opm-simulators/opm/autodiff/RateConverter.hpp
Tor Harald Sandve 054361d537 Make it possible to combine solvent and RESV
Compute the conversion factor for solvent using the RateConverter.hpp
2017-11-22 15:21:21 +01:00

774 lines
28 KiB
C++

/*
Copyright 2014, 2015 SINTEF ICT, Applied Mathematics.
Copyright 2014, 2015 Statoil ASA.
Copyright 2017, IRIS
This file is part of the Open Porous Media Project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_RATECONVERTER_HPP_HEADER_INCLUDED
#define OPM_RATECONVERTER_HPP_HEADER_INCLUDED
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/core/simulator/BlackoilState.hpp>
#include <opm/core/utility/RegionMapping.hpp>
#include <opm/core/linalg/ParallelIstlInformation.hpp>
#include <dune/grid/common/gridenums.hh>
#include <algorithm>
#include <cmath>
#include <memory>
#include <stdexcept>
#include <type_traits>
#include <unordered_map>
#include <utility>
#include <vector>
/**
* \file
* Facility for converting component rates at surface conditions to
* phase (voidage) rates at reservoir conditions.
*
* This uses the average hydrocarbon pressure to define fluid
* properties. The facility is intended to support Reservoir Voidage
* rates only ('RESV').
*/
namespace Opm {
namespace RateConverter {
/**
* Convenience tools for implementing the rate conversion
* facility.
*/
namespace Details {
namespace Select {
template <class RegionID, bool>
struct RegionIDParameter
{
using type =
typename std::remove_reference<RegionID>::type &;
};
template <class RegionID>
struct RegionIDParameter<RegionID, true>
{
using type = RegionID;
};
} // Select
/**
* \brief Computes the temperature, pressure, and counter increment.
*
* In a parallel run only cells owned contribute to the cell average.
* \tparam is_parallel Whether this is a parallel run.
*/
template<bool is_parallel>
struct AverageIncrementCalculator
{
/**
* \brief Computes the temperature, pressure, and counter increment.
* \param pressure The pressure.
* \param temperature The temperature.
* \param rs The rs.
* \param rv The rv.
* \param cell The current cell index.
* \param ownership A vector indicating whether a cell is owned
* by this process (value 1), or not (value 0).
* \param cell The cell index.
*/
std::tuple<double, double, double, double, int>
operator()(const std::vector<double>& pressure,
const std::vector<double>& temperature,
const std::vector<double>& rs,
const std::vector<double>& rv,
const std::vector<double>& ownership,
std::size_t cell){
if ( ownership[cell] )
{
return std::make_tuple(pressure[cell],
temperature[cell],
rs[cell],
rv[cell],
1);
}
else
{
return std::make_tuple(0, 0, 0, 0, 0);
}
}
};
template<>
struct AverageIncrementCalculator<false>
{
std::tuple<double, double, double, double, int>
operator()(const std::vector<double>& pressure,
const std::vector<double>& temperature,
const std::vector<double>& rs,
const std::vector<double>& rv,
const std::vector<double>&,
std::size_t cell){
return std::make_tuple(pressure[cell],
temperature[cell],
rs[cell],
rv[cell],
1);
}
};
/**
* Provide mapping from Region IDs to user-specified collection
* of per-region attributes.
*
* \tparam RegionId Region identifier type. Must be hashable by
* \code std::hash<> \endcode. Typically a built-in integer
* type--e.g., \c int.
*
* \tparam Attributes User-defined type that represents
* collection of attributes that have meaning in a per-region
* aggregate sense. Must be copy-constructible.
*/
template <typename RegionId, class Attributes>
class RegionAttributes
{
public:
/**
* Expose \c RegionId as a vocabulary type for use in query
* methods.
*/
using RegionID =
typename Select::RegionIDParameter
<RegionId, std::is_integral<RegionId>::value>::type;
/**
* Constructor.
