Files
opm-simulators/opm/polymer/fullyimplicit/BlackoilPolymerModel.hpp
Atgeirr Flø Rasmussen 26484e91a5 Transform BlackoilPolymerModel to inherit BlackoilModelBase.
The class still contains surplus implementations though.
2015-05-26 00:12:37 +02:00

380 lines
15 KiB
C++

/*
Copyright 2013, 2015 SINTEF ICT, Applied Mathematics.
Copyright 2014 STATOIL ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_BLACKOILPOLYMERMODEL_HEADER_INCLUDED
#define OPM_BLACKOILPOLYMERMODEL_HEADER_INCLUDED
#include <opm/autodiff/BlackoilModelBase.hpp>
#include <opm/autodiff/BlackoilModelParameters.hpp>
#include <opm/polymer/PolymerProperties.hpp>
#include <opm/polymer/fullyimplicit/PolymerPropsAd.hpp>
#include <opm/polymer/PolymerBlackoilState.hpp>
#include <opm/polymer/fullyimplicit/WellStateFullyImplicitBlackoilPolymer.hpp>
namespace Opm {
/// A model implementation for three-phase black oil with polymer.
///
/// The simulator is capable of handling three-phase problems
/// where gas can be dissolved in oil and vice versa, with polymer
/// in the water phase. It uses an industry-standard TPFA
/// discretization with per-phase upwind weighting of mobilities.
///
/// It uses automatic differentiation via the class AutoDiffBlock
/// to simplify assembly of the jacobian matrix.
template<class Grid>
class BlackoilPolymerModel : public BlackoilModelBase<Grid, BlackoilPolymerModel<Grid> >
{
public:
// --------- Types and enums ---------
typedef BlackoilModelBase<Grid, BlackoilPolymerModel<Grid> > Base;
typedef typename Base::ReservoirState ReservoirState;
typedef typename Base::WellState WellState;
/// Construct the model. It will retain references to the
/// arguments of this functions, and they are expected to
/// remain in scope for the lifetime of the solver.
/// \param[in] param parameters
/// \param[in] grid grid data structure
/// \param[in] fluid fluid properties
/// \param[in] geo rock properties
/// \param[in] rock_comp_props if non-null, rock compressibility properties
/// \param[in] wells well structure
/// \param[in] linsolver linear solver
/// \param[in] has_disgas turn on dissolved gas
/// \param[in] has_vapoil turn on vaporized oil feature
/// \param[in] has_polymer turn on polymer feature
/// \param[in] terminal_output request output to cout/cerr
BlackoilPolymerModel(const typename Base::ModelParameters& param,
const Grid& grid,
const BlackoilPropsAdInterface& fluid,
const DerivedGeology& geo,
const RockCompressibility* rock_comp_props,
const PolymerPropsAd& polymer_props_ad,
const Wells* wells,
const NewtonIterationBlackoilInterface& linsolver,
const bool has_disgas,
const bool has_vapoil,
const bool has_polymer,
const bool terminal_output);
/// Called once before each time step.
/// \param[in] dt time step size
/// \param[in, out] reservoir_state reservoir state variables
/// \param[in, out] well_state well state variables
void prepareStep(const double dt,
ReservoirState& reservoir_state,
WellState& well_state);
/// Called once after each time step.
/// \param[in] dt time step size
/// \param[in, out] reservoir_state reservoir state variables
/// \param[in, out] well_state well state variables
void afterStep(const double dt,
ReservoirState& reservoir_state,
WellState& well_state);
/// Assemble the residual and Jacobian of the nonlinear system.
/// \param[in] reservoir_state reservoir state variables
/// \param[in, out] well_state well state variables
/// \param[in] initial_assembly pass true if this is the first call to assemble() in this timestep
void assemble(const ReservoirState& reservoir_state,
WellState& well_state,
const bool initial_assembly);
// void assemble(const PolymerBlackoilState& reservoir_state,
// WellStateFullyImplicitBlackoilPolymer& well_state,
// const bool initial_assembly);
/// \brief Compute the residual norms of the mass balance for each phase,
/// the well flux, and the well equation.
