableEclOutput, true);
// also enable the summary output.
SET_BOOL_PROP(EclBaseProblem, EnableEclSummaryOutput, true);
// the cache for intensive quantities can be used for ECL problems and also yields a
// decent speedup...
SET_BOOL_PROP(EclBaseProblem, EnableIntensiveQuantityCache, true);
// Use the "velocity module" which uses the Eclipse "NEWTRAN" transmissibilities
SET_TYPE_PROP(EclBaseProblem, FluxModule, Ewoms::EclTransFluxModule<TypeTag>);
// Use the dummy gradient calculator in order not to do unnecessary work.
SET_TYPE_PROP(EclBaseProblem, GradientCalculator, Ewoms::EclDummyGradientCalculator<TypeTag>);
// The default name of the data file to load
SET_STRING_PROP(EclBaseProblem, GridFile, "data/ecl.DATA");
// The frequency of writing restart (*.ers) files. This is the number of time steps
// between writing restart files
SET_INT_PROP(EclBaseProblem, RestartWritingInterval, 0xffffff); // disable
} // namespace Properties
/*!
* \ingroup EclBlackOilSimulator
*
* \brief This problem simulates an input file given in the data format used by the
* commercial ECLiPSE simulator.
*/
template <class TypeTag>
class EclProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
{
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
// Grid and world dimension
enum { dim = GridView::dimension };
enum { dimWorld = GridView::dimensionworld };
// copy some indices for convenience
enum { numEq = GET_PROP_VALUE(TypeTag, NumEq) };
enum { numPhases = FluidSystem::numPhases };
enum { numComponents = FluidSystem::numComponents };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
enum { gasCompIdx = FluidSystem::gasCompIdx };
enum { oilCompIdx = FluidSystem::oilCompIdx };
enum { waterCompIdx = FluidSystem::waterCompIdx };
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef Opm::CompositionalFluidState<Scalar, FluidSystem> ScalarFluidState;
typedef Opm::MathToolbox<Evaluation> Toolbox;
typedef Ewoms::EclSummaryWriter<TypeTag> EclSummaryWriter;
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
struct RockParams {
Scalar referencePressure;
Scalar compressibility;
};
public:
/*!
* \copydoc FvBaseProblem::registerParameters
*/
static void registerParameters()
{
ParentType::registerParameters();
Ewoms::EclOutputBlackOilModule<TypeTag>::registerParameters();
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableWriteAllSolutions,
"Write all solutions to disk instead of only the ones for the "
"report steps");
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableEclOutput,
"Write binary output which is compatible with the commercial "
"Eclipse simulator");
EWOMS_REGISTER_PARAM(TypeTag, int, RestartWritingInterval,
"The frequencies of which time steps are serialized to disk");
}
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
EclProblem(Simulator &simulator)
: ParentType(simulator)
, transmissibilities_(simulator)
, wellManager_(simulator)
, deckUnits_(simulator)
, eclWriter_(simulator)
, summaryWriter_(simulator)
{
// add the output module for the Ecl binary output
simulator.model().addOutputModule(new Ewoms::EclOutputBlackOilModule<TypeTag>(simulator));
}
/*!
* \copydoc FvBaseProblem::finishInit
*/
void finishInit()
{
ParentType::finishInit();
auto& simulator = this->simulator();
// invert the direction of the gravity vector for ECL problems
// (z coodinates represent depth, not height.)
this->gravity_[dim - 1] *= -1;
// the "NOGRAV" keyword from Frontsim disables gravity...
const auto& deck = simulator.gridManager().deck();
if (deck->hasKeyword("NOGRAV") || !EWOMS_GET_PARAM(TypeTag, bool, EnableGravity))
this->gravity_ = 0.0;
initFluidSystem_();
readRockParameters_();
readMaterialParameters_();
transmissibilities_.finishInit();
readInitialCondition_();
// initialize the wells. Note that this needs to be done after initializing the
// intrinsic permeabilities because the well model uses them...
wellManager_.init(simulator.gridManager().eclState());
// Set the start time of the simulation
Opm::TimeMapConstPtr timeMap = simulator.gridManager().schedule()->getTimeMap();
tm curTime = boost::posix_time::to_tm(timeMap->getStartTime(/*timeStepIdx=*/0));
Scalar startTime = std::mktime(&curTime);
simulator.setStartTime(startTime);
// We want the episode index to be the same as the report step index to make
// things simpler, so we have to set the episode index to -1 because it is
// incremented inside beginEpisode()...
simulator.setEpisodeIndex(-1);
}
/*!
* \brief This method restores the complete state of the well
* from disk.
*
* It is the inverse of the serialize() method.
*
* \tparam Restarter The deserializer type
*
* \param res The deserializer object
*/
template <class Restarter>
void deserialize(Restarter &res)
{
// reload the current episode/report step from the deck
beginEpisode(/*isOnRestart=*/true);
// deserialize the wells
wellManager_.deserialize(res);
}
/*!
