mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-27 11:16:28 -06:00
515 lines
18 KiB
Plaintext
515 lines
18 KiB
Plaintext
/*
|
|
Copyright 2019 Equinor ASA
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <config.h>
|
|
|
|
#include <cuda_runtime.h>
|
|
#include <sstream>
|
|
|
|
#include <opm/common/OpmLog/OpmLog.hpp>
|
|
#include <dune/common/timer.hh>
|
|
|
|
#include <opm/simulators/linalg/bda/cusparseSolverBackend.hpp>
|
|
#include <opm/simulators/linalg/bda/BdaResult.hpp>
|
|
#include <opm/simulators/linalg/bda/cuda_header.hpp>
|
|
|
|
#include "cublas_v2.h"
|
|
#include "cusparse_v2.h"
|
|
// For more information about cusparse, check https://docs.nvidia.com/cuda/cusparse/index.html
|
|
|
|
// iff true, the nonzeroes of the matrix are copied row-by-row into a contiguous, pinned memory array, then a single GPU memcpy is done
|
|
// otherwise, the nonzeroes of the matrix are assumed to be in a contiguous array, and a single GPU memcpy is enough
|
|
#define COPY_ROW_BY_ROW 0
|
|
|
|
namespace bda
|
|
{
|
|
|
|
using Opm::OpmLog;
|
|
using Dune::Timer;
|
|
|
|
const cusparseSolvePolicy_t policy = CUSPARSE_SOLVE_POLICY_USE_LEVEL;
|
|
const cusparseOperation_t operation = CUSPARSE_OPERATION_NON_TRANSPOSE;
|
|
const cusparseDirection_t order = CUSPARSE_DIRECTION_ROW;
|
|
|
|
|
|
template <unsigned int block_size>
|
|
cusparseSolverBackend<block_size>::cusparseSolverBackend(int verbosity_, int maxit_, double tolerance_, unsigned int deviceID_) : BdaSolver<block_size>(verbosity_, maxit_, tolerance_, deviceID_) {}
|
|
|
|
template <unsigned int block_size>
|
|
cusparseSolverBackend<block_size>::~cusparseSolverBackend() {
|
|
finalize();
|
|
}
|
|
|
|
template <unsigned int block_size>
|
|
void cusparseSolverBackend<block_size>::gpu_pbicgstab(WellContributions& wellContribs, BdaResult& res) {
|
|
Timer t_total, t_prec(false), t_spmv(false), t_well(false), t_rest(false);
|
|
int n = N;
|
|
double rho = 1.0, rhop;
|
|
double alpha, nalpha, beta;
|
|
double omega, nomega, tmp1, tmp2;
|
|
double norm, norm_0;
|
|
double zero = 0.0;
|
|
double one = 1.0;
|
|
double mone = -1.0;
|
|
float it;
|
|
|
|
if (wellContribs.getNumWells() > 0) {
|
|
wellContribs.setCudaStream(stream);
|
|
}
|
|
|
|
cusparseDbsrmv(cusparseHandle, order, operation, Nb, Nb, nnzb, &one, descr_M, d_bVals, d_bRows, d_bCols, block_size, d_x, &zero, d_r);
|
|
|
|
cublasDscal(cublasHandle, n, &mone, d_r, 1);
|
|
cublasDaxpy(cublasHandle, n, &one, d_b, 1, d_r, 1);
|
|
cublasDcopy(cublasHandle, n, d_r, 1, d_rw, 1);
|
|
cublasDcopy(cublasHandle, n, d_r, 1, d_p, 1);
|
|
cublasDnrm2(cublasHandle, n, d_r, 1, &norm_0);
|
|
|
|
if (verbosity > 1) {
|
|
std::ostringstream out;
|
|
out << std::scientific << "cusparseSolver initial norm: " << norm_0;
|
|
OpmLog::info(out.str());
|
|
}
|
|
|
|
for (it = 0.5; it < maxit; it += 0.5) {
|
|
rhop = rho;
|
|
cublasDdot(cublasHandle, n, d_rw, 1, d_r, 1, &rho);
|
|
|
|
if (it > 1) {
|
|