/// \return a vector that contains for each phase the norm of the mass balance
/// and afterwards the norm of the residual of the well flux and the well equation.
std::vector<double> computeResidualNorms() const;
/// Solve the Jacobian system Jx = r where J is the Jacobian and
/// r is the residual.
V solveJacobianSystem() const;
/// Apply an update to the primary variables, chopped if appropriate.
/// \param[in] dx updates to apply to primary variables
/// \param[in, out] reservoir_state reservoir state variables
/// \param[in, out] well_state well state variables
void updateState(const V& dx,
ReservoirState& reservoir_state,
WellState& well_state);
/// Compute convergence based on total mass balance (tol_mb) and maximum
/// residual mass balance (tol_cnv).
/// \param[in] dt timestep length
/// \param[in] iteration current iteration number
bool getConvergence(const double dt, const int iteration);
protected:
// --------- Types and enums ---------
typedef typename Base::SolutionState SolutionState;
typedef typename Base::DataBlock DataBlock;
// --------- Data members ---------
const PolymerPropsAd& polymer_props_ad_;
const bool has_polymer_;
const int poly_pos_;
V cmax_;
// Need to declare Base members we want to use here.
using Base::grid_;
using Base::fluid_;
using Base::geo_;
using Base::rock_comp_props_;
using Base::wells_;
using Base::linsolver_;
using Base::active_;
using Base::canph_;
using Base::cells_;
using Base::ops_;
using Base::wops_;
using Base::has_disgas_;
using Base::has_vapoil_;
using Base::param_;
using Base::use_threshold_pressure_;
using Base::threshold_pressures_by_interior_face_;
using Base::rq_;
using Base::phaseCondition_;
using Base::well_perforation_pressure_diffs_;
using Base::residual_;
using Base::terminal_output_;
using Base::primalVariable_;
using Base::pvdt_;
// --------- Protected methods ---------
// Need to declare Base members we want to use here.
using Base::wellsActive;
using Base::wells;
SolutionState
constantState(const ReservoirState& x,
const WellState& xw) const;
void
makeConstantState(SolutionState& state) const;
SolutionState
variableState(const ReservoirState& x,
const WellState& xw) const;
void
computeAccum(const SolutionState& state,
const int aix );
void computeWellConnectionPressures(const SolutionState& state,
const WellState& xw);
void
addWellControlEq(const SolutionState& state,
const WellState& xw,
const V& aliveWells);
void
addWellEq(const SolutionState& state,
WellState& xw,
V& aliveWells);
void updateWellControls(WellState& xw) const;
std::vector<ADB>
computePressures(const SolutionState& state) const;
std::vector<ADB>
computePressures(const ADB& po,
const ADB& sw,
const ADB& so,
const ADB& sg) const;
V
computeGasPressure(const V& po,
const V& sw,
const V& so,
const V& sg) const;
std::vector<ADB>
computeRelPerm(const SolutionState& state) const;
void
computeMassFlux(const int actph ,
const V& transi,
const ADB& kr ,
const ADB& p ,
const SolutionState& state );
void
computeCmax(ReservoirState& state);
ADB
computeMc(const SolutionState& state) const;
void applyThresholdPressures(ADB& dp);
ADB
fluidViscosity(const int phase,
const ADB& p ,
const ADB& temp ,
const ADB& rs ,
const ADB& rv ,
const std::vector<PhasePresence>& cond,
const std::vector<int>& cells) const;
ADB
fluidReciprocFVF(const int phase,
const ADB& p ,
const ADB& temp ,
const ADB& rs ,
const ADB& rv ,
const std::vector<PhasePresence>& cond,
const std::vector<int>& cells) const;
ADB
fluidDensity(const int phase,
const ADB& p ,
const ADB& temp ,
const ADB& rs ,
const ADB& rv ,
const std::vector<PhasePresence>& cond,
const std::vector<int>& cells) const;
V
fluidRsSat(const V& p,
const V& so,
const std::vector<int>& cells) const;
ADB
fluidRsSat(const ADB& p,
const ADB& so,
const std::vector<int>& cells) const;
V
fluidRvSat(const V& p,
const V& so,
const std::vector<int>& cells) const;
ADB
fluidRvSat(const ADB& p,
const ADB& so,
const std::vector<int>& cells) const;
ADB
poroMult(const ADB& p) const;
ADB
transMult(const ADB& p) const;
void
classifyCondition(const SolutionState& state,
std::vector<PhasePresence>& cond ) const;
const std::vector<PhasePresence>
phaseCondition() const {return this->phaseCondition_;}
void
classifyCondition(const ReservoirState& state);
/// update the primal variable for Sg, Rv or Rs. The Gas phase must
/// be active to call this method.