* \brief This method writes the complete state of the well
* to the harddisk.
*/
template <class Restarter>
void serialize(Restarter &res)
{ wellManager_.serialize(res); }
/*!
* \brief Called by the simulator before an episode begins.
*/
void beginEpisode(bool isOnRestart = false)
{
// Proceed to the next report step
Simulator &simulator = this->simulator();
Opm::EclipseStateConstPtr eclState = this->simulator().gridManager().eclState();
Opm::TimeMapConstPtr timeMap = eclState->getSchedule()->getTimeMap();
// Opm::TimeMap deals with points in time, so the number of time intervals (i.e.,
// report steps) is one less!
int numReportSteps = timeMap->size() - 1;
// start the next episode if there are additional report steps, else finish the
// simulation
int nextEpisodeIdx = simulator.episodeIndex();
while (nextEpisodeIdx < numReportSteps &&
simulator.time() >= timeMap->getTimePassedUntil(nextEpisodeIdx + 1)*(1 - 1e-10))
{
++ nextEpisodeIdx;
}
if (nextEpisodeIdx < numReportSteps) {
simulator.startNextEpisode(timeMap->getTimeStepLength(nextEpisodeIdx));
simulator.setTimeStepSize(timeMap->getTimeStepLength(nextEpisodeIdx));
}
// set up the wells
wellManager_.beginEpisode(this->simulator().gridManager().eclState(), isOnRestart);
}
/*!
* \brief Called by the simulator before each time integration.
*/
void beginTimeStep()
{ wellManager_.beginTimeStep(); }
/*!
* \brief Called by the simulator before each Newton-Raphson iteration.
*/
void beginIteration()
{ wellManager_.beginIteration(); }
/*!
* \brief Called by the simulator after each Newton-Raphson iteration.
*/
void endIteration()
{ wellManager_.endIteration(); }
/*!
* \brief Called by the simulator after each time integration.
*/
void endTimeStep()
{
wellManager_.endTimeStep();
// write the summary information after each time step
summaryWriter_.write(wellManager_);
#ifndef NDEBUG
// in debug mode, we don't care about performance, so we check if the model does
// the right thing (i.e., the mass change inside the whole reservoir must be
// equivalent to the fluxes over the grid's boundaries plus the source rates
// specified by the problem)
this->model().checkConservativeness(/*tolerance=*/-1, /*verbose=*/true);
#endif // NDEBUG
}
/*!
* \brief Called by the simulator after the end of an episode.
*/
void endEpisode()
{
auto& simulator = this->simulator();
const auto& eclState = simulator.gridManager().eclState();
auto& linearizer = this->model().linearizer();
int episodeIdx = simulator.episodeIndex();
std::cout << "Episode " << episodeIdx + 1 << " finished.\n";
bool wellsWillChange = wellManager_.wellsChanged(eclState, episodeIdx + 1);
linearizer.setLinearizationReusable(!wellsWillChange);
Opm::TimeMapConstPtr timeMap = eclState->getSchedule()->getTimeMap();
int numReportSteps = timeMap->size() - 1;
if (episodeIdx + 1 >= numReportSteps) {
simulator.setFinished(true);
return;
}
}
/*!
* \brief Returns true if the current solution should be written
* to disk for visualization.
*
* For the ECL simulator we only write at the end of
* episodes/report steps...
*/
bool shouldWriteOutput() const
{
if (this->simulator().timeStepIndex() < 0)
// always write the initial solution
return true;
if (EWOMS_GET_PARAM(TypeTag, bool, EnableWriteAllSolutions))
return true;
return this->simulator().episodeWillBeOver();
}
/*!
* \brief Returns true if an eWoms restart file should be written to disk.
*/
bool shouldWriteRestartFile() const
{
int n = EWOMS_GET_PARAM(TypeTag, int, RestartWritingInterval);
int i = this->simulator().timeStepIndex();
if (i > 0 && (i%n) == 0)
return true; // we don't write a restart file for the initial condition
return false;
}
/*!
* \brief Write the requested quantities of the current solution into the output
* files.
*/
void writeOutput(bool verbose = true)
{
// calculate the time _after_ the time was updated
Scalar t = this->simulator().time() + this->simulator().timeStepSize();
// prepare the ECL and the VTK writers
if (enableEclOutput_())
eclWriter_.beginWrite(t);
// use the generic code to prepare the output fields and to
// write the desired VTK files.
ParentType::writeOutput(verbose);
if (enableEclOutput_()) {
this->model().appendOutputFields(eclWriter_);
eclWriter_.endWrite();
}
}
/*!
* \brief Returns the object which converts between SI and deck units.