*
* \tparam RMap Class type that implements the RegionMapping
* protocol. Typically an instantiation of \code
* Opm::RegionMapping<> \endcode.
*
* \param[in] rmap Specific region mapping that provides
* reverse lookup from regions to cells.
*
* \param[in] attr Pre-constructed initialiser for \c
* Attributes.
*/
template <class RMap>
RegionAttributes(const RMap& rmap,
const Attributes& attr)
{
using VT = typename AttributeMap::value_type;
for (const auto& r : rmap.activeRegions()) {
auto v = std::unique_ptr<Value>(new Value(attr));
const auto stat = attr_.insert(VT(r, std::move(v)));
if (stat.second) {
// New value inserted.
const auto& cells = rmap.cells(r);
assert (! cells.empty());
// Region's representative cell.
stat.first->second->cell_ = cells[0];
}
}
}
/**
* Retrieve representative cell in region.
*
* \param[in] reg Specific region.
*
* \return Representative cell in region \p reg.
*/
int cell(const RegionID reg) const
{
return this->find(reg).cell_;
}
/**
* Request read-only access to region's attributes.
*
* \param[in] reg Specific region.
*
* \return Read-only access to region \p reg's per-region
* attributes.
*/
const Attributes& attributes(const RegionID reg) const
{
return this->find(reg).attr_;
}
/**
* Request modifiable access to region's attributes.
*
* \param[in] reg Specific region.
*
* \return Read-write access to region \p reg's per-region
* attributes.
*/
Attributes& attributes(const RegionID reg)
{
return this->find(reg).attr_;
}
private:
/**
* Aggregate per-region attributes along with region's
* representative cell.
*/
struct Value {
Value(const Attributes& attr)
: attr_(attr)
, cell_(-1)
{}
Attributes attr_;
int cell_;
};
using ID =
typename std::remove_reference<RegionId>::type;
using AttributeMap =
std::unordered_map<ID, std::unique_ptr<Value>>;
AttributeMap attr_;
/**
* Read-only access to region's properties.
*/
const Value& find(const RegionID reg) const
{
const auto& i = attr_.find(reg);
if (i == attr_.end()) {
throw std::invalid_argument("Unknown region ID");
}
return *i->second;
}
/**
* Read-write access to region's properties.
*/
Value& find(const RegionID reg)
{
const auto& i = attr_.find(reg);
if (i == attr_.end()) {
throw std::invalid_argument("Unknown region ID");
}
return *i->second;
}
};
/**
* Convenience functions for querying presence/absence of
* active phases.
*/
namespace PhaseUsed {
/**
* Active water predicate.
*
* \param[in] pu Active phase object.
*
* \return Whether or not water is an active phase.
*/
inline bool
water(const PhaseUsage& pu)
{
return pu.phase_used[ BlackoilPhases::Aqua ] != 0;
}
/**
* Active oil predicate.
*
* \param[in] pu Active phase object.
*
* \return Whether or not oil is an active phase.
*/
inline bool
oil(const PhaseUsage& pu)
{
return pu.phase_used[ BlackoilPhases::Liquid ] != 0;
}
/**
* Active gas predicate.
*
* \param[in] pu Active phase object.
*
* \return Whether or not gas is an active phase.
*/
inline bool
gas(const PhaseUsage& pu)
{
return pu.phase_used[ BlackoilPhases::Vapour ] != 0;
}
} // namespace PhaseUsed
/**
* Convenience functions for querying numerical IDs
* ("positions") of active phases.
*/
namespace PhasePos {
/**
* Numerical ID of active water phase.
*
* \param[in] pu Active phase object.
*
* \return Non-negative index/position of water if
* active, -1 if not.
*/
inline int
water(const PhaseUsage& pu)
{
int p = -1;
if (PhaseUsed::water(pu)) {
p = pu.phase_pos[ BlackoilPhases::Aqua ];
}
return p;
}
/**
* Numerical ID of active oil phase.
