mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-26 03:00:17 -06:00
290584dddc
the in-file lists of authors has been removed in favor of a global list of authors in the LICENSE file. this is done because (a) maintaining a list of authors at the beginning of a file is a major pain in the a**, (b) the list of authors was not accurate in about 85% of all cases where more than one person was involved and (c) this list is not legally binding in any way (the copyright is at the person who authored a given change, if these lists had any legal relevance, one could "aquire" the copyright of the module by forking it and removing the lists...) the only exception of this is the eWoms fork of dune-istl's solvers.hh file. This is beneficial because the authors of that file do not appear in the global list. Further, carrying the fork of that file is required because we would like to use a reasonable convergence criterion for the linear solver. (the solvers from dune-istl do neither support user-defined convergence criteria not do the developers want support for it. (my patch was rejected a few years ago.))
551 lines
18 KiB
C++
551 lines
18 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Ewoms::ObstacleProblem
|
|
*/
|
|
#ifndef EWOMS_OBSTACLE_PROBLEM_HH
|
|
#define EWOMS_OBSTACLE_PROBLEM_HH
|
|
|
|
#include <ewoms/models/ncp/ncpproperties.hh>
|
|
|
|
#include <opm/material/fluidsystems/H2ON2FluidSystem.hpp>
|
|
#include <opm/material/constraintsolvers/ComputeFromReferencePhase.hpp>
|
|
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/RegularizedBrooksCorey.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
|
|
#include <opm/material/heatconduction/Somerton.hpp>
|
|
|
|
#include <dune/grid/yaspgrid.hh>
|
|
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
|
|
|
|
#include <dune/common/version.hh>
|
|
#include <dune/common/fvector.hh>
|
|
#include <dune/common/fmatrix.hh>
|
|
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <iostream>
|
|
|
|
namespace Ewoms {
|
|
template <class TypeTag>
|
|
class ObstacleProblem;
|
|
}
|
|
|
|
namespace Ewoms {
|
|
namespace Properties {
|
|
NEW_TYPE_TAG(ObstacleBaseProblem);
|
|
|
|
// Set the grid type
|
|
SET_TYPE_PROP(ObstacleBaseProblem, Grid, Dune::YaspGrid<2>);
|
|
|
|
// Set the problem property
|
|
SET_TYPE_PROP(ObstacleBaseProblem, Problem, Ewoms::ObstacleProblem<TypeTag>);
|
|
|
|
// Set fluid configuration
|
|
SET_TYPE_PROP(ObstacleBaseProblem, FluidSystem,
|
|
Opm::FluidSystems::H2ON2<typename GET_PROP_TYPE(TypeTag, Scalar)>);
|
|
|
|
// Set the material Law
|
|
SET_PROP(ObstacleBaseProblem, MaterialLaw)
|
|
{
|
|
private:
|
|
// define the material law
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
typedef Opm::TwoPhaseMaterialTraits<Scalar,
|
|
/*wettingPhaseIdx=*/FluidSystem::liquidPhaseIdx,
|
|
/*nonWettingPhaseIdx=*/FluidSystem::gasPhaseIdx>
|
|
MaterialTraits;
|
|
|
|
typedef Opm::LinearMaterial<MaterialTraits> EffMaterialLaw;
|
|
|
|
public:
|
|
typedef Opm::EffToAbsLaw<EffMaterialLaw> type;
|
|
};
|
|
|
|
// Set the heat conduction law
|
|
SET_PROP(ObstacleBaseProblem, HeatConductionLaw)
|
|
{
|
|
private:
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
|
|
public:
|
|
// define the material law parameterized by absolute saturations
|
|
typedef Opm::Somerton<FluidSystem, Scalar> type;
|
|
};
|
|
|
|
// Enable gravity
|
|
SET_BOOL_PROP(ObstacleBaseProblem, EnableGravity, true);
|
|
|
|
// The default for the end time of the simulation
|
|
SET_SCALAR_PROP(ObstacleBaseProblem, EndTime, 1e4);
|
|
|
|
// The default for the initial time step size of the simulation
|
|
SET_SCALAR_PROP(ObstacleBaseProblem, InitialTimeStepSize, 250);
|
|
|
|
// The default DGF file to load
|
|
SET_STRING_PROP(ObstacleBaseProblem, GridFile, "./data/obstacle_24x16.dgf");
|
|
} // namespace Properties
|
|
} // namespace Ewoms
|
|
|
|
namespace Ewoms {
|
|
/*!
