mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-19 16:22:57 -06:00
5fd83985a9
this makes the RateConverter stuff independent of Eigen and it simplifies some things because the the old PVT API is designed as a "bulk-with-derivatives" API while the rate converter code used it in "single shot" mode without derivatives.
554 lines
23 KiB
C++
554 lines
23 KiB
C++
/*
|
|
Copyright 2013, 2015 SINTEF ICT, Applied Mathematics.
|
|
Copyright 2014, 2015 Statoil ASA.
|
|
Copyright 2014, 2015 Dr. Markus Blatt - HPC-Simulation-Software & Services
|
|
Copyright 2015 NTNU
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_BLACKOILMODELBASE_HEADER_INCLUDED
|
|
#define OPM_BLACKOILMODELBASE_HEADER_INCLUDED
|
|
|
|
#include <cassert>
|
|
|
|
#include <opm/autodiff/AutoDiffBlock.hpp>
|
|
#include <opm/autodiff/AutoDiffHelpers.hpp>
|
|
#include <opm/autodiff/BlackoilPropsAdFromDeck.hpp>
|
|
#include <opm/autodiff/LinearisedBlackoilResidual.hpp>
|
|
#include <opm/autodiff/NewtonIterationBlackoilInterface.hpp>
|
|
#include <opm/autodiff/BlackoilModelEnums.hpp>
|
|
#include <opm/autodiff/VFPProperties.hpp>
|
|
#include <opm/autodiff/RateConverter.hpp>
|
|
#include <opm/autodiff/IterationReport.hpp>
|
|
#include <opm/autodiff/DefaultBlackoilSolutionState.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/Grid/NNC.hpp>
|
|
#include <opm/core/simulator/SimulatorTimerInterface.hpp>
|
|
#include <opm/core/simulator/SimulatorReport.hpp>
|
|
|
|
#include <array>
|
|
|
|
struct Wells;
|
|
|
|
namespace Opm {
|
|
|
|
namespace parameter { class ParameterGroup; }
|
|
class DerivedGeology;
|
|
class RockCompressibility;
|
|
class NewtonIterationBlackoilInterface;
|
|
class VFPProperties;
|
|
class SimulationDataContainer;
|
|
|
|
/// Traits to encapsulate the types used by classes using or
|
|
/// extending this model. Forward declared here, must be
|
|
/// specialised for each concrete model class.
|
|
template <class ConcreteModel>
|
|
struct ModelTraits;
|
|
|
|
|
|
/// A model implementation for three-phase black oil.
|
|
///
|
|
/// The simulator is capable of handling three-phase problems
|
|
/// where gas can be dissolved in oil and vice versa. It
|
|
/// uses an industry-standard TPFA discretization with per-phase
|
|
/// upwind weighting of mobilities.
|
|
///
|
|
/// It uses automatic differentiation via the class AutoDiffBlock
|
|
/// to simplify assembly of the jacobian matrix.
|
|
/// \tparam Grid UnstructuredGrid or CpGrid.
|
|
/// \tparam WellModel WellModel employed.
|
|
/// \tparam Implementation Provides concrete state types.