*
* \param[in] pu Active phase object.
*
* \return Non-negative index/position of oil if
* active, -1 if not.
*/
inline int
oil(const PhaseUsage& pu)
{
int p = -1;
if (PhaseUsed::oil(pu)) {
p = pu.phase_pos[ BlackoilPhases::Liquid ];
}
return p;
}
/**
* Numerical ID of active gas phase.
*
* \param[in] pu Active phase object.
*
* \return Non-negative index/position of gas if
* active, -1 if not.
*/
inline int
gas(const PhaseUsage& pu)
{
int p = -1;
if (PhaseUsed::gas(pu)) {
p = pu.phase_pos[ BlackoilPhases::Vapour ];
}
return p;
}
} // namespace PhasePos
} // namespace Details
/**
* Convert component rates at surface conditions to phase
* (voidage) rates at reservoir conditions.
*
* The conversion uses fluid properties evaluated at average
* hydrocarbon pressure in regions or field.
*
* \tparam FluidSystem Fluid system class. Expected to be a BlackOilFluidSystem
*
* \tparam Region Type of a forward region mapping. Expected
* to provide indexed access through \code operator[]()
* \endcode as well as inner types \c value_type, \c
* size_type, and \c const_iterator. Typically \code
* std::vector<int> \endcode.
*/
template <class FluidSystem, class Region>
class SurfaceToReservoirVoidage {
public:
/**
* Constructor.
*
* \param[in] region Forward region mapping. Often
* corresponds to the "FIPNUM" mapping of an ECLIPSE input
* deck.
*/
SurfaceToReservoirVoidage(const PhaseUsage& phaseUsage,
const Region& region)
: phaseUsage_(phaseUsage)
, rmap_ (region)
, attr_ (rmap_, Attributes())
{
}
/**
* Compute average hydrocarbon pressure and maximum
* dissolution and evaporation at average hydrocarbon
* pressure in all regions in field.
*
* Fluid properties are evaluated at average hydrocarbon
* pressure for purpose of conversion from surface rate to
* reservoir voidage rate.
*
* \param[in] state Dynamic reservoir state.
* \param[in] any The information and communication utilities
* about/of the parallelization. in any parallel
* it wraps a ParallelISTLInformation. Parameter
* is optional.
*/
void
defineState(const BlackoilState& state,
const boost::any& info = boost::any())
{
#if HAVE_MPI
if( info.type() == typeid(ParallelISTLInformation) )
{
const auto& ownership =
boost::any_cast<const ParallelISTLInformation&>(info)
.updateOwnerMask(state.pressure());
calcAverages<true>(state, info, ownership);
}
else
#endif
{
std::vector<double> dummyOwnership; // not actually used
calcAverages<false>(state, info, dummyOwnership);
}
}
/**
* Compute pore volume averaged hydrocarbon state pressure, rs and rv.
*
* Fluid properties are evaluated at average hydrocarbon
* state for purpose of conversion from surface rate to
* reservoir voidage rate.
*
*/
template <typename ElementContext, class EbosSimulator>
void defineState(const EbosSimulator& simulator)
{
// create map from cell to region
// and set all attributes to zero
const auto& grid = simulator.gridManager().grid();
const unsigned numCells = grid.size(/*codim=*/0);
std::vector<int> cell2region(numCells, -1);
for (const auto& reg : rmap_.activeRegions()) {
for (const auto& cell : rmap_.cells(reg)) {
cell2region[cell] = reg;
}
auto& ra = attr_.attributes(reg);
ra.pressure = 0.0;
ra.temperature = 0.0;
ra.rs = 0.0;
ra.rv = 0.0;
ra.pv = 0.0;
}
ElementContext elemCtx( simulator );
const auto& gridView = simulator.gridView();
const auto& comm = gridView.comm();
const auto& elemEndIt = gridView.template end</*codim=*/0>();
for (auto elemIt = gridView.template begin</*codim=*/0>();
elemIt != elemEndIt;
++elemIt)
{
const auto& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity)
continue;
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const unsigned cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
// use pore volume weighted averages.