|
|
* \ingroup TestProblems
|
|
*
|
|
* \brief Problem where liquid water is first stopped by a
|
|
* low-permeability lens and then seeps though it.
|
|
*
|
|
* Liquid water is injected by using of a free-flow condition on the
|
|
* lower right of the domain. This water level then raises until
|
|
* hydrostatic pressure is reached. On the left of the domain, a
|
|
* rectangular obstacle with \f$10^3\f$ lower permeability than the
|
|
* rest of the domain first stops the for a while until it seeps
|
|
* through it.
|
|
*
|
|
* The domain is sized 60m times 40m and consists of two media, a
|
|
* moderately permeable soil (\f$ K_0=10e-12 m^2\f$) and an obstacle
|
|
* at \f$[10; 20]m \times [0; 35]m \f$ with a lower permeablility of
|
|
* \f$ K_1=K_0/1000\f$.
|
|
*
|
|
* Initially the whole domain is filled by nitrogen, the temperature
|
|
* is \f$20^\circ C\f$ for the whole domain. The gas pressure is
|
|
* initially 1 bar, at the inlet of the liquid water on the right side
|
|
* it is 2 bar.
|
|
*
|
|
* The boundary is no-flow except on the lower 10 meters of the left
|
|
* and the right boundary where a free flow condition is assumed.
|
|
*/
|
|
template <class TypeTag>
|
|
class ObstacleProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
|
|
{
|
|
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
|
|
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
|
|
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
|
|
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
|
|
typedef typename GET_PROP_TYPE(TypeTag, HeatConductionLaw) HeatConductionLaw;
|
|
typedef typename HeatConductionLaw::Params HeatConductionLawParams;
|
|
|
|
enum {
|
|
// Grid and world dimension
|
|
dim = GridView::dimension,
|
|
dimWorld = GridView::dimensionworld,
|
|
numPhases = GET_PROP_VALUE(TypeTag, NumPhases),
|
|
gasPhaseIdx = FluidSystem::gasPhaseIdx,
|
|
liquidPhaseIdx = FluidSystem::liquidPhaseIdx,
|
|
H2OIdx = FluidSystem::H2OIdx,
|
|
N2Idx = FluidSystem::N2Idx
|
|
};
|
|
|
|
typedef Dune::FieldVector<typename GridView::ctype, dimWorld> GlobalPosition;
|
|
typedef Dune::FieldVector<Scalar, numPhases> PhaseVector;
|
|
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
|
|
|
|
public:
|
|
/*!