|
|
template<class Grid, class WellModel, class Implementation>
|
|
class BlackoilModelBase
|
|
{
|
|
public:
|
|
// --------- Types and enums ---------
|
|
typedef AutoDiffBlock<double> ADB;
|
|
typedef ADB::V V;
|
|
typedef ADB::M M;
|
|
|
|
struct ReservoirResidualQuant {
|
|
ReservoirResidualQuant();
|
|
std::vector<ADB> accum; // Accumulations
|
|
ADB mflux; // Mass flux (surface conditions)
|
|
ADB b; // Reciprocal FVF
|
|
ADB mu; // Viscosities
|
|
ADB rho; // Densities
|
|
ADB kr; // Permeabilities
|
|
ADB dh; // Pressure drop across int. interfaces
|
|
ADB mob; // Phase mobility (per cell)
|
|
};
|
|
|
|
struct SimulatorData {
|
|
SimulatorData(int num_phases);
|
|
|
|
enum FipId {
|
|
FIP_AQUA = Opm::Water,
|
|
FIP_LIQUID = Opm::Oil,
|
|
FIP_VAPOUR = Opm::Gas,
|
|
FIP_DISSOLVED_GAS = 3,
|
|
FIP_VAPORIZED_OIL = 4,
|
|
FIP_PV = 5, //< Pore volume
|
|
FIP_WEIGHTED_PRESSURE = 6
|
|
};
|
|
std::vector<ReservoirResidualQuant> rq;
|
|
ADB rsSat; // Saturated gas-oil ratio
|
|
ADB rvSat; // Saturated oil-gas ratio
|
|
std::array<V, 7> fip;
|
|
};
|
|
|
|
typedef typename ModelTraits<Implementation>::ReservoirState ReservoirState;
|
|
typedef typename ModelTraits<Implementation>::WellState WellState;
|
|
typedef typename ModelTraits<Implementation>::ModelParameters ModelParameters;
|
|
typedef typename ModelTraits<Implementation>::SolutionState SolutionState;
|
|
|
|
// For the conversion between the surface volume rate and resrevoir voidage rate
|
|
using RateConverterType = RateConverter::
|
|
SurfaceToReservoirVoidage<BlackoilPropsAdFromDeck::FluidSystem, std::vector<int> >;
|
|
|
|
// --------- Public methods ---------
|
|
|
|
/// Construct the model. It will retain references to the
|
|
/// arguments of this functions, and they are expected to
|
|
/// remain in scope for the lifetime of the solver.
|
|
/// \param[in] param parameters
|
|
/// \param[in] grid grid data structure
|
|
/// \param[in] fluid fluid properties
|
|
/// \param[in] geo rock properties
|
|
/// \param[in] rock_comp_props if non-null, rock compressibility properties
|
|
/// \param[in] wells well structure
|
|
/// \param[in] vfp_properties Vertical flow performance tables
|
|
/// \param[in] linsolver linear solver
|
|
/// \param[in] eclState eclipse state
|
|
/// \param[in] has_disgas turn on dissolved gas
|
|
/// \param[in] has_vapoil turn on vaporized oil feature
|
|
/// \param[in] terminal_output request output to cout/cerr
|
|
BlackoilModelBase(const ModelParameters& param,
|
|
const Grid& grid ,
|
|
const BlackoilPropsAdFromDeck& fluid,
|
|
const DerivedGeology& geo ,
|
|
const RockCompressibility* rock_comp_props,
|
|
const WellModel& well_model,
|
|
const NewtonIterationBlackoilInterface& linsolver,
|
|
std::shared_ptr< const EclipseState > eclState,
|
|
const bool has_disgas,
|
|
const bool has_vapoil,
|
|
const bool terminal_output);
|
|
|
|
/// \brief Set threshold pressures that prevent or reduce flow.
|
|
/// This prevents flow across faces if the potential
|
|
/// difference is less than the threshold. If the potential
|
|
/// difference is greater, the threshold value is subtracted
|
|
/// before calculating flow. This is treated symmetrically, so
|
|
/// flow is prevented or reduced in both directions equally.
|
|
/// \param[in] threshold_pressures_by_face array of size equal to the number of faces
|
|
/// of the grid passed in the constructor.
|
|
void setThresholdPressures(const std::vector<double>& threshold_pressures_by_face);
|
|
|
|
/// Called once before each time step.
|
|
/// \param[in] timer simulation timer
|
|
/// \param[in, out] reservoir_state reservoir state variables
|
|
/// \param[in, out] well_state well state variables
|
|
void prepareStep(const SimulatorTimerInterface& timer,
|
|
const ReservoirState& reservoir_state,
|
|
const WellState& well_state);
|
|
|
|
/// Called once per nonlinear iteration.
