opm-simulators/opm/simulators/wells/WellInterfaceEval.cpp

573 lines
25 KiB
C++

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2018 IRIS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/WellInterfaceEval.hpp>
#include <ebos/eclalternativeblackoilindices.hh>
#include <opm/material/densead/Evaluation.hpp>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <opm/simulators/wells/GroupState.hpp>
#include <opm/simulators/wells/RateConverter.hpp>
#include <opm/simulators/wells/TargetCalculator.hpp>
#include <opm/simulators/wells/VFPProperties.hpp>
#include <opm/simulators/wells/WellGroupHelpers.hpp>
#include <opm/simulators/wells/WellHelpers.hpp>
#include <opm/simulators/wells/WellInterfaceFluidSystem.hpp>
#include <opm/simulators/wells/WellState.hpp>
#include <cassert>
#include <cmath>
#include <stdexcept>
namespace Opm
{
template<class FluidSystem>
WellInterfaceEval<FluidSystem>::
WellInterfaceEval(const WellInterfaceFluidSystem<FluidSystem>& baseif)
: baseif_(baseif)
{}
template<class FluidSystem>
template<class EvalWell>
void
WellInterfaceEval<FluidSystem>::
getGroupInjectionControl(const Group& group,
const WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
const InjectorType& injectorType,
const EvalWell& bhp,
const EvalWell& injection_rate,
EvalWell& control_eq,
double efficiencyFactor,
DeferredLogger& deferred_logger)
{
// Setting some defaults to silence warnings below.
// Will be overwritten in the switch statement.
Phase injectionPhase = Phase::WATER;
switch (injectorType) {
case InjectorType::WATER:
{
injectionPhase = Phase::WATER;
break;
}
case InjectorType::OIL:
{
injectionPhase = Phase::OIL;
break;
}
case InjectorType::GAS:
{
injectionPhase = Phase::GAS;
break;
}
default:
// Should not be here.
assert(false);
}
auto currentGroupControl = group_state.injection_control(group.name(), injectionPhase);
if (currentGroupControl == Group::InjectionCMode::FLD ||
currentGroupControl == Group::InjectionCMode::NONE) {
if (!group.injectionGroupControlAvailable(injectionPhase)) {
// We cannot go any further up the hierarchy. This could
// be the FIELD group, or any group for which this has
// been set in GCONINJE or GCONPROD. If we are here
// anyway, it is likely that the deck set inconsistent
// requirements, such as GRUP control mode on a well with
// no appropriate controls defined on any of its
// containing groups. We will therefore use the wells' bhp
// limit equation as a fallback.
const auto& controls = baseif_.wellEcl().injectionControls(summaryState);
control_eq = bhp - controls.bhp_limit;
return;
} else {
// Inject share of parents control
const auto& parent = schedule.getGroup( group.parent(), baseif_.currentStep());
efficiencyFactor *= group.getGroupEfficiencyFactor();
getGroupInjectionControl(parent, well_state, group_state, schedule, summaryState, injectorType, bhp, injection_rate, control_eq, efficiencyFactor, deferred_logger);
return;
}
}
efficiencyFactor *= group.getGroupEfficiencyFactor();
const auto& well = baseif_.wellEcl();
const auto pu = baseif_.phaseUsage();
if (!group.isInjectionGroup()) {
// use bhp as control eq and let the updateControl code find a valid control
const auto& controls = well.injectionControls(summaryState);
control_eq = bhp - controls.bhp_limit;
return;
}
// If we are here, we are at the topmost group to be visited in the recursion.
// This is the group containing the control we will check against.
// Make conversion factors for RESV <-> surface rates.
std::vector<double> resv_coeff(pu.num_phases, 1.0);
baseif_.rateConverter().calcInjCoeff(0, baseif_.pvtRegionIdx(), resv_coeff); // FIPNUM region 0 here, should use FIPNUM from WELSPECS.