|
|
* \copydoc Doxygen::defaultProblemConstructor
|
|
*/
|
|
ObstacleProblem(Simulator &simulator)
|
|
: ParentType(simulator)
|
|
{ }
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::finishInit
|
|
*/
|
|
void finishInit()
|
|
{
|
|
ParentType::finishInit();
|
|
|
|
eps_ = 1e-6;
|
|
temperature_ = 273.15 + 25; // -> 25°C
|
|
|
|
// initialize the tables of the fluid system
|
|
Scalar Tmin = temperature_ - 1.0;
|
|
Scalar Tmax = temperature_ + 1.0;
|
|
int nT = 3;
|
|
|
|
Scalar pmin = 1.0e5 * 0.75;
|
|
Scalar pmax = 2.0e5 * 1.25;
|
|
int np = 1000;
|
|
|
|
FluidSystem::init(Tmin, Tmax, nT, pmin, pmax, np);
|
|
|
|
// intrinsic permeabilities
|
|
coarseK_ = this->toDimMatrix_(1e-12);
|
|
fineK_ = this->toDimMatrix_(1e-15);
|
|
|
|
// the porosity
|
|
finePorosity_ = 0.3;
|
|
coarsePorosity_ = 0.3;
|
|
|
|
// residual saturations
|
|
fineMaterialParams_.setResidualSaturation(liquidPhaseIdx, 0.0);
|
|
fineMaterialParams_.setResidualSaturation(gasPhaseIdx, 0.0);
|
|
coarseMaterialParams_.setResidualSaturation(liquidPhaseIdx, 0.0);
|
|
coarseMaterialParams_.setResidualSaturation(gasPhaseIdx, 0.0);
|
|
|
|
// parameters for the linear law, i.e. minimum and maximum
|
|
// pressures
|
|
fineMaterialParams_.setPcMinSat(liquidPhaseIdx, 0.0);
|
|
fineMaterialParams_.setPcMaxSat(liquidPhaseIdx, 0.0);
|
|
coarseMaterialParams_.setPcMinSat(liquidPhaseIdx, 0.0);
|
|
coarseMaterialParams_.setPcMaxSat(liquidPhaseIdx, 0.0);
|
|
|
|
/*
|
|
// entry pressures for Brooks-Corey
|
|
fineMaterialParams_.setEntryPressure(5e3);
|
|
coarseMaterialParams_.setEntryPressure(1e3);
|
|
|
|
// Brooks-Corey shape parameters
|
|
fineMaterialParams_.setLambda(2);
|
|
coarseMaterialParams_.setLambda(2);
|
|
*/
|
|
|
|
fineMaterialParams_.finalize();
|
|
coarseMaterialParams_.finalize();
|
|
|
|
// parameters for the somerton law of heat conduction
|
|
computeHeatCondParams_(fineHeatCondParams_, finePorosity_);
|
|
computeHeatCondParams_(coarseHeatCondParams_, coarsePorosity_);
|
|
|
|
initFluidStates_();
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::endTimeStep
|
|
*/
|
|
void endTimeStep()
|
|
{
|
|
#ifndef NDEBUG
|
|
this->model().checkConservativeness();
|
|
|
|
// Calculate storage terms of the individual phases
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
PrimaryVariables phaseStorage;
|
|
this->model().globalPhaseStorage(phaseStorage, phaseIdx);
|
|
|
|
if (this->gridView().comm().rank() == 0) {
|
|
std::cout << "Storage in " << FluidSystem::phaseName(phaseIdx)
|
|
<< "Phase: [" << phaseStorage << "]"
|
|
<< "\n" << std::flush;
|
|
}
|
|
}
|
|
|
|
// Calculate total storage terms
|
|
EqVector storage;
|
|
this->model().globalStorage(storage);
|
|
|
|
// Write mass balance information for rank 0
|
|
if (this->gridView().comm().rank() == 0) {
|
|
std::cout << "Storage total: [" << storage << "]"
|
|
<< "\n" << std::flush;
|
|
}
|
|
#endif // NDEBUG
|
|
}
|
|
|
|
/*!
|
|
* \name Problem parameters
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::name
|
|
*/
|
|
std::string name() const
|
|
{
|
|
std::ostringstream oss;
|
|
oss << "obstacle"
|
|
<< "_" << Model::name();
|
|
return oss.str();
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::temperature
|
|
*
|
|
* This problem simply assumes a constant temperature.