|
|
/// This model will perform a Newton-Raphson update, changing reservoir_state
|
|
/// and well_state. It will also use the nonlinear_solver to do relaxation of
|
|
/// updates if necessary.
|
|
/// \param[in] iteration should be 0 for the first call of a new timestep
|
|
/// \param[in] timer simulation timer
|
|
/// \param[in] nonlinear_solver nonlinear solver used (for oscillation/relaxation control)
|
|
/// \param[in, out] reservoir_state reservoir state variables
|
|
/// \param[in, out] well_state well state variables
|
|
template <class NonlinearSolverType>
|
|
SimulatorReport nonlinearIteration(const int iteration,
|
|
const SimulatorTimerInterface& timer,
|
|
NonlinearSolverType& nonlinear_solver,
|
|
ReservoirState& reservoir_state,
|
|
WellState& well_state);
|
|
|
|
/// Called once after each time step.
|
|
/// In this class, this function does nothing.
|
|
/// \param[in] timer simulation timer
|
|
/// \param[in, out] reservoir_state reservoir state variables
|
|
/// \param[in, out] well_state well state variables
|
|
void afterStep(const SimulatorTimerInterface& timer,
|
|
ReservoirState& reservoir_state,
|
|
WellState& well_state);
|
|
|
|
/// Assemble the residual and Jacobian of the nonlinear system.
|
|
/// \param[in] reservoir_state reservoir state variables
|
|
/// \param[in, out] well_state well state variables
|
|
/// \param[in] initial_assembly pass true if this is the first call to assemble() in this timestep
|
|
SimulatorReport
|
|
assemble(const ReservoirState& reservoir_state,
|
|
WellState& well_state,
|
|
const bool initial_assembly);
|
|
|
|
/// \brief Compute the residual norms of the mass balance for each phase,
|
|
/// the well flux, and the well equation.
|
|
/// \return a vector that contains for each phase the norm of the mass balance
|
|
/// and afterwards the norm of the residual of the well flux and the well equation.
|
|
std::vector<double> computeResidualNorms() const;
|
|
|
|
/// \brief compute the relative change between to simulation states
|
|
// \return || u^n+1 - u^n || / || u^n+1 ||
|
|
double relativeChange( const SimulationDataContainer& previous, const SimulationDataContainer& current ) const;
|
|
|
|
/// The size (number of unknowns) of the nonlinear system of equations.
|
|
int sizeNonLinear() const;
|
|
|
|
/// Number of linear iterations used in last call to solveJacobianSystem().
|
|
int linearIterationsLastSolve() const;
|
|
|
|
/// Solve the Jacobian system Jx = r where J is the Jacobian and
|
|
/// r is the residual.
|
|
V solveJacobianSystem() const;
|
|
|
|
/// Apply an update to the primary variables, chopped if appropriate.
|
|
/// \param[in] dx updates to apply to primary variables
|
|
/// \param[in, out] reservoir_state reservoir state variables
|
|
/// \param[in, out] well_state well state variables
|
|
void updateState(const V& dx,
|
|
ReservoirState& reservoir_state,
|
|
WellState& well_state);
|
|
|
|
/// Return true if this is a parallel run.
|
|
bool isParallel() const;
|
|
|
|
/// Return true if output to cout is wanted.
|
|
bool terminalOutputEnabled() const;
|
|
|
|
/// Compute convergence based on total mass balance (tol_mb) and maximum
|
|
/// residual mass balance (tol_cnv).
|
|
/// \param[in] timer simulation timer
|
|
/// \param[in] iteration current iteration number
|
|
bool getConvergence(const SimulatorTimerInterface& timer, const int iteration);
|
|
|
|
/// The number of active fluid phases in the model.
|
|
int numPhases() const;
|
|
|
|
/// The number of active materials in the model.