const double pv_cell =
simulator.model().dofTotalVolume(cellIdx)
* intQuants.porosity().value();
// only count oil and gas filled parts of the domain
double hydrocarbon = 1.0;
const auto& pu = phaseUsage_;
if (Details::PhaseUsed::water(pu)) {
hydrocarbon -= fs.saturation(FluidSystem::waterPhaseIdx).value();
}
int reg = cell2region[cellIdx];
assert(reg >= 0);
auto& ra = attr_.attributes(reg);
auto& p = ra.pressure;
auto& T = ra.temperature;
auto& rs = ra.rs;
auto& rv = ra.rv;
auto& pv = ra.pv;
// sum p, rs, rv, and T.
double hydrocarbonPV = pv_cell*hydrocarbon;
pv += hydrocarbonPV;
p += fs.pressure(FluidSystem::oilPhaseIdx).value()*hydrocarbonPV;
rs += fs.Rs().value()*hydrocarbonPV;
rv += fs.Rv().value()*hydrocarbonPV;
T += fs.temperature(FluidSystem::oilPhaseIdx).value()*hydrocarbonPV;
}
for (const auto& reg : rmap_.activeRegions()) {
auto& ra = attr_.attributes(reg);
auto& p = ra.pressure;
auto& T = ra.temperature;
auto& rs = ra.rs;
auto& rv = ra.rv;
auto& pv = ra.pv;
// communicate sums
p = comm.sum(p);
T = comm.sum(T);
rs = comm.sum(rs);
rv = comm.sum(rv);
pv = comm.sum(pv);
// compute average
p /= pv;
T /= pv;
rs /= pv;
rv /= pv;
}
}
/**
* Region identifier.
*
* Integral type.
*/
typedef typename RegionMapping<Region>::RegionId RegionId;
/**
* Compute coefficients for surface-to-reservoir voidage
* conversion.
*
* \tparam Input Type representing contiguous collection
* of component rates at surface conditions. Must support
* direct indexing through \code operator[]()\endcode.
*
* \tparam Coeff Type representing contiguous collection
* of surface-to-reservoir conversion coefficients. Must
* support direct indexing through \code operator[]()
* \endcode.
*
*
* \param[in] r Fluid-in-place region of the well
* \param[in] pvtRegionIdx PVT region of the well
*
*
* \param[out] coeff Surface-to-reservoir conversion
* coefficients for all active phases.
*/
template <class Coeff>
void
calcCoeff(const RegionId r, const int pvtRegionIdx, Coeff& coeff) const
{
const auto& pu = phaseUsage_;
const auto& ra = attr_.attributes(r);
const double p = ra.pressure;
const double T = ra.temperature;
const int iw = Details::PhasePos::water(pu);
const int io = Details::PhasePos::oil (pu);
const int ig = Details::PhasePos::gas (pu);
std::fill(& coeff[0], & coeff[0] + phaseUsage_.num_phases, 0.0);
if (Details::PhaseUsed::water(pu)) {
// q[w]_r = q[w]_s / bw
const double bw = FluidSystem::waterPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p);
coeff[iw] = 1.0 / bw;
}
// Determinant of 'R' matrix
const double detR = 1.0 - (ra.rs * ra.rv);
if (Details::PhaseUsed::oil(pu)) {
// q[o]_r = 1/(bo * (1 - rs*rv)) * (q[o]_s - rv*q[g]_s)
const double Rs = ra.rs;
const double bo = FluidSystem::oilPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rs);
const double den = bo * detR;
coeff[io] += 1.0 / den;
if (Details::PhaseUsed::gas(pu)) {
coeff[ig] -= ra.rv / den;
}
}
if (Details::PhaseUsed::gas(pu)) {
// q[g]_r = 1/(bg * (1 - rs*rv)) * (q[g]_s - rs*q[o]_s)
const double Rv = ra.rv;
const double bg = FluidSystem::gasPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rv);
const double den = bg * detR;
coeff[ig] += 1.0 / den;
if (Details::PhaseUsed::oil(pu)) {
coeff[io] -= ra.rs / den;
}
}
}
/**
* Compute coefficients for surface-to-reservoir voidage
* conversion for solvent.