beta = (rho / rhop) * (alpha / omega);
|
|
nomega = -omega;
|
|
cublasDaxpy(cublasHandle, n, &nomega, d_v, 1, d_p, 1);
|
|
cublasDscal(cublasHandle, n, &beta, d_p, 1);
|
|
cublasDaxpy(cublasHandle, n, &one, d_r, 1, d_p, 1);
|
|
}
|
|
|
|
// apply ilu0
|
|
cusparseDbsrsv2_solve(cusparseHandle, order, \
|
|
operation, Nb, nnzb, &one, \
|
|
descr_L, d_mVals, d_mRows, d_mCols, block_size, info_L, d_p, d_t, policy, d_buffer);
|
|
cusparseDbsrsv2_solve(cusparseHandle, order, \
|
|
operation, Nb, nnzb, &one, \
|
|
descr_U, d_mVals, d_mRows, d_mCols, block_size, info_U, d_t, d_pw, policy, d_buffer);
|
|
|
|
// spmv
|
|
cusparseDbsrmv(cusparseHandle, order, \
|
|
operation, Nb, Nb, nnzb, \
|
|
&one, descr_M, d_bVals, d_bRows, d_bCols, block_size, d_pw, &zero, d_v);
|
|
|
|
// apply wellContributions
|
|
if (wellContribs.getNumWells() > 0) {
|
|
wellContribs.apply(d_pw, d_v);
|
|
}
|
|
|
|
cublasDdot(cublasHandle, n, d_rw, 1, d_v, 1, &tmp1);
|
|
alpha = rho / tmp1;
|
|
nalpha = -alpha;
|
|
cublasDaxpy(cublasHandle, n, &nalpha, d_v, 1, d_r, 1);
|
|
cublasDaxpy(cublasHandle, n, &alpha, d_pw, 1, d_x, 1);
|
|
cublasDnrm2(cublasHandle, n, d_r, 1, &norm);
|
|
|
|
if (norm < tolerance * norm_0) {
|
|
break;
|
|
}
|
|
|
|
it += 0.5;
|
|
|
|
// apply ilu0
|
|
cusparseDbsrsv2_solve(cusparseHandle, order, \
|
|
operation, Nb, nnzb, &one, \
|
|
descr_L, d_mVals, d_mRows, d_mCols, block_size, info_L, d_r, d_t, policy, d_buffer);
|
|
cusparseDbsrsv2_solve(cusparseHandle, order, \
|
|
operation, Nb, nnzb, &one, \
|
|
descr_U, d_mVals, d_mRows, d_mCols, block_size, info_U, d_t, d_s, policy, d_buffer);
|
|
|
|
// spmv
|
|
cusparseDbsrmv(cusparseHandle, order, \
|
|
operation, Nb, Nb, nnzb, &one, descr_M, \
|
|
d_bVals, d_bRows, d_bCols, block_size, d_s, &zero, d_t);
|
|
|
|
// apply wellContributions
|
|
if (wellContribs.getNumWells() > 0) {
|
|
wellContribs.apply(d_s, d_t);
|
|
}
|
|
|
|
cublasDdot(cublasHandle, n, d_t, 1, d_r, 1, &tmp1);
|
|
cublasDdot(cublasHandle, n, d_t, 1, d_t, 1, &tmp2);
|
|
omega = tmp1 / tmp2;
|
|
nomega = -omega;
|
|
cublasDaxpy(cublasHandle, n, &omega, d_s, 1, d_x, 1);
|
|
cublasDaxpy(cublasHandle, n, &nomega, d_t, 1, d_r, 1);
|
|
|
|
cublasDnrm2(cublasHandle, n, d_r, 1, &norm);
|
|
|
|
|
|
if (norm < tolerance * norm_0) {
|
|
break;
|
|
}
|
|
|
|
if (verbosity > 1) {
|
|
std::ostringstream out;
|
|
out << "it: " << it << std::scientific << ", norm: " << norm;
|
|
OpmLog::info(out.str());
|
|
}
|
|
}
|
|
|
|
res.iterations = std::min(it, (float)maxit);
|
|
res.reduction = norm / norm_0;
|
|
res.conv_rate = static_cast<double>(pow(res.reduction, 1.0 / it));
|
|
res.elapsed = t_total.stop();
|
|
res.converged = (it != (maxit + 0.5));
|
|
|
|
if (verbosity > 0) {
|
|
std::ostringstream out;
|
|
out << "=== converged: " << res.converged << ", conv_rate: " << res.conv_rate << ", time: " << res.elapsed << \
|
|
", time per iteration: " << res.elapsed / it << ", iterations: " << it;
|
|
OpmLog::info(out.str());
|
|
}
|
|
}
|
|