void
updatePrimalVariableFromState(const ReservoirState& state);
/// Update the phaseCondition_ member based on the primalVariable_ member.
void
updatePhaseCondFromPrimalVariable();
/// \brief Compute the reduction within the convergence check.
/// \param[in] B A matrix with MaxNumPhases columns and the same number rows
/// as the number of cells of the grid. B.col(i) contains the values
/// for phase i.
/// \param[in] tempV A matrix with MaxNumPhases columns and the same number rows
/// as the number of cells of the grid. tempV.col(i) contains the
/// values
/// for phase i.
/// \param[in] R A matrix with MaxNumPhases columns and the same number rows
/// as the number of cells of the grid. B.col(i) contains the values
/// for phase i.
/// \param[out] R_sum An array of size MaxNumPhases where entry i contains the sum
/// of R for the phase i.
/// \param[out] maxCoeff An array of size MaxNumPhases where entry i contains the
/// maximum of tempV for the phase i.
/// \param[out] B_avg An array of size MaxNumPhases where entry i contains the average
/// of B for the phase i.
/// \param[in] nc The number of cells of the local grid.
/// \return The total pore volume over all cells.
double
convergenceReduction(const Eigen::Array<double, Eigen::Dynamic, MaxNumPhases+1>& B,
const Eigen::Array<double, Eigen::Dynamic, MaxNumPhases+1>& tempV,
const Eigen::Array<double, Eigen::Dynamic, MaxNumPhases+1>& R,
std::array<double,MaxNumPhases+1>& R_sum,
std::array<double,MaxNumPhases+1>& maxCoeff,
std::array<double,MaxNumPhases+1>& B_avg,
std::vector<double>& maxNormWell,
int nc,
int nw) const;
double dpMaxRel() const { return this->param_.dp_max_rel_; }
double dsMax() const { return this->param_.ds_max_; }
double drMaxRel() const { return this->param_.dr_max_rel_; }
double maxResidualAllowed() const { return this->param_.max_residual_allowed_; }
};
/// Need to include concentration in our state variables, otherwise all is as
/// the default blackoil model.
struct BlackoilPolymerSolutionState : public DefaultBlackoilSolutionState
{
explicit BlackoilPolymerSolutionState(const int np)
: DefaultBlackoilSolutionState(np),
concentration( ADB::null())
{
}
ADB concentration;
};
/// Providing types by template specialisation of ModelTraits for BlackoilPolymerModel.
template <class Grid>
struct ModelTraits< BlackoilPolymerModel<Grid> >
{
typedef PolymerBlackoilState ReservoirState;
typedef WellStateFullyImplicitBlackoilPolymer WellState;
typedef BlackoilModelParameters ModelParameters;
typedef BlackoilPolymerSolutionState SolutionState;
};
} // namespace Opm
#include "BlackoilPolymerModel_impl.hpp"
#endif // OPM_BLACKOILPOLYMERMODEL_HEADER_INCLUDED