*
*
* \param[in] r Fluid-in-place region of the well
* \param[in] pvtRegionIdx PVT region of the well
*
*
* \param[out] double Surface-to-reservoir conversion
* coefficients for solvent.
*/
template <class SolventModule>
void
calcCoeffSolvent(const RegionId r, const int pvtRegionIdx, double& coeff) const
{
const auto& ra = attr_.attributes(r);
const double p = ra.pressure;
const double T = ra.temperature;
const auto& solventPvt = SolventModule::solventPvt();
const double bs = solventPvt.inverseFormationVolumeFactor(pvtRegionIdx, T, p);
coeff = 1.0 / bs;
}
private:
/**
* Fluid property object.
*/
const PhaseUsage phaseUsage_;
/**
* "Fluid-in-place" region mapping (forward and reverse).
*/
const RegionMapping<Region> rmap_;
/**
* Derived property attributes for each active region.
*/
struct Attributes {
Attributes()
: pressure (0.0)
, temperature(0.0)
, rs(0.0)
, rv(0.0)
, pv(0.0)
{}
double pressure;
double temperature;
double rs;
double rv;
double pv;
};
Details::RegionAttributes<RegionId, Attributes> attr_;
/**
* Compute average hydrocarbon pressure and temperatures in all
* regions.
*
* \param[in] state Dynamic reservoir state.
* \param[in] info The information and communication utilities
* about/of the parallelization.
* \param[in] ownership In a parallel run this is vector containing
* 1 for every owned unknown, zero otherwise.
* Not used in a sequential run.
* \tparam is_parallel True if the run is parallel. In this case
* info has to contain a ParallelISTLInformation
* object.
*/
template<bool is_parallel>
void
calcAverages(const BlackoilState& state, const boost::any& info,
const std::vector<double>& ownerShip)
{
const auto& press = state.pressure();
const auto& temp = state.temperature();
const auto& Rv = state.rv();
const auto& Rs = state.gasoilratio();
for (const auto& reg : rmap_.activeRegions()) {
auto& ra = attr_.attributes(reg);
auto& p = ra.pressure;
auto& T = ra.temperature;
auto& rs = ra.rs;
auto& rv = ra.rv;
std::size_t n = 0;
p = T = 0.0;
for (const auto& cell : rmap_.cells(reg)) {
auto increment = Details::
AverageIncrementCalculator<is_parallel>()(press, temp, Rs, Rv,
ownerShip,
cell);
p += std::get<0>(increment);
T += std::get<1>(increment);
rs += std::get<2>(increment);
rv += std::get<3>(increment);
n += std::get<4>(increment);
}
std::size_t global_n = n;
double global_p = p;
double global_T = T;
double global_rs = rs;
double global_rv = rv;
#if HAVE_MPI
if ( is_parallel )
{
const auto& real_info = boost::any_cast<const ParallelISTLInformation&>(info);
global_n = real_info.communicator().sum(n);
global_p = real_info.communicator().sum(p);
global_rs = real_info.communicator().sum(rs);
global_rv = real_info.communicator().sum(rv);
global_T = real_info.communicator().sum(T);
}
#endif
p = global_p / global_n;
rs = global_rs / global_n;
rv = global_rv / global_n;
T = global_T / global_n;
}
}
};
} // namespace RateConverter
} // namespace Opm
#endif /* OPM_RATECONVERTER_HPP_HEADER_INCLUDED */