|
|
|
|
template <unsigned int block_size>
|
|
void cusparseSolverBackend<block_size>::initialize(int N, int nnz, int dim) {
|
|
this->N = N;
|
|
this->nnz = nnz;
|
|
this->nnzb = nnz / block_size / block_size;
|
|
Nb = (N + dim - 1) / dim;
|
|
std::ostringstream out;
|
|
out << "Initializing GPU, matrix size: " << N << " blocks, nnz: " << nnzb << " blocks";
|
|
OpmLog::info(out.str());
|
|
out.str("");
|
|
out.clear();
|
|
out << "Maxit: " << maxit << std::scientific << ", tolerance: " << tolerance;
|
|
OpmLog::info(out.str());
|
|
|
|
cudaSetDevice(deviceID);
|
|
cudaCheckLastError("Could not get device");
|
|
struct cudaDeviceProp props;
|
|
cudaGetDeviceProperties(&props, deviceID);
|
|
cudaCheckLastError("Could not get device properties");
|
|
out.str("");
|
|
out.clear();
|
|
out << "Name GPU: " << props.name << ", Compute Capability: " << props.major << "." << props.minor;
|
|
OpmLog::info(out.str());
|
|
|
|
cudaStreamCreate(&stream);
|
|
cudaCheckLastError("Could not create stream");
|
|
|
|
cublasCreate(&cublasHandle);
|
|
cudaCheckLastError("Could not create cublasHandle");
|
|
|
|
cusparseCreate(&cusparseHandle);
|
|
cudaCheckLastError("Could not create cusparseHandle");
|
|
|
|
cudaMalloc((void**)&d_x, sizeof(double) * N);
|
|
cudaMalloc((void**)&d_b, sizeof(double) * N);
|
|
cudaMalloc((void**)&d_r, sizeof(double) * N);
|
|
cudaMalloc((void**)&d_rw, sizeof(double) * N);
|
|
cudaMalloc((void**)&d_p, sizeof(double) * N);
|
|
cudaMalloc((void**)&d_pw, sizeof(double) * N);
|
|
cudaMalloc((void**)&d_s, sizeof(double) * N);
|
|
cudaMalloc((void**)&d_t, sizeof(double) * N);
|
|
cudaMalloc((void**)&d_v, sizeof(double) * N);
|
|
cudaMalloc((void**)&d_bVals, sizeof(double) * nnz);
|
|
cudaMalloc((void**)&d_bCols, sizeof(double) * nnz);
|
|
cudaMalloc((void**)&d_bRows, sizeof(double) * (Nb + 1));
|
|
cudaMalloc((void**)&d_mVals, sizeof(double) * nnz);
|
|
cudaCheckLastError("Could not allocate enough memory on GPU");
|
|
|
|
cublasSetStream(cublasHandle, stream);
|
|
cudaCheckLastError("Could not set stream to cublas");
|
|
cusparseSetStream(cusparseHandle, stream);
|
|
cudaCheckLastError("Could not set stream to cusparse");
|
|
|
|
#if COPY_ROW_BY_ROW
|
|
cudaMallocHost((void**)&vals_contiguous, sizeof(double) * nnz);
|
|
cudaCheckLastError("Could not allocate pinned memory");
|
|
#endif
|
|
|
|
initialized = true;
|
|
} // end initialize()
|
|
|
|
template <unsigned int block_size>
|
|
void cusparseSolverBackend<block_size>::finalize() {
|
|
if (initialized) {
|
|
cudaFree(d_x);
|
|
cudaFree(d_b);
|
|
cudaFree(d_r);
|
|
cudaFree(d_rw);
|
|
cudaFree(d_p);
|
|
cudaFree(d_pw);
|
|
cudaFree(d_s);
|
|
cudaFree(d_t);
|
|
cudaFree(d_v);
|
|
cudaFree(d_mVals);
|
|
cudaFree(d_bVals);
|
|
cudaFree(d_bCols);
|
|
cudaFree(d_bRows);
|
|
cudaFree(d_buffer);
|
|
cusparseDestroyBsrilu02Info(info_M);
|
|
cusparseDestroyBsrsv2Info(info_L);
|
|
cusparseDestroyBsrsv2Info(info_U);
|
|
cusparseDestroyMatDescr(descr_B);