*/
const EclDeckUnits<TypeTag>& deckUnits() const
{ return deckUnits_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*/
template <class Context>
const DimMatrix &intrinsicPermeability(const Context &context,
int spaceIdx,
int timeIdx) const
{
int globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return intrinsicPermeability_[globalSpaceIdx];
}
/*!
* \brief This method returns the intrinsic permeability tensor
* given a global element index.
*
* Its main (only?) usage is the ECL transmissibility calculation code...
*/
const DimMatrix &intrinsicPermeability(int globalElemIdx) const
{ return intrinsicPermeability_[globalElemIdx]; }
/*!
* \copydoc FvBaseMultiPhaseProblem::transmissibility
*/
Scalar transmissibility(int elem1Idx, int elem2Idx) const
{ return transmissibilities_.transmissibility(elem1Idx, elem2Idx); }
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*/
template <class Context>
Scalar porosity(const Context &context, int spaceIdx, int timeIdx) const
{
int globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return porosity_[globalSpaceIdx];
}
/*!
* \copydoc BlackoilProblem::rockCompressibility
*/
template <class Context>
Scalar rockCompressibility(const Context &context, int spaceIdx, int timeIdx) const
{
if (rockParams_.empty())
return 0.0;
int tableIdx = 0;
if (!rockTableIdx_.empty()) {
int globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
tableIdx = rockTableIdx_[globalSpaceIdx];
}
return rockParams_[tableIdx].compressibility;
}
/*!
* \copydoc BlackoilProblem::rockReferencePressure
*/
template <class Context>
Scalar rockReferencePressure(const Context &context, int spaceIdx, int timeIdx) const
{
if (rockParams_.empty())
return 1e5;
int tableIdx = 0;
if (!rockTableIdx_.empty()) {
int globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
tableIdx = rockTableIdx_[globalSpaceIdx];
}
return rockParams_[tableIdx].referencePressure;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template <class Context>
const MaterialLawParams &materialLawParams(const Context &context,
int spaceIdx, int timeIdx) const
{
int tableIdx = 0;
if (materialParamTableIdx_.size() > 0) {
int globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
tableIdx = materialParamTableIdx_[globalSpaceIdx];
}
return materialParams_[tableIdx];
}
/*!
* \brief Returns the index of the relevant region for thermodynmic properties
*/
template <class Context>
int pvtRegionIndex(const Context &context, int spaceIdx, int timeIdx) const
{
Opm::DeckConstPtr deck = this->simulator().gridManager().deck();
if (!deck->hasKeyword("PVTNUM"))
return 0;
const auto& gridManager = this->simulator().gridManager();
// this is quite specific to the ECFV discretization. But so is everything in an
// ECL deck, i.e., we don't need to care here...
int compressedDofIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
int cartesianDofIdx = gridManager.cartesianCellId(compressedDofIdx);
return deck->getKeyword("PVTNUM")->getIntData()[cartesianDofIdx] - 1;
}
/*!
* \name Problem parameters
*/
//! \{
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{ return this->simulator().gridManager().caseName(); }
/*!
* \copydoc FvBaseMultiPhaseProblem::temperature
*/
template <class Context>
Scalar temperature(const Context &context, int spaceIdx, int timeIdx) const
{
// use the temporally constant temperature, i.e. use the initial temperature of
// the DOF
int globalDofIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return initialFluidStates_[globalDofIdx].temperature(/*phaseIdx=*/0);
}
// \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc FvBaseProblem::boundary
*
* ECLiPSE uses no-flow conditions for all boundaries. \todo really?
*/
template <class Context>
void boundary(BoundaryRateVector &values,
const Context &context,
int spaceIdx,
int timeIdx) const
{ values.setNoFlow(); }
//! \}
/*!
* \name Volumetric terms
*/
//! \{
/*!
* \copydoc FvBaseProblem::initial
*
* The reservoir problem uses a constant boundary condition for
* the whole domain.
*/
template <class Context>
void initial(PrimaryVariables &values, const Context &context, int spaceIdx, int timeIdx) const
{
int globalDofIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
values.setPvtRegionIndex(pvtRegionIndex(context, spaceIdx, timeIdx));
const auto& matParams = materialLawParams(context, spaceIdx, timeIdx);
values.assignMassConservative(initialFluidStates_[globalDofIdx], matParams);
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all components is 0 everywhere.