|
|
*/
|
|
template <class Context>
|
|
Scalar temperature(const Context &context, unsigned spaceIdx, unsigned timeIdx) const
|
|
{ return temperature_; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
|
|
*/
|
|
template <class Context>
|
|
const DimMatrix &intrinsicPermeability(const Context &context, unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
if (isFineMaterial_(context.pos(spaceIdx, timeIdx)))
|
|
return fineK_;
|
|
return coarseK_;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::porosity
|
|
*/
|
|
template <class Context>
|
|
Scalar porosity(const Context &context, unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
|
|
if (isFineMaterial_(pos))
|
|
return finePorosity_;
|
|
else
|
|
return coarsePorosity_;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
|
|
*/
|
|
template <class Context>
|
|
const MaterialLawParams &materialLawParams(const Context &context,
|
|
unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
|
|
if (isFineMaterial_(pos))
|
|
return fineMaterialParams_;
|
|
else
|
|
return coarseMaterialParams_;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::heatCapacitySolid
|
|
*
|
|
* For this problem, we assume that the solid phase of the porous
|
|
* medium is granite.
|
|
*/
|
|
template <class Context>
|
|
Scalar heatCapacitySolid(const Context &context, unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
return 790 // specific heat capacity of granite [J / (kg K)]
|
|
* 2700; // density of granite [kg/m^3]
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::heatConductionParams
|
|
*/
|
|
template <class Context>
|
|
const HeatConductionLawParams &
|
|
heatConductionParams(const Context &context, unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
|
|
if (isFineMaterial_(pos))
|
|
return fineHeatCondParams_;
|
|
return coarseHeatCondParams_;
|
|
}
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Boundary conditions
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::boundary
|
|
*/
|
|
template <class Context>
|
|
void boundary(BoundaryRateVector &values, const Context &context,
|
|
unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
const auto &pos = context.pos(spaceIdx, timeIdx);
|
|
|
|
if (onInlet_(pos))
|
|
values.setFreeFlow(context, spaceIdx, timeIdx, inletFluidState_);
|
|
else if (onOutlet_(pos))
|
|
values.setFreeFlow(context, spaceIdx, timeIdx, outletFluidState_);
|
|
else
|
|
values.setNoFlow();
|
|
}
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Volumetric terms
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::initial
|
|
*/
|
|
template <class Context>
|
|
void initial(PrimaryVariables &values, const Context &context, unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
const auto &matParams = materialLawParams(context, spaceIdx, timeIdx);
|
|
values.assignMassConservative(outletFluidState_, matParams);
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::source
|
|
*
|
|
* For this problem, the source term of all components is 0
|
|
* everywhere.
|
|
*/
|
|
template <class Context>
|
|
void source(RateVector &rate, const Context &context, unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{ rate = 0.0; }
|
|
|
|
//! \}
|
|
|
|
private:
|
|
/*!
|
|
* \brief Returns whether a given global position is in the
|
|
* fine-permeability region or not.
|
|
*/
|
|
bool isFineMaterial_(const GlobalPosition &pos) const
|
|
{ return 10 <= pos[0] && pos[0] <= 20 && 0 <= pos[1] && pos[1] <= 35; }