|
|
cusparseDestroyMatDescr(descr_M);
|
|
cusparseDestroyMatDescr(descr_L);
|
|
cusparseDestroyMatDescr(descr_U);
|
|
cusparseDestroy(cusparseHandle);
|
|
cublasDestroy(cublasHandle);
|
|
#if COPY_ROW_BY_ROW
|
|
cudaFreeHost(vals_contiguous);
|
|
#endif
|
|
cudaStreamDestroy(stream);
|
|
}
|
|
} // end finalize()
|
|
|
|
|
|
template <unsigned int block_size>
|
|
void cusparseSolverBackend<block_size>::copy_system_to_gpu(double *vals, int *rows, int *cols, double *b) {
|
|
Timer t;
|
|
|
|
#if COPY_ROW_BY_ROW
|
|
int sum = 0;
|
|
for (int i = 0; i < Nb; ++i) {
|
|
int size_row = rows[i + 1] - rows[i];
|
|
memcpy(vals_contiguous + sum, vals + sum, size_row * sizeof(double) * block_size * block_size);
|
|
sum += size_row * block_size * block_size;
|
|
}
|
|
cudaMemcpyAsync(d_bVals, vals_contiguous, nnz * sizeof(double), cudaMemcpyHostToDevice, stream);
|
|
#else
|
|
cudaMemcpyAsync(d_bVals, vals, nnz * sizeof(double), cudaMemcpyHostToDevice, stream);
|
|
#endif
|
|
|
|
cudaMemcpyAsync(d_bCols, cols, nnz * sizeof(int), cudaMemcpyHostToDevice, stream);
|
|
cudaMemcpyAsync(d_bRows, rows, (Nb + 1) * sizeof(int), cudaMemcpyHostToDevice, stream);
|
|
cudaMemcpyAsync(d_b, b, N * sizeof(double), cudaMemcpyHostToDevice, stream);
|
|
cudaMemsetAsync(d_x, 0, sizeof(double) * N, stream);
|
|
|
|
if (verbosity > 2) {
|
|
cudaStreamSynchronize(stream);
|
|
std::ostringstream out;
|
|
out << "cusparseSolver::copy_system_to_gpu(): " << t.stop() << " s";
|
|
OpmLog::info(out.str());
|
|
}
|
|
} // end copy_system_to_gpu()
|
|
|
|
|
|
// don't copy rowpointers and colindices, they stay the same
|
|
template <unsigned int block_size>
|
|
void cusparseSolverBackend<block_size>::update_system_on_gpu(double *vals, int *rows, double *b) {
|
|
Timer t;
|
|
|
|
#if COPY_ROW_BY_ROW
|
|
int sum = 0;
|
|
for (int i = 0; i < Nb; ++i) {
|
|
int size_row = rows[i + 1] - rows[i];
|
|
memcpy(vals_contiguous + sum, vals + sum, size_row * sizeof(double) * block_size * block_size);
|
|
sum += size_row * block_size * block_size;
|
|
}
|
|
cudaMemcpyAsync(d_bVals, vals_contiguous, nnz * sizeof(double), cudaMemcpyHostToDevice, stream);
|
|
#else
|
|
cudaMemcpyAsync(d_bVals, vals, nnz * sizeof(double), cudaMemcpyHostToDevice, stream);
|
|
#endif
|
|
|
|
cudaMemcpyAsync(d_b, b, N * sizeof(double), cudaMemcpyHostToDevice, stream);
|
|
cudaMemsetAsync(d_x, 0, sizeof(double) * N, stream);
|
|
|
|
if (verbosity > 2) {
|
|
cudaStreamSynchronize(stream);
|
|
std::ostringstream out;
|
|
out << "cusparseSolver::update_system_on_gpu(): " << t.stop() << " s";
|
|
OpmLog::info(out.str());
|
|
}
|
|
} // end update_system_on_gpu()
|
|
|
|
|
|
template <unsigned int block_size>
|
|
void cusparseSolverBackend<block_size>::reset_prec_on_gpu() {
|
|
cudaMemcpyAsync(d_mVals, d_bVals, nnz * sizeof(double), cudaMemcpyDeviceToDevice, stream);
|
|
}
|
|
|
|
|
|
template <unsigned int block_size>
|
|
bool cusparseSolverBackend<block_size>::analyse_matrix() {
|
|
|
|