double sales_target = 0;
if (schedule[baseif_.currentStep()].gconsale().has(group.name())) {
const auto& gconsale = schedule[baseif_.currentStep()].gconsale().get(group.name(), summaryState);
sales_target = gconsale.sales_target;
}
WellGroupHelpers::InjectionTargetCalculator tcalc(currentGroupControl, pu, resv_coeff, group.name(), sales_target, group_state, injectionPhase, deferred_logger);
WellGroupHelpers::FractionCalculator fcalc(schedule, well_state, group_state, baseif_.currentStep(), baseif_.guideRate(), tcalc.guideTargetMode(), pu, false, injectionPhase);
auto localFraction = [&](const std::string& child) {
return fcalc.localFraction(child, "");
};
auto localReduction = [&](const std::string& group_name) {
const std::vector<double>& groupTargetReductions = group_state.injection_reduction_rates(group_name);
return tcalc.calcModeRateFromRates(groupTargetReductions);
};
const double orig_target = tcalc.groupTarget(group.injectionControls(injectionPhase, summaryState), deferred_logger);
const auto chain = WellGroupHelpers::groupChainTopBot(baseif_.name(), group.name(), schedule, baseif_.currentStep());
// Because 'name' is the last of the elements, and not an ancestor, we subtract one below.
const size_t num_ancestors = chain.size() - 1;
double target = orig_target;
for (size_t ii = 0; ii < num_ancestors; ++ii) {
if ((ii == 0) || baseif_.guideRate()->has(chain[ii], injectionPhase)) {
// Apply local reductions only at the control level
// (top) and for levels where we have a specified
// group guide rate.
target -= localReduction(chain[ii]);
}
target *= localFraction(chain[ii+1]);
}
// Avoid negative target rates coming from too large local reductions.
const double target_rate = std::max(0.0, target / efficiencyFactor);
const auto current_rate = injection_rate; // Switch sign since 'rates' are negative for producers.
control_eq = current_rate - target_rate;
}
template<class FluidSystem>
template<class EvalWell>
void
WellInterfaceEval<FluidSystem>::
getGroupProductionControl(const Group& group,
const WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
const EvalWell& bhp,
const std::vector<EvalWell>& rates,
EvalWell& control_eq,
double efficiencyFactor)
{
const Group::ProductionCMode& currentGroupControl = group_state.production_control(group.name());
if (currentGroupControl == Group::ProductionCMode::FLD ||
currentGroupControl == Group::ProductionCMode::NONE) {
if (!group.productionGroupControlAvailable()) {
// We cannot go any further up the hierarchy. This could
// be the FIELD group, or any group for which this has
// been set in GCONINJE or GCONPROD. If we are here
// anyway, it is likely that the deck set inconsistent
// requirements, such as GRUP control mode on a well with
// no appropriate controls defined on any of its
// containing groups. We will therefore use the wells' bhp
// limit equation as a fallback.
const auto& controls = baseif_.wellEcl().productionControls(summaryState);
control_eq = bhp - controls.bhp_limit;
return;
} else {
// Produce share of parents control
const auto& parent = schedule.getGroup(group.parent(), baseif_.currentStep());
efficiencyFactor *= group.getGroupEfficiencyFactor();
getGroupProductionControl(parent, well_state, group_state, schedule, summaryState, bhp, rates, control_eq, efficiencyFactor);
return;
}
}
efficiencyFactor *= group.getGroupEfficiencyFactor();
const auto& well = baseif_.wellEcl();
const auto pu = baseif_.phaseUsage();
if (!group.isProductionGroup()) {
// use bhp as control eq and let the updateControl code find a valid control
const auto& controls = well.productionControls(summaryState);
control_eq = bhp - controls.bhp_limit;
return;
}
// If we are here, we are at the topmost group to be visited in the recursion.
// This is the group containing the control we will check against.
// Make conversion factors for RESV <-> surface rates.
std::vector<double> resv_coeff(baseif_.phaseUsage().num_phases, 1.0);
baseif_.rateConverter().calcCoeff(0, baseif_.pvtRegionIdx(), resv_coeff); // FIPNUM region 0 here, should use FIPNUM from WELSPECS.
// gconsale may adjust the grat target.
// the adjusted rates is send to the targetCalculator
double gratTargetFromSales = 0.0;
if (group_state.has_grat_sales_target(group.name()))
gratTargetFromSales = group_state.grat_sales_target(group.name());
WellGroupHelpers::TargetCalculator tcalc(currentGroupControl, pu, resv_coeff, gratTargetFromSales);
WellGroupHelpers::FractionCalculator fcalc(schedule, well_state, group_state, baseif_.currentStep(), baseif_.guideRate(), tcalc.guideTargetMode(), pu, true, Phase::OIL);
auto localFraction = [&](const std::string& child) {
return fcalc.localFraction(child, "");
};
auto localReduction = [&](const std::string& group_name) {
const std::vector<double>& groupTargetReductions = group_state.production_reduction_rates(group_name);
return tcalc.calcModeRateFromRates(groupTargetReductions);
};
const double orig_target = tcalc.groupTarget(group.productionControls(summaryState));
const auto chain = WellGroupHelpers::groupChainTopBot(baseif_.name(), group.name(), schedule, baseif_.currentStep());
// Because 'name' is the last of the elements, and not an ancestor, we subtract one below.