|
|
/// This should be equal to the number of material balance
|
|
/// equations.
|
|
int numMaterials() const;
|
|
|
|
/// The name of an active material in the model.
|
|
/// It is required that material_index < numMaterials().
|
|
const std::string& materialName(int material_index) const;
|
|
|
|
/// Update the scaling factors for mass balance equations
|
|
void updateEquationsScaling();
|
|
|
|
/// return the WellModel object
|
|
WellModel& wellModel() { return well_model_; }
|
|
const WellModel& wellModel() const { return well_model_; }
|
|
|
|
/// Return reservoir simulation data (for output functionality)
|
|
const SimulatorData& getSimulatorData() const {
|
|
return sd_;
|
|
}
|
|
|
|
/// Compute fluid in place.
|
|
/// \param[in] ReservoirState
|
|
/// \param[in] FIPNUM for active cells not global cells.
|
|
/// \return fluid in place, number of fip regions, each region contains 5 values which are liquid, vapour, water, free gas and dissolved gas.
|
|
std::vector<std::vector<double> >
|
|
computeFluidInPlace(const ReservoirState& x,
|
|
const std::vector<int>& fipnum);
|
|
|
|
/// Function to compute the resevoir voidage for the production wells.
|
|
/// TODO: Probably should go to well model, while we then have duplications there for two Well Models.
|
|
/// With time, it looks like probably we will introduce a base class for Well Models.
|
|
void computeWellVoidageRates(const ReservoirState& reservoir_state,
|
|
const WellState& well_state,
|
|
std::vector<double>& well_voidage_rates,
|
|
std::vector<double>& voidage_conversion_coeffs);
|
|
|
|
|
|
void applyVREPGroupControl(const ReservoirState& reservoir_state,
|
|
WellState& well_state);
|
|
|
|
protected:
|
|
|
|
// --------- Types and enums ---------
|
|
|
|
typedef Eigen::Array<double,
|
|
Eigen::Dynamic,
|
|
Eigen::Dynamic,
|
|
Eigen::RowMajor> DataBlock;
|
|
|
|
|
|
// --------- Data members ---------
|
|
|
|
const Grid& grid_;
|
|
const BlackoilPropsAdFromDeck& fluid_;
|
|
const DerivedGeology& geo_;
|
|
const RockCompressibility* rock_comp_props_;
|
|
VFPProperties vfp_properties_;
|
|
const NewtonIterationBlackoilInterface& linsolver_;
|
|
// For each canonical phase -> true if active
|
|
const std::vector<bool> active_;
|
|
// Size = # active phases. Maps active -> canonical phase indices.
|
|
const std::vector<int> canph_;
|
|
const std::vector<int> cells_; // All grid cells
|
|
HelperOps ops_;
|
|
const bool has_disgas_;
|
|
const bool has_vapoil_;
|
|
|
|
ModelParameters param_;
|
|
bool use_threshold_pressure_;
|
|
V threshold_pressures_by_connection_;
|
|
|
|
mutable SimulatorData sd_;
|
|
std::vector<PhasePresence> phaseCondition_;
|
|
|
|
// Well Model
|
|
WellModel well_model_;
|
|
|
|
V isRs_;
|
|
V isRv_;
|
|
V isSg_;
|
|
|
|
LinearisedBlackoilResidual residual_;
|
|
|
|
/// \brief Whether we print something to std::cout
|
|
bool terminal_output_;
|
|
/// \brief The number of cells of the global grid.
|
|
int global_nc_;
|
|
|
|
V pvdt_;
|
|
std::vector<std::string> material_name_;
|
|
std::vector<std::vector<double>> residual_norms_history_;
|
|
double current_relaxation_;
|
|
V dx_old_;
|
|
|
|
// rate converter between the surface volume rates and reservoir voidage rates
|
|
RateConverterType rate_converter_;
|
|
|
|
// --------- Protected methods ---------
|
|
|
|
/// Access the most-derived class used for
|
|
/// static polymorphism (CRTP).