int d_bufferSize_M, d_bufferSize_L, d_bufferSize_U, d_bufferSize;
|
|
Timer t;
|
|
|
|
cusparseCreateMatDescr(&descr_B);
|
|
cusparseCreateMatDescr(&descr_M);
|
|
cusparseSetMatType(descr_B, CUSPARSE_MATRIX_TYPE_GENERAL);
|
|
cusparseSetMatType(descr_M, CUSPARSE_MATRIX_TYPE_GENERAL);
|
|
const cusparseIndexBase_t base_type = CUSPARSE_INDEX_BASE_ZERO; // matrices from Flow are base0
|
|
|
|
cusparseSetMatIndexBase(descr_B, base_type);
|
|
cusparseSetMatIndexBase(descr_M, base_type);
|
|
|
|
cusparseCreateMatDescr(&descr_L);
|
|
cusparseSetMatIndexBase(descr_L, base_type);
|
|
cusparseSetMatType(descr_L, CUSPARSE_MATRIX_TYPE_GENERAL);
|
|
cusparseSetMatFillMode(descr_L, CUSPARSE_FILL_MODE_LOWER);
|
|
cusparseSetMatDiagType(descr_L, CUSPARSE_DIAG_TYPE_UNIT);
|
|
|
|
cusparseCreateMatDescr(&descr_U);
|
|
cusparseSetMatIndexBase(descr_U, base_type);
|
|
cusparseSetMatType(descr_U, CUSPARSE_MATRIX_TYPE_GENERAL);
|
|
cusparseSetMatFillMode(descr_U, CUSPARSE_FILL_MODE_UPPER);
|
|
cusparseSetMatDiagType(descr_U, CUSPARSE_DIAG_TYPE_NON_UNIT);
|
|
cudaCheckLastError("Could not initialize matrix descriptions");
|
|
|
|
cusparseCreateBsrilu02Info(&info_M);
|
|
cusparseCreateBsrsv2Info(&info_L);
|
|
cusparseCreateBsrsv2Info(&info_U);
|
|
cudaCheckLastError("Could not create analysis info");
|
|
|
|
cusparseDbsrilu02_bufferSize(cusparseHandle, order, Nb, nnzb,
|
|
descr_M, d_bVals, d_bRows, d_bCols, block_size, info_M, &d_bufferSize_M);
|
|
cusparseDbsrsv2_bufferSize(cusparseHandle, order, operation, Nb, nnzb,
|
|
descr_L, d_bVals, d_bRows, d_bCols, block_size, info_L, &d_bufferSize_L);
|
|
cusparseDbsrsv2_bufferSize(cusparseHandle, order, operation, Nb, nnzb,
|
|
descr_U, d_bVals, d_bRows, d_bCols, block_size, info_U, &d_bufferSize_U);
|
|
cudaCheckLastError();
|
|
d_bufferSize = std::max(d_bufferSize_M, std::max(d_bufferSize_L, d_bufferSize_U));
|
|
|
|
cudaMalloc((void**)&d_buffer, d_bufferSize);
|
|
|
|
// analysis of ilu LU decomposition
|
|
cusparseDbsrilu02_analysis(cusparseHandle, order, \
|
|
Nb, nnzb, descr_B, d_bVals, d_bRows, d_bCols, \
|
|
block_size, info_M, policy, d_buffer);
|
|
|
|
int structural_zero;
|
|
cusparseStatus_t status = cusparseXbsrilu02_zeroPivot(cusparseHandle, info_M, &structural_zero);
|
|
if (CUSPARSE_STATUS_ZERO_PIVOT == status) {
|
|
return false;
|
|
}
|
|
|
|
// analysis of ilu apply
|
|
cusparseDbsrsv2_analysis(cusparseHandle, order, operation, \
|
|
Nb, nnzb, descr_L, d_bVals, d_bRows, d_bCols, \
|
|
block_size, info_L, policy, d_buffer);
|
|
|
|
cusparseDbsrsv2_analysis(cusparseHandle, order, operation, \
|
|
Nb, nnzb, descr_U, d_bVals, d_bRows, d_bCols, \
|
|
block_size, info_U, policy, d_buffer);
|
|
cudaCheckLastError("Could not analyse level information");
|
|
|
|
if (verbosity > 2) {
|
|
cudaStreamSynchronize(stream);
|
|
std::ostringstream out;
|
|
out << "cusparseSolver::analyse_matrix(): " << t.stop() << " s";
|
|
OpmLog::info(out.str());
|
|
}
|
|
|
|
analysis_done = true;