const size_t num_ancestors = chain.size() - 1;
double target = orig_target;
for (size_t ii = 0; ii < num_ancestors; ++ii) {
if ((ii == 0) || baseif_.guideRate()->has(chain[ii])) {
// Apply local reductions only at the control level
// (top) and for levels where we have a specified
// group guide rate.
target -= localReduction(chain[ii]);
}
target *= localFraction(chain[ii+1]);
}
// Avoid negative target rates coming from too large local reductions.
const double target_rate = std::max(0.0, target / efficiencyFactor);
const auto current_rate = -tcalc.calcModeRateFromRates(rates); // Switch sign since 'rates' are negative for producers.
control_eq = current_rate - target_rate;
}
template<class FluidSystem>
template<class EvalWell>
void
WellInterfaceEval<FluidSystem>::
assembleControlEqProd_(const WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
const Well::ProductionControls& controls,
const EvalWell& bhp,
const std::vector<EvalWell>& rates, // Always 3 canonical rates.
const std::function<EvalWell()>& bhp_from_thp,
EvalWell& control_eq,
DeferredLogger& deferred_logger)
{
auto current = well_state.currentProductionControl(baseif_.indexOfWell());
const auto& pu = baseif_.phaseUsage();
const double efficiencyFactor = baseif_.wellEcl().getEfficiencyFactor();
switch (current) {
case Well::ProducerCMode::ORAT: {
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
const EvalWell rate = -rates[BlackoilPhases::Liquid];
control_eq = rate - controls.oil_rate;
break;
}
case Well::ProducerCMode::WRAT: {
assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx));
const EvalWell rate = -rates[BlackoilPhases::Aqua];
control_eq = rate - controls.water_rate;
break;
}
case Well::ProducerCMode::GRAT: {
assert(FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx));
const EvalWell rate = -rates[BlackoilPhases::Vapour];
control_eq = rate - controls.gas_rate;
break;
}
case Well::ProducerCMode::LRAT: {
assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx));
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
EvalWell rate = -rates[BlackoilPhases::Aqua] - rates[BlackoilPhases::Liquid];
control_eq = rate - controls.liquid_rate;
break;
}
case Well::ProducerCMode::CRAT: {
OPM_DEFLOG_THROW(std::runtime_error, "CRAT control not supported " << baseif_.name(), deferred_logger);
}
case Well::ProducerCMode::RESV: {
auto total_rate = rates[0]; // To get the correct type only.
total_rate = 0.0;
std::vector<double> convert_coeff(baseif_.numPhases(), 1.0);
baseif_.rateConverter().calcCoeff(/*fipreg*/ 0, baseif_.pvtRegionIdx(), convert_coeff);
for (int phase = 0; phase < 3; ++phase) {
if (pu.phase_used[phase]) {
const int pos = pu.phase_pos[phase];
total_rate -= rates[phase] * convert_coeff[pos]; // Note different indices.
}
}
if (controls.prediction_mode) {
control_eq = total_rate - controls.resv_rate;
} else {
std::vector<double> hrates(baseif_.numPhases(), 0.);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
hrates[pu.phase_pos[Water]] = controls.water_rate;
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
hrates[pu.phase_pos[Oil]] = controls.oil_rate;
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
hrates[pu.phase_pos[Gas]] = controls.gas_rate;
}
std::vector<double> hrates_resv(baseif_.numPhases(), 0.);
baseif_.rateConverter().calcReservoirVoidageRates(/*fipreg*/ 0, baseif_.pvtRegionIdx(), hrates, hrates_resv);
double target = std::accumulate(hrates_resv.begin(), hrates_resv.end(), 0.0);
control_eq = total_rate - target;
}
break;
}
case Well::ProducerCMode::BHP: {
control_eq = bhp - controls.bhp_limit;
break;
}
case Well::ProducerCMode::THP: {
control_eq = bhp - bhp_from_thp();
break;
}
case Well::ProducerCMode::GRUP: {
assert(baseif_.wellEcl().isAvailableForGroupControl());
const auto& group = schedule.getGroup(baseif_.wellEcl().groupName(), baseif_.currentStep());
// Annoying thing: the rates passed to this function are
// always of size 3 and in canonical (for PhaseUsage)
// order. This is what is needed for VFP calculations if
// they are required (THP controlled well). But for the
// group production control things we must pass only the
// active phases' rates.