*/
template <class Context>
void source(RateVector &rate,
const Context &context,
int spaceIdx,
int timeIdx) const
{
rate = Toolbox::createConstant(0);
for (int eqIdx = 0; eqIdx < numEq; ++ eqIdx)
rate[eqIdx] = Toolbox::createConstant(0.0);
wellManager_.computeTotalRatesForDof(rate, context, spaceIdx, timeIdx);
// convert the source term from the total mass rate of the
// cell to the one per unit of volume as used by the model.
int globalDofIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
for (int eqIdx = 0; eqIdx < numEq; ++ eqIdx)
rate[eqIdx] /= this->model().dofTotalVolume(globalDofIdx);
}
//! \}
private:
static bool enableEclOutput_()
{ return EWOMS_GET_PARAM(TypeTag, bool, EnableEclOutput); }
void readRockParameters_()
{
auto deck = this->simulator().gridManager().deck();
auto eclState = this->simulator().gridManager().eclState();
// the ROCK keyword has not been specified, so we don't need
// to read rock parameters
if (!deck->hasKeyword("ROCK"))
return;
const auto rockKeyword = deck->getKeyword("ROCK");
rockParams_.resize(rockKeyword->size());
for (size_t rockRecordIdx = 0; rockRecordIdx < rockKeyword->size(); ++ rockRecordIdx) {
const auto rockRecord = rockKeyword->getRecord(rockRecordIdx);
rockParams_[rockRecordIdx].referencePressure =
rockRecord->getItem("PREF")->getSIDouble(0);
rockParams_[rockRecordIdx].compressibility =
rockRecord->getItem("COMPRESSIBILITY")->getSIDouble(0);
}
// ROCKTAB has not been specified, so everything is in the
// first region and we don't need to care...
if (!eclState->hasIntGridProperty("ROCKTAB"))
return;
const std::vector<int>& rocktabData =
eclState->getIntGridProperty("ROCKTAB")->getData();
for (size_t elemIdx = 0; elemIdx < rocktabData.size(); ++ elemIdx)
// reminder: Eclipse uses FORTRAN indices
rockTableIdx_[elemIdx] = rocktabData[elemIdx] - 1;
}
void readMaterialParameters_()
{
const auto &gridManager = this->simulator().gridManager();
auto deck = gridManager.deck();
auto eclState = gridManager.eclState();
size_t numDof = this->model().numGridDof();
intrinsicPermeability_.resize(numDof);
porosity_.resize(numDof);
materialParams_.resize(numDof);
////////////////////////////////
// permeability
// read the intrinsic permeabilities from the eclState. Note that all arrays
// provided by eclState are one-per-cell of "uncompressed" grid, whereas the
// dune-cornerpoint grid object might remove a few elements...
if (eclState->hasDoubleGridProperty("PERMX")) {
const std::vector<double> &permxData =
eclState->getDoubleGridProperty("PERMX")->getData();
std::vector<double> permyData(permxData);
if (eclState->hasDoubleGridProperty("PERMY"))
permyData = eclState->getDoubleGridProperty("PERMY")->getData();
std::vector<double> permzData(permxData);
if (eclState->hasDoubleGridProperty("PERMZ"))
permzData = eclState->getDoubleGridProperty("PERMZ")->getData();
for (size_t dofIdx = 0; dofIdx < numDof; ++ dofIdx) {
int cartesianElemIdx = gridManager.cartesianCellId(dofIdx);
intrinsicPermeability_[dofIdx] = 0.0;
intrinsicPermeability_[dofIdx][0][0] = permxData[cartesianElemIdx];
intrinsicPermeability_[dofIdx][1][1] = permyData[cartesianElemIdx];
intrinsicPermeability_[dofIdx][2][2] = permzData[cartesianElemIdx];
}
// for now we don't care about non-diagonal entries
}
else
OPM_THROW(std::logic_error,
"Can't read the intrinsic permeability from the ecl state. "
"(The PERM{X,Y,Z} keywords are missing)");
////////////////////////////////
////////////////////////////////
// compute the porosity
if (!eclState->hasDoubleGridProperty("PORO") && !eclState->hasDoubleGridProperty("PORV"))
OPM_THROW(std::runtime_error,
"Can't read the porosity from the ECL state object. "
"(The PORO and PORV keywords are missing)");
if (eclState->hasDoubleGridProperty("PORO")) {
const std::vector<double> &poroData =
eclState->getDoubleGridProperty("PORO")->getData();
for (size_t dofIdx = 0; dofIdx < numDof; ++ dofIdx) {
int cartesianElemIdx = gridManager.cartesianCellId(dofIdx);
porosity_[dofIdx] = poroData[cartesianElemIdx];
}
}
// overwrite the porosity using the PORV keyword for the elements for which PORV
// is defined...