|
|
|
|
return true;
|
|
} // end analyse_matrix()
|
|
|
|
template <unsigned int block_size>
|
|
bool cusparseSolverBackend<block_size>::create_preconditioner() {
|
|
Timer t;
|
|
|
|
d_mCols = d_bCols;
|
|
d_mRows = d_bRows;
|
|
cusparseDbsrilu02(cusparseHandle, order, \
|
|
Nb, nnzb, descr_M, d_mVals, d_mRows, d_mCols, \
|
|
block_size, info_M, policy, d_buffer);
|
|
cudaCheckLastError("Could not perform ilu decomposition");
|
|
|
|
int structural_zero;
|
|
// cusparseXbsrilu02_zeroPivot() calls cudaDeviceSynchronize()
|
|
cusparseStatus_t status = cusparseXbsrilu02_zeroPivot(cusparseHandle, info_M, &structural_zero);
|
|
if (CUSPARSE_STATUS_ZERO_PIVOT == status) {
|
|
return false;
|
|
}
|
|
|
|
if (verbosity > 2) {
|
|
cudaStreamSynchronize(stream);
|
|
std::ostringstream out;
|
|
out << "cusparseSolver::create_preconditioner(): " << t.stop() << " s";
|
|
OpmLog::info(out.str());
|
|
}
|
|
return true;
|
|
} // end create_preconditioner()
|
|
|
|
|
|
template <unsigned int block_size>
|
|
void cusparseSolverBackend<block_size>::solve_system(WellContributions& wellContribs, BdaResult &res) {
|
|
// actually solve
|
|
gpu_pbicgstab(wellContribs, res);
|
|
cudaStreamSynchronize(stream);
|
|
cudaCheckLastError("Something went wrong during the GPU solve");
|
|
} // end solve_system()
|
|
|
|
|
|
// copy result to host memory
|
|
// caller must be sure that x is a valid array
|
|
template <unsigned int block_size>
|
|
void cusparseSolverBackend<block_size>::get_result(double *x) {
|
|
Timer t;
|
|
|
|
cudaMemcpyAsync(x, d_x, N * sizeof(double), cudaMemcpyDeviceToHost, stream);
|
|
cudaStreamSynchronize(stream);
|
|
|
|
if (verbosity > 2) {
|
|
std::ostringstream out;
|
|
out << "cusparseSolver::get_result(): " << t.stop() << " s";
|
|
OpmLog::info(out.str());
|
|
}
|
|
} // end get_result()
|
|
|
|
|
|
|
|
template <unsigned int block_size>
|
|
SolverStatus cusparseSolverBackend<block_size>::solve_system(int N, int nnz, int dim, double *vals, int *rows, int *cols, double *b, WellContributions& wellContribs, BdaResult &res) {
|
|
if (initialized == false) {
|
|
initialize(N, nnz, dim);
|
|
copy_system_to_gpu(vals, rows, cols, b);
|
|
} else {
|
|
update_system_on_gpu(vals, rows, b);
|
|
}
|
|
if (analysis_done == false) {
|
|
if (!analyse_matrix()) {
|
|
return SolverStatus::BDA_SOLVER_ANALYSIS_FAILED;
|
|
}
|
|
}
|
|
reset_prec_on_gpu();
|
|
if (create_preconditioner()) {
|
|
solve_system(wellContribs, res);
|
|
} else {
|
|
return SolverStatus::BDA_SOLVER_CREATE_PRECONDITIONER_FAILED;
|
|
}
|
|
return SolverStatus::BDA_SOLVER_SUCCESS;
|
|
}
|
|
|
|
|
|
#define INSTANTIATE_BDA_FUNCTIONS(n) \
|
|
template cusparseSolverBackend<n>::cusparseSolverBackend(int, int, double, unsigned int); \
|
|
|
|
INSTANTIATE_BDA_FUNCTIONS(1);
|
|
INSTANTIATE_BDA_FUNCTIONS(2);
|
|
INSTANTIATE_BDA_FUNCTIONS(3);
|
|
INSTANTIATE_BDA_FUNCTIONS(4);
|
|
|
|
#undef INSTANTIATE_BDA_FUNCTIONS
|
|
|
|
} // namespace bda
|
|
|
|
|