std::vector<EvalWell> active_rates(pu.num_phases);
for (int canonical_phase = 0; canonical_phase < 3; ++canonical_phase) {
if (pu.phase_used[canonical_phase]) {
active_rates[pu.phase_pos[canonical_phase]] = rates[canonical_phase];
}
}
getGroupProductionControl(group, well_state, group_state, schedule, summaryState, bhp, active_rates, control_eq, efficiencyFactor);
break;
}
case Well::ProducerCMode::CMODE_UNDEFINED: {
OPM_DEFLOG_THROW(std::runtime_error, "Well control must be specified for well " + baseif_.name(), deferred_logger);
}
case Well::ProducerCMode::NONE: {
OPM_DEFLOG_THROW(std::runtime_error, "Well control must be specified for well " + baseif_.name(), deferred_logger);
}
}
}
template<class FluidSystem>
template<class EvalWell>
void
WellInterfaceEval<FluidSystem>::
assembleControlEqInj_(const WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
const Well::InjectionControls& controls,
const EvalWell& bhp,
const EvalWell& injection_rate,
const std::function<EvalWell()>& bhp_from_thp,
EvalWell& control_eq,
DeferredLogger& deferred_logger)
{
auto current = well_state.currentInjectionControl(baseif_.indexOfWell());
const InjectorType injectorType = controls.injector_type;
const auto& pu = baseif_.phaseUsage();
const double efficiencyFactor = baseif_.wellEcl().getEfficiencyFactor();
switch (current) {
case Well::InjectorCMode::RATE: {
control_eq = injection_rate - controls.surface_rate;
break;
}
case Well::InjectorCMode::RESV: {
std::vector<double> convert_coeff(baseif_.numPhases(), 1.0);
baseif_.rateConverter().calcInjCoeff(/*fipreg*/ 0, baseif_.pvtRegionIdx(), convert_coeff);
double coeff = 1.0;
switch (injectorType) {
case InjectorType::WATER: {
coeff = convert_coeff[pu.phase_pos[BlackoilPhases::Aqua]];
break;
}
case InjectorType::OIL: {
coeff = convert_coeff[pu.phase_pos[BlackoilPhases::Liquid]];
break;
}
case InjectorType::GAS: {
coeff = convert_coeff[pu.phase_pos[BlackoilPhases::Vapour]];
break;
}
default:
throw("Expected WATER, OIL or GAS as type for injectors " + baseif_.wellEcl().name());
}
control_eq = coeff * injection_rate - controls.reservoir_rate;
break;
}
case Well::InjectorCMode::THP: {
control_eq = bhp - bhp_from_thp();
break;
}
case Well::InjectorCMode::BHP: {
control_eq = bhp - controls.bhp_limit;
break;
}
case Well::InjectorCMode::GRUP: {
assert(baseif_.wellEcl().isAvailableForGroupControl());
const auto& group = schedule.getGroup(baseif_.wellEcl().groupName(), baseif_.currentStep());
this->getGroupInjectionControl(group,
well_state,
group_state,
schedule,
summaryState,
injectorType,
bhp,
injection_rate,
control_eq,
efficiencyFactor,
deferred_logger);
break;
}
case Well::InjectorCMode::CMODE_UNDEFINED: {
OPM_DEFLOG_THROW(std::runtime_error, "Well control must be specified for well " + baseif_.name(), deferred_logger);
}
}
}
template<class FluidSystem>
template<class EvalWell>
EvalWell
WellInterfaceEval<FluidSystem>::
calculateBhpFromThp(const WellState& well_state,
const std::vector<EvalWell>& rates,
const Well& well,
const SummaryState& summaryState,
const double rho,
DeferredLogger& deferred_logger) const
{
// TODO: when well is under THP control, the BHP is dependent on the rates,
// the well rates is also dependent on the BHP, so it might need to do some iteration.