if (eclState->hasDoubleGridProperty("PORV")) {
const std::vector<double> &porvData =
eclState->getDoubleGridProperty("PORV")->getData();
for (size_t dofIdx = 0; dofIdx < numDof; ++ dofIdx) {
int cartesianElemIdx = gridManager.cartesianCellId(dofIdx);
if (std::isfinite(porvData[cartesianElemIdx])) {
Scalar dofVolume = this->simulator().model().dofTotalVolume(dofIdx);
porosity_[dofIdx] = porvData[cartesianElemIdx]/dofVolume;
}
}
}
// apply the NTG keyword to the porosity
if (eclState->hasDoubleGridProperty("NTG")) {
const std::vector<double> &ntgData =
eclState->getDoubleGridProperty("NTG")->getData();
for (size_t dofIdx = 0; dofIdx < numDof; ++ dofIdx)
porosity_[dofIdx] *= ntgData[gridManager.cartesianCellId(dofIdx)];
}
// apply the MULTPV keyword to the porosity
if (eclState->hasDoubleGridProperty("MULTPV")) {
const std::vector<double> &multpvData =
eclState->getDoubleGridProperty("MULTPV")->getData();
for (size_t dofIdx = 0; dofIdx < numDof; ++ dofIdx)
porosity_[dofIdx] *= multpvData[gridManager.cartesianCellId(dofIdx)];
}
////////////////////////////////
// fluid parameters
const auto& swofTables = eclState->getSwofTables();
const auto& sgofTables = eclState->getSgofTables();
// the number of tables for the SWOF and the SGOF keywords
// must be identical
assert(swofTables.size() == sgofTables.size());
size_t numSatfuncTables = swofTables.size();
materialParams_.resize(numSatfuncTables);
typedef typename MaterialLawParams::GasOilParams GasOilParams;
typedef typename MaterialLawParams::OilWaterParams OilWaterParams;
for (size_t tableIdx = 0; tableIdx < numSatfuncTables; ++ tableIdx) {
// set the parameters of the material law for a given table
OilWaterParams owParams;
GasOilParams goParams;
const auto& swofTable = swofTables[tableIdx];
const auto& sgofTable = sgofTables[tableIdx];
const auto &SwColumn = swofTable.getSwColumn();
owParams.setKrwSamples(SwColumn, swofTable.getKrwColumn());
owParams.setKrnSamples(SwColumn, swofTable.getKrowColumn());
owParams.setPcnwSamples(SwColumn, swofTable.getPcowColumn());
// convert the saturations of the SGOF keyword from gas to oil saturations
std::vector<double> SoSamples(sgofTable.numRows());
for (size_t sampleIdx = 0; sampleIdx < sgofTable.numRows(); ++ sampleIdx)
SoSamples[sampleIdx] = 1 - sgofTable.getSgColumn()[sampleIdx];
goParams.setKrwSamples(SoSamples, sgofTable.getKrogColumn());
goParams.setKrnSamples(SoSamples, sgofTable.getKrgColumn());
goParams.setPcnwSamples(SoSamples, sgofTable.getPcogColumn());
owParams.finalize();
goParams.finalize();
// compute the connate water saturation. In ECL decks that is defined as
// the first saturation value of the SWOF keyword.
Scalar Swco = SwColumn.front();
materialParams_[tableIdx].setConnateWaterSaturation(Swco);
materialParams_[tableIdx].setOilWaterParams(owParams);
materialParams_[tableIdx].setGasOilParams(goParams);
materialParams_[tableIdx].finalize();
}
// set the index of the table to be used
if (eclState->hasIntGridProperty("SATNUM")) {
const std::vector<int> &satnumData =
eclState->getIntGridProperty("SATNUM")->getData();
materialParamTableIdx_.resize(numDof);
for (size_t dofIdx = 0; dofIdx < numDof; ++ dofIdx) {
int cartesianElemIdx = gridManager.cartesianCellId(dofIdx);
// make sure that all values are in the correct range
assert(1 <= satnumData[dofIdx]);
assert(satnumData[dofIdx] <= static_cast<int>(numSatfuncTables));
// ECL uses Fortran-style indices which start at
// 1, but this here is C++...