|
|
|
|
bool onInlet_(const GlobalPosition &globalPos) const
|
|
{
|
|
Scalar x = globalPos[0];
|
|
Scalar y = globalPos[1];
|
|
return x >= 60 - eps_ && y <= 10;
|
|
}
|
|
|
|
bool onOutlet_(const GlobalPosition &globalPos) const
|
|
{
|
|
Scalar x = globalPos[0];
|
|
Scalar y = globalPos[1];
|
|
return x < eps_ && y <= 10;
|
|
}
|
|
|
|
void initFluidStates_()
|
|
{
|
|
initFluidState_(inletFluidState_, coarseMaterialParams_,
|
|
/*isInlet=*/true);
|
|
initFluidState_(outletFluidState_, coarseMaterialParams_,
|
|
/*isInlet=*/false);
|
|
}
|
|
|
|
template <class FluidState>
|
|
void initFluidState_(FluidState &fs, const MaterialLawParams &matParams,
|
|
bool isInlet)
|
|
{
|
|
unsigned refPhaseIdx;
|
|
unsigned otherPhaseIdx;
|
|
|
|
// set the fluid temperatures
|
|
fs.setTemperature(temperature_);
|
|
|
|
if (isInlet) {
|
|
// only liquid on inlet
|
|
refPhaseIdx = liquidPhaseIdx;
|
|
otherPhaseIdx = gasPhaseIdx;
|
|
|
|
// set liquid saturation
|
|
fs.setSaturation(liquidPhaseIdx, 1.0);
|
|
|
|
// set pressure of the liquid phase
|
|
fs.setPressure(liquidPhaseIdx, 2e5);
|
|
|
|
// set the liquid composition to pure water
|
|
fs.setMoleFraction(liquidPhaseIdx, N2Idx, 0.0);
|
|
fs.setMoleFraction(liquidPhaseIdx, H2OIdx, 1.0);
|
|
}
|
|
else {
|
|
// elsewhere, only gas
|
|
refPhaseIdx = gasPhaseIdx;
|
|
otherPhaseIdx = liquidPhaseIdx;
|
|
|
|
// set gas saturation
|
|
fs.setSaturation(gasPhaseIdx, 1.0);
|
|
|
|
// set pressure of the gas phase
|
|
fs.setPressure(gasPhaseIdx, 1e5);
|
|
|
|
// set the gas composition to 99% nitrogen and 1% steam
|
|
fs.setMoleFraction(gasPhaseIdx, N2Idx, 0.99);
|
|
fs.setMoleFraction(gasPhaseIdx, H2OIdx, 0.01);
|
|
}
|
|
|
|
// set the other saturation
|
|
fs.setSaturation(otherPhaseIdx, 1.0 - fs.saturation(refPhaseIdx));
|
|
|
|
// calulate the capillary pressure
|
|
PhaseVector pC;
|
|
MaterialLaw::capillaryPressures(pC, matParams, fs);
|
|
fs.setPressure(otherPhaseIdx, fs.pressure(refPhaseIdx)
|
|
+ (pC[otherPhaseIdx] - pC[refPhaseIdx]));
|
|
|
|
// make the fluid state consistent with local thermodynamic
|
|
// equilibrium
|
|
typedef Opm::ComputeFromReferencePhase<Scalar, FluidSystem>
|
|
ComputeFromReferencePhase;
|
|
|
|
typename FluidSystem::ParameterCache paramCache;
|
|
ComputeFromReferencePhase::solve(fs, paramCache, refPhaseIdx,
|
|
/*setViscosity=*/false,
|
|
/*setEnthalpy=*/false);
|
|
}
|
|
|
|
void computeHeatCondParams_(HeatConductionLawParams ¶ms, Scalar poro)
|
|
{
|
|
Scalar lambdaWater = 0.6;
|
|
Scalar lambdaGranite = 2.8;
|
|
|
|
Scalar lambdaWet = std::pow(lambdaGranite, (1 - poro))
|
|
* std::pow(lambdaWater, poro);
|
|
Scalar lambdaDry = std::pow(lambdaGranite, (1 - poro));
|
|
|
|
params.setFullySaturatedLambda(gasPhaseIdx, lambdaDry);
|
|
params.setFullySaturatedLambda(liquidPhaseIdx, lambdaWet);
|
|
params.setVacuumLambda(lambdaDry);
|
|
}
|
|
|
|
DimMatrix coarseK_;
|
|
DimMatrix fineK_;
|
|
|
|
Scalar coarsePorosity_;
|
|
Scalar finePorosity_;
|
|
|
|
MaterialLawParams fineMaterialParams_;
|
|
MaterialLawParams coarseMaterialParams_;
|
|
|
|
HeatConductionLawParams fineHeatCondParams_;
|
|
HeatConductionLawParams coarseHeatCondParams_;
|
|
|
|
Opm::CompositionalFluidState<Scalar, FluidSystem> inletFluidState_;
|
|
Opm::CompositionalFluidState<Scalar, FluidSystem> outletFluidState_;
|
|
|
|
Scalar temperature_;
|
|
Scalar eps_;
|
|
};
|
|
} // namespace Ewoms
|
|
|
|
#endif
|