// However, when group control is involved, change of the rates might impacts other wells
// so iterations on a higher level will be required. Some investigation might be needed when
// we face problems under THP control.
assert(int(rates.size()) == 3); // the vfp related only supports three phases now.
const EvalWell aqua = rates[Water];
const EvalWell liquid = rates[Oil];
const EvalWell vapour = rates[Gas];
// pick the reference density
// typically the reference in the top layer
if (baseif_.isInjector() )
{
const auto& controls = well.injectionControls(summaryState);
const double vfp_ref_depth = baseif_.vfpProperties()->getInj()->getTable(controls.vfp_table_number).getDatumDepth();
const double dp = wellhelpers::computeHydrostaticCorrection(baseif_.refDepth(), vfp_ref_depth, rho, baseif_.gravity());
return baseif_.vfpProperties()->getInj()->bhp(controls.vfp_table_number, aqua, liquid, vapour, baseif_.getTHPConstraint(summaryState)) - dp;
}
else if (baseif_.isProducer()) {
const auto& controls = well.productionControls(summaryState);
const double vfp_ref_depth = baseif_.vfpProperties()->getProd()->getTable(controls.vfp_table_number).getDatumDepth();
const double dp = wellhelpers::computeHydrostaticCorrection(baseif_.refDepth(), vfp_ref_depth, rho, baseif_.gravity());
return baseif_.vfpProperties()->getProd()->bhp(controls.vfp_table_number, aqua, liquid, vapour, baseif_.getTHPConstraint(summaryState), baseif_.getALQ(well_state)) - dp;
}
else {
OPM_DEFLOG_THROW(std::logic_error, "Expected INJECTOR or PRODUCER for well " + baseif_.name(), deferred_logger);
}
}
#define INSTANCE_METHODS(A,...) \
template void WellInterfaceEval<A>:: \
assembleControlEqProd_<__VA_ARGS__>(const WellState&, \
const GroupState&, \
const Schedule&, \
const SummaryState&, \
const Well::ProductionControls&, \
const __VA_ARGS__&, \
const std::vector<__VA_ARGS__>&, \
const std::function<__VA_ARGS__()>&, \
__VA_ARGS__&, \
DeferredLogger&); \
template void WellInterfaceEval<A>:: \
assembleControlEqInj_<__VA_ARGS__>(const WellState&, \
const GroupState&, \
const Schedule&, \
const SummaryState&, \
const Well::InjectionControls&, \
const __VA_ARGS__&, \
const __VA_ARGS__&, \
const std::function<__VA_ARGS__()>&, \
__VA_ARGS__&, \
DeferredLogger&); \
template __VA_ARGS__ WellInterfaceEval<A>:: \
calculateBhpFromThp<__VA_ARGS__>(const WellState&, \
const std::vector<__VA_ARGS__>&, \
const Well&, \
const SummaryState&, \
const double, \
DeferredLogger&) const;
using FluidSys = BlackOilFluidSystem<double, BlackOilDefaultIndexTraits>;
using FluidAltSys = BlackOilFluidSystem<double, EclAlternativeBlackOilIndexTraits>;
template class WellInterfaceEval<FluidSys>;
template class WellInterfaceEval<FluidAltSys>;
INSTANCE_METHODS(FluidSys, DenseAd::Evaluation<double,3,0u>)
INSTANCE_METHODS(FluidSys, DenseAd::Evaluation<double,4,0u>)
INSTANCE_METHODS(FluidSys, DenseAd::Evaluation<double,5,0u>)
INSTANCE_METHODS(FluidSys, DenseAd::Evaluation<double,6,0u>)
INSTANCE_METHODS(FluidSys, DenseAd::Evaluation<double,7,0u>)
INSTANCE_METHODS(FluidSys, DenseAd::Evaluation<double,8,0u>)
INSTANCE_METHODS(FluidSys, DenseAd::Evaluation<double,-1,4u>)
INSTANCE_METHODS(FluidSys, DenseAd::Evaluation<double,-1,5u>)
INSTANCE_METHODS(FluidSys, DenseAd::Evaluation<double,-1,6u>)
INSTANCE_METHODS(FluidSys, DenseAd::Evaluation<double,-1,7u>)
INSTANCE_METHODS(FluidSys, DenseAd::Evaluation<double,-1,8u>)
INSTANCE_METHODS(FluidSys, DenseAd::Evaluation<double,-1,9u>)
INSTANCE_METHODS(FluidSys, DenseAd::Evaluation<double,-1,10u>)
INSTANCE_METHODS(FluidAltSys, DenseAd::Evaluation<double,7,0u>)
INSTANCE_METHODS(FluidAltSys, DenseAd::Evaluation<double,-1,8u>)
#define INSTANCE_BHP(...) \
template double WellInterfaceEval<__VA_ARGS__>:: \
calculateBhpFromThp<double>(const WellState&, \
const std::vector<double>&, \
const Well&, \
const SummaryState&, \
const double, \
DeferredLogger&) const;
INSTANCE_BHP(FluidSys)
INSTANCE_BHP(FluidAltSys)
} // namespace Opm