materialParamTableIdx_[dofIdx] = satnumData[cartesianElemIdx] - 1;
}
}
else
materialParamTableIdx_.clear();
////////////////////////////////
}
void initFluidSystem_()
{
const auto deck = this->simulator().gridManager().deck();
const auto eclState = this->simulator().gridManager().eclState();
auto densityKeyword = deck->getKeyword("DENSITY");
int numRegions = densityKeyword->size();
FluidSystem::initBegin(numRegions);
FluidSystem::setEnableDissolvedGas(deck->hasKeyword("DISGAS"));
FluidSystem::setEnableVaporizedOil(deck->hasKeyword("VAPOIL"));
// set the reference densities of all PVT regions
for (int regionIdx = 0; regionIdx < numRegions; ++regionIdx) {
Opm::DeckRecordConstPtr densityRecord = densityKeyword->getRecord(regionIdx);
FluidSystem::setReferenceDensities(densityRecord->getItem("OIL")->getSIDouble(0),
densityRecord->getItem("WATER")->getSIDouble(0),
densityRecord->getItem("GAS")->getSIDouble(0),
regionIdx);
}
typedef std::shared_ptr<const Opm::GasPvtInterface<Scalar, Evaluation> > GasPvtSharedPtr;
GasPvtSharedPtr gasPvt(createGasPvt_(deck, eclState));
FluidSystem::setGasPvt(gasPvt);
typedef std::shared_ptr<const Opm::OilPvtInterface<Scalar, Evaluation> > OilPvtSharedPtr;
OilPvtSharedPtr oilPvt(createOilPvt_(deck, eclState));
FluidSystem::setOilPvt(oilPvt);
typedef std::shared_ptr<const Opm::WaterPvtInterface<Scalar, Evaluation> > WaterPvtSharedPtr;
WaterPvtSharedPtr waterPvt(createWaterPvt_(deck, eclState));
FluidSystem::setWaterPvt(waterPvt);
FluidSystem::initEnd();
}
Opm::OilPvtInterface<Scalar, Evaluation>* createOilPvt_(Opm::DeckConstPtr deck,
Opm::EclipseStateConstPtr eclState)
{
Opm::DeckKeywordConstPtr densityKeyword = deck->getKeyword("DENSITY");
int numPvtRegions = densityKeyword->size();
if (deck->hasKeyword("PVTO")) {
Opm::LiveOilPvt<Scalar, Evaluation> *oilPvt = new Opm::LiveOilPvt<Scalar, Evaluation>;
oilPvt->setNumRegions(numPvtRegions);
for (int regionIdx = 0; regionIdx < numPvtRegions; ++regionIdx)
oilPvt->setPvtoTable(regionIdx, eclState->getPvtoTables()[regionIdx]);
oilPvt->initEnd();
return oilPvt;
}
else if (deck->hasKeyword("PVDO")) {
Opm::DeadOilPvt<Scalar, Evaluation> *oilPvt = new Opm::DeadOilPvt<Scalar, Evaluation>;
oilPvt->setNumRegions(numPvtRegions);
for (int regionIdx = 0; regionIdx < numPvtRegions; ++regionIdx)
oilPvt->setPvdoTable(regionIdx, eclState->getPvdoTables()[regionIdx]);
oilPvt->initEnd();
return oilPvt;
}
else if (deck->hasKeyword("PVCDO")) {
Opm::ConstantCompressibilityOilPvt<Scalar, Evaluation> *oilPvt =
new Opm::ConstantCompressibilityOilPvt<Scalar, Evaluation>;
oilPvt->setNumRegions(numPvtRegions);
for (int regionIdx = 0; regionIdx < numPvtRegions; ++regionIdx)
oilPvt->setPvcdo(regionIdx, deck->getKeyword("PVCDO"));
oilPvt->initEnd();
return oilPvt;
}
// TODO (?): PVCO (this is not very hard but the opm-parser requires support for
// an additional table)
OPM_THROW(std::logic_error, "Not implemented: Oil PVT of this deck!");
}
Opm::GasPvtInterface<Scalar, Evaluation>* createGasPvt_(Opm::DeckConstPtr deck,
Opm::EclipseStateConstPtr eclState)
{
Opm::DeckKeywordConstPtr densityKeyword = deck->getKeyword("DENSITY");
int numPvtRegions = densityKeyword->size();
if (deck->hasKeyword("PVTG")) {
Opm::WetGasPvt<Scalar, Evaluation> *gasPvt = new Opm::WetGasPvt<Scalar, Evaluation>;
gasPvt->setNumRegions(numPvtRegions);
for (int regionIdx = 0; regionIdx < numPvtRegions; ++regionIdx)
gasPvt->setPvtgTable(regionIdx, eclState->getPvtgTables()[regionIdx]);
gasPvt->initEnd();
return gasPvt;
}
else if (deck->hasKeyword("PVDG")) {
Opm::DryGasPvt<Scalar, Evaluation> *gasPvt = new Opm::DryGasPvt<Scalar, Evaluation>;
gasPvt->setNumRegions(numPvtRegions);
for (int regionIdx = 0; regionIdx < numPvtRegions; ++regionIdx)
gasPvt->setPvdgTable(regionIdx, eclState->getPvdgTables()[regionIdx]);
gasPvt->initEnd();
return gasPvt;
}
OPM_THROW(std::logic_error, "Not implemented: Gas PVT of this deck!");
}
Opm::WaterPvtInterface<Scalar, Evaluation>* createWaterPvt_(Opm::DeckConstPtr deck,
Opm::EclipseStateConstPtr eclState)
{
Opm::DeckKeywordConstPtr densityKeyword = deck->getKeyword("DENSITY");
int numPvtRegions = densityKeyword->size();
if (deck->hasKeyword("PVTW")) {
Opm::ConstantCompressibilityWaterPvt<Scalar, Evaluation> *waterPvt =
new Opm::ConstantCompressibilityWaterPvt<Scalar, Evaluation>;
waterPvt->setNumRegions(numPvtRegions);
for (int regionIdx = 0; regionIdx < numPvtRegions; ++regionIdx)
waterPvt->setPvtw(regionIdx, deck->getKeyword("PVTW"));