|
|
Implementation& asImpl()
|
|
{
|
|
return static_cast<Implementation&>(*this);
|
|
}
|
|
|
|
/// Access the most-derived class used for
|
|
/// static polymorphism (CRTP).
|
|
const Implementation& asImpl() const
|
|
{
|
|
return static_cast<const Implementation&>(*this);
|
|
}
|
|
|
|
/// return the Well struct in the WellModel
|
|
const Wells& wells() const { return well_model_.wells(); }
|
|
|
|
/// return true if wells are available in the reservoir
|
|
bool wellsActive() const { return well_model_.wellsActive(); }
|
|
|
|
/// return true if wells are available on this process
|
|
bool localWellsActive() const { return well_model_.localWellsActive(); }
|
|
|
|
void
|
|
makeConstantState(SolutionState& state) const;
|
|
|
|
SolutionState
|
|
variableState(const ReservoirState& x,
|
|
const WellState& xw) const;
|
|
|
|
std::vector<V>
|
|
variableStateInitials(const ReservoirState& x,
|
|
const WellState& xw) const;
|
|
void
|
|
variableReservoirStateInitials(const ReservoirState& x,
|
|
std::vector<V>& vars0) const;
|
|
|
|
std::vector<int>
|
|
variableStateIndices() const;
|
|
|
|
SolutionState
|
|
variableStateExtractVars(const ReservoirState& x,
|
|
const std::vector<int>& indices,
|
|
std::vector<ADB>& vars) const;
|
|
|
|
void
|
|
computeAccum(const SolutionState& state,
|
|
const int aix );
|
|
|
|
void
|
|
assembleMassBalanceEq(const SolutionState& state);
|
|
|
|
|
|
SimulatorReport
|
|
solveWellEq(const std::vector<ADB>& mob_perfcells,
|
|
const std::vector<ADB>& b_perfcells,
|
|
const ReservoirState& reservoir_state,
|
|
SolutionState& state,
|
|
WellState& well_state);
|
|
|
|
void
|
|
addWellContributionToMassBalanceEq(const std::vector<ADB>& cq_s,
|
|
const SolutionState& state,
|
|
const WellState& xw);
|
|
|
|
bool getWellConvergence(const int iteration);
|
|
|
|
bool isVFPActive() const;
|
|
|
|
std::vector<ADB>
|
|
computePressures(const ADB& po,
|
|
const ADB& sw,
|
|
const ADB& so,
|
|
const ADB& sg) const;
|
|
|
|
V
|
|
computeGasPressure(const V& po,
|
|
const V& sw,
|
|
const V& so,
|
|
const V& sg) const;
|
|
|
|
std::vector<ADB>
|
|
computeRelPerm(const SolutionState& state) const;
|
|
|
|
void
|
|
computeMassFlux(const int actph ,
|
|
const V& transi,
|
|
const ADB& kr ,
|
|
const ADB& mu ,
|
|
const ADB& rho ,
|
|
const ADB& p ,
|
|
const SolutionState& state );
|
|
|
|
void applyThresholdPressures(ADB& dp);
|
|
|
|
ADB
|
|
fluidViscosity(const int phase,
|
|
const ADB& p ,
|
|
const ADB& temp ,
|
|
const ADB& rs ,
|
|
const ADB& rv ,
|
|
const std::vector<PhasePresence>& cond) const;
|
|
|
|
ADB
|
|
fluidReciprocFVF(const int phase,
|
|
const ADB& p ,
|
|
const ADB& temp ,
|
|
const ADB& rs ,
|
|
const ADB& rv ,
|
|
const std::vector<PhasePresence>& cond) const;
|
|
|
|
ADB
|
|
fluidDensity(const int phase,
|
|
const ADB& b,
|
|
const ADB& rs,
|
|
const ADB& rv) const;
|
|
|
|
V
|
|
fluidRsSat(const V& p,
|
|
const V& so,
|
|
const std::vector<int>& cells) const;
|
|
|
|
ADB
|
|
fluidRsSat(const ADB& p,
|
|
const ADB& so,
|
|
const std::vector<int>& cells) const;
|
|
|
|
V
|
|
fluidRvSat(const V& p,
|
|
const V& so,
|
|
const std::vector<int>& cells) const;
|
|
|
|
ADB
|
|
fluidRvSat(const ADB& p,
|
|
const ADB& so,
|
|
const std::vector<int>& cells) const;
|
|
|
|
ADB
|
|
poroMult(const ADB& p) const;
|
|
|
|
ADB
|
|
transMult(const ADB& p) const;
|
|
|
|
const std::vector<PhasePresence>
|
|
phaseCondition() const {return phaseCondition_;}
|
|
|
|
void
|
|
classifyCondition(const ReservoirState& state);
|
|
|
|
|
|
/// update the primal variable for Sg, Rv or Rs. The Gas phase must
|
|
/// be active to call this method.