waterPvt->initEnd();
return waterPvt;
}
OPM_THROW(std::logic_error, "Not implemented: Water PVT of this deck!");
}
void readInitialCondition_()
{
const auto &gridManager = this->simulator().gridManager();
const auto deck = gridManager.deck();
const auto eclState = gridManager.eclState();
bool enableDisgas = deck->hasKeyword("DISGAS");
bool enableVapoil = deck->hasKeyword("VAPOIL");
// make sure all required quantities are enables
if (!deck->hasKeyword("SWAT") ||
!deck->hasKeyword("SGAS"))
OPM_THROW(std::runtime_error,
"So far, the ECL input file requires the presence of the SWAT "
"and SGAS keywords");
if (!deck->hasKeyword("PRESSURE"))
OPM_THROW(std::runtime_error,
"So far, the ECL input file requires the presence of the PRESSURE "
"keyword");
if (enableDisgas && !deck->hasKeyword("RS"))
OPM_THROW(std::runtime_error,
"The ECL input file requires the RS keyword to be present if dissolved gas is enabled");
if (enableVapoil && !deck->hasKeyword("RV"))
OPM_THROW(std::runtime_error,
"The ECL input file requires the RV keyword to be present if vaporized oil is enabled");
size_t numDof = this->model().numGridDof();
initialFluidStates_.resize(numDof);
const std::vector<double> &waterSaturationData =
deck->getKeyword("SWAT")->getSIDoubleData();
const std::vector<double> &gasSaturationData =
deck->getKeyword("SGAS")->getSIDoubleData();
const std::vector<double> &pressureData =
deck->getKeyword("PRESSURE")->getSIDoubleData();
const std::vector<double> *rsData = 0;
if (enableDisgas)
rsData = &deck->getKeyword("RS")->getSIDoubleData();
const std::vector<double> *rvData = 0;
if (enableVapoil)
rvData = &deck->getKeyword("RV")->getSIDoubleData();
// initial reservoir temperature
const std::vector<double> &tempiData =
eclState->getDoubleGridProperty("TEMPI")->getData();
// make sure that the size of the data arrays is correct
#ifndef NDEBUG
const auto &cartSize = this->simulator().gridManager().logicalCartesianSize();
size_t numCartesianCells = cartSize[0] * cartSize[1] * cartSize[2];
assert(waterSaturationData.size() == numCartesianCells);
assert(gasSaturationData.size() == numCartesianCells);
assert(pressureData.size() == numCartesianCells);
if (enableDisgas)
assert(rsData->size() == numCartesianCells);
if (enableVapoil)
assert(rvData->size() == numCartesianCells);
#endif
// calculate the initial fluid states
for (size_t dofIdx = 0; dofIdx < numDof; ++dofIdx) {
auto &dofFluidState = initialFluidStates_[dofIdx];
size_t cartesianDofIdx = gridManager.cartesianCellId(dofIdx);
assert(0 <= cartesianDofIdx);
assert(cartesianDofIdx <= numCartesianCells);
//////
// set temperature
//////
Scalar temperature = tempiData[cartesianDofIdx];
if (!std::isfinite(temperature) || temperature <= 0)
temperature = FluidSystem::surfaceTemperature;
dofFluidState.setTemperature(temperature);
//////
// set saturations
//////
dofFluidState.setSaturation(FluidSystem::waterPhaseIdx,
waterSaturationData[cartesianDofIdx]);
dofFluidState.setSaturation(FluidSystem::gasPhaseIdx,
gasSaturationData[cartesianDofIdx]);
dofFluidState.setSaturation(FluidSystem::oilPhaseIdx,
1
- waterSaturationData[cartesianDofIdx]
- gasSaturationData[cartesianDofIdx]);
//////
// set phase pressures
//////
Scalar oilPressure = pressureData[cartesianDofIdx];
// this assumes that capillary pressures only depend on the phase saturations
// and possibly on temperature. (this is always the case for ECL problems.)
Scalar pc[numPhases];
const auto& matParams = materialLawParams_(dofIdx);
MaterialLaw::capillaryPressures(pc, matParams, dofFluidState);
Valgrind::CheckDefined(oilPressure);
Valgrind::CheckDefined(pc);
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
dofFluidState.setPressure(phaseIdx, oilPressure + (pc[phaseIdx] - pc[oilPhaseIdx]));
Scalar gasPressure = dofFluidState.pressure(gasPhaseIdx);
//////
// set compositions
//////
// reset all mole fractions to 0
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
for (int compIdx = 0; compIdx < numComponents; ++compIdx)
dofFluidState.setMoleFraction(phaseIdx, compIdx, 0.0);
// by default, assume immiscibility for all phases
dofFluidState.setMoleFraction(waterPhaseIdx, waterCompIdx, 1.0);
dofFluidState.setMoleFraction(gasPhaseIdx, gasCompIdx, 1.0);
dofFluidState.setMoleFraction(oilPhaseIdx, oilCompIdx, 1.0);
if (enableDisgas) {
// set the composition of the oil phase:
//
// first, retrieve the relevant black-oil parameters from
// the fluid system.
//
// note that we use the gas pressure here. this is because the primary
// varibles and the intensive quantities of the black oil model also do
// this...
Scalar RsSat = FluidSystem::gasDissolutionFactor(temperature,
gasPressure,
/*regionIdx=*/0);
Scalar RsReal = (*rsData)[cartesianDofIdx];
if (RsReal > RsSat) {
std::array<int, 3> ijk;
gridManager.getIJK(dofIdx, ijk);
std::cerr << "Warning: The specified amount gas (R_s = " << RsReal << ") is more"
<< " than the maximium\n"
<< " amount which can be dissolved in oil"
<< " (R_s,max=" << RsSat << ")"
<< " for cell (" << ijk[0] << ", " << ijk[1] << ", " << ijk[2] << ")."
<< " Ignoring.\n";
RsReal = RsSat;
}
// calculate composition of the real and the saturated oil phase in terms of
// mass fractions.
Scalar rhooRef = FluidSystem::referenceDensity(oilPhaseIdx, /*regionIdx=*/0);
Scalar rhogRef = FluidSystem::referenceDensity(gasPhaseIdx, /*regionIdx=*/0);
Scalar XoGReal = RsReal/(RsReal + rhooRef/rhogRef);
// convert mass to mole fractions
Scalar MG = FluidSystem::molarMass(gasCompIdx);
Scalar MO = FluidSystem::molarMass(oilCompIdx);
Scalar xoGReal = XoGReal * MO / ((MO - MG) * XoGReal + MG);
Scalar xoOReal = 1 - xoGReal;
// finally, set the oil-phase composition
dofFluidState.setMoleFraction(oilPhaseIdx, gasCompIdx, xoGReal);
dofFluidState.setMoleFraction(oilPhaseIdx, oilCompIdx, xoOReal);
}
if (enableVapoil) {
// set the composition of the gas phase:
//
// first, retrieve the relevant black-gas parameters from
// the fluid system.
Scalar RvSat = FluidSystem::oilVaporizationFactor(temperature,
gasPressure,
/*regionIdx=*/0);
Scalar RvReal = (*rvData)[cartesianDofIdx];
if (RvReal > RvSat) {
std::array<int, 3> ijk;
gridManager.getIJK(dofIdx, ijk);
std::cerr << "Warning: The specified amount oil (R_v = " << RvReal << ") is more"
<< " than the maximium\n"
<< " amount which can be dissolved in gas"
<< " (R_v,max=" << RvSat << ")"
<< " for cell (" << ijk[0] << ", " << ijk[1] << ", " << ijk[2] << ")."
<< " Ignoring.\n";
RvReal = RvSat;
}
// calculate composition of the real and the saturated gas phase in terms of
// mass fractions.
Scalar rhooRef = FluidSystem::referenceDensity(oilPhaseIdx, /*regionIdx=*/0);
Scalar rhogRef = FluidSystem::referenceDensity(gasPhaseIdx, /*regionIdx=*/0);
Scalar XgOReal = RvReal/(RvReal + rhogRef/rhooRef);
// convert mass to mole fractions
Scalar MG = FluidSystem::molarMass(gasCompIdx);
Scalar MO = FluidSystem::molarMass(oilCompIdx);
Scalar xgOReal = XgOReal * MG / ((MG - MO) * XgOReal + MO);
Scalar xgGReal = 1 - xgOReal;
// finally, set the gas-phase composition
dofFluidState.setMoleFraction(gasPhaseIdx, oilCompIdx, xgOReal);
dofFluidState.setMoleFraction(gasPhaseIdx, gasCompIdx, xgGReal);
}
}
}
const MaterialLawParams& materialLawParams_(int globalDofIdx) const
{
int tableIdx = 0;
if (materialParamTableIdx_.size() > 0)
tableIdx = materialParamTableIdx_[globalDofIdx];
return materialParams_[tableIdx];
}
std::vector<Scalar> porosity_;
std::vector<DimMatrix> intrinsicPermeability_;
EclTransmissibility<TypeTag> transmissibilities_;
std::vector<unsigned short> materialParamTableIdx_;
std::vector<MaterialLawParams> materialParams_;
std::vector<unsigned short> rockTableIdx_;
std::vector<RockParams> rockParams_;
std::vector<ScalarFluidState> initialFluidStates_;
EclWellManager<TypeTag> wellManager_;
EclDeckUnits<TypeTag> deckUnits_;
EclWriter<TypeTag> eclWriter_;
EclSummaryWriter summaryWriter_;
};
} // namespace Ewoms
#endif