|
|
void
|
|
updatePrimalVariableFromState(const ReservoirState& state);
|
|
|
|
/// Update the phaseCondition_ member based on the primalVariable_ member.
|
|
/// Also updates isRs_, isRv_ and isSg_;
|
|
void
|
|
updatePhaseCondFromPrimalVariable(const ReservoirState& state);
|
|
|
|
// TODO: added since the interfaces of the function are different
|
|
// TODO: for StandardWells and MultisegmentWells
|
|
void
|
|
computeWellConnectionPressures(const SolutionState& state,
|
|
const WellState& well_state);
|
|
|
|
/// \brief Compute the reduction within the convergence check.
|
|
/// \param[in] B A matrix with MaxNumPhases columns and the same number rows
|
|
/// as the number of cells of the grid. B.col(i) contains the values
|
|
/// for phase i.
|
|
/// \param[in] tempV A matrix with MaxNumPhases columns and the same number rows
|
|
/// as the number of cells of the grid. tempV.col(i) contains the
|
|
/// values
|
|
/// for phase i.
|
|
/// \param[in] R A matrix with MaxNumPhases columns and the same number rows
|
|
/// as the number of cells of the grid. B.col(i) contains the values
|
|
/// for phase i.
|
|
/// \param[out] R_sum An array of size MaxNumPhases where entry i contains the sum
|
|
/// of R for the phase i.
|
|
/// \param[out] maxCoeff An array of size MaxNumPhases where entry i contains the
|
|
/// maximum of tempV for the phase i.
|
|
/// \param[out] B_avg An array of size MaxNumPhases where entry i contains the average
|
|
/// of B for the phase i.
|
|
/// \param[out] maxNormWell The maximum of the well flux equations for each phase.
|
|
/// \param[in] nc The number of cells of the local grid.
|
|
/// \return The total pore volume over all cells.
|
|
double
|
|
convergenceReduction(const Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic>& B,
|
|
const Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic>& tempV,
|
|
const Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic>& R,
|
|
std::vector<double>& R_sum,
|
|
std::vector<double>& maxCoeff,
|
|
std::vector<double>& B_avg,
|
|
std::vector<double>& maxNormWell,
|
|
int nc) const;
|
|
|
|
double dpMaxRel() const { return param_.dp_max_rel_; }
|
|
double dbhpMaxRel() const {return param_.dbhp_max_rel_; }
|
|
double dsMax() const { return param_.ds_max_; }
|
|
double drMaxRel() const { return param_.dr_max_rel_; }
|
|
double maxResidualAllowed() const { return param_.max_residual_allowed_; }
|
|
|
|
};
|
|
} // namespace Opm
|
|
|
|
#include "BlackoilModelBase_impl.hpp"
|
|
|
|
#endif // OPM_BLACKOILMODELBASE_HEADER_INCLUDED
|