opm-simulators/opm/core/wells/WellCollection.cpp
2019-09-03 22:18:34 +02:00

503 lines
22 KiB
C++

/*
Copyright 2011 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <opm/core/wells/WellCollection.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Well/Well2.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Group/Group2.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/SummaryState.hpp>
#include <boost/lexical_cast.hpp>
#include <memory>
namespace Opm
{
void WellCollection::addField(const Group2& fieldGroup, const SummaryState& summaryState, const PhaseUsage& phaseUsage) {
WellsGroupInterface* fieldNode = findNode(fieldGroup.name());
if (fieldNode) {
OPM_THROW(std::runtime_error, "Trying to add FIELD node, but this already exists. Can only have one FIELD node.");
}
roots_.push_back(createGroupWellsGroup(fieldGroup, summaryState, phaseUsage));
}
void WellCollection::addGroup(const Group2& groupChild, std::string parent_name,
const SummaryState& summaryState, const PhaseUsage& phaseUsage) {
WellsGroupInterface* parent = findNode(parent_name);
if (!parent) {
OPM_THROW(std::runtime_error, "Trying to add child group to group named " << parent_name << ", but this does not exist in the WellCollection.");
}
if (findNode(groupChild.name())) {
OPM_THROW(std::runtime_error, "Trying to add child group named " << groupChild.name() << ", but this group is already in the WellCollection.");
}
if (groupChild.isProductionGroup() || groupChild.isInjectionGroup()) {
group_control_active_ = true;
}
std::shared_ptr<WellsGroupInterface> child = createGroupWellsGroup(groupChild, summaryState, phaseUsage);
if (child->injSpec().control_mode_ == InjectionSpecification::VREP) {
having_vrep_groups_ = true;
}
WellsGroup* parent_as_group = static_cast<WellsGroup*> (parent);
if (!parent_as_group) {
OPM_THROW(std::runtime_error, "Trying to add child group to group named " << parent->name() << ", but it's not a group.");
}
parent_as_group->addChild(child);
child->setParent(parent);
}
void WellCollection::addWell(const Well2& wellChild, const SummaryState& summaryState, const PhaseUsage& phaseUsage) {
if (wellChild.getStatus() == Well2::Status::SHUT) {
//SHUT wells are not added to the well collection
return;
}
WellsGroupInterface* parent = findNode(wellChild.groupName());
if (!parent) {
OPM_THROW(std::runtime_error, "Trying to add well " << wellChild.name() << " to group named " << wellChild.groupName() << ", but this group does not exist in the WellCollection.");
}
std::shared_ptr<WellsGroupInterface> child = createWellWellsGroup(wellChild, summaryState, phaseUsage);
WellsGroup* parent_as_group = static_cast<WellsGroup*> (parent);
if (!parent_as_group) {
OPM_THROW(std::runtime_error, "Trying to add well to group named " << wellChild.groupName() << ", but it's not a group.");
}
parent_as_group->addChild(child);
leaf_nodes_.push_back(static_cast<WellNode*>(child.get()));
child->setParent(parent);
}
const std::vector<WellNode*>& WellCollection::getLeafNodes() const {
return leaf_nodes_;
}
WellsGroupInterface* WellCollection::findNode(const std::string& name)
{
for (size_t i = 0; i < roots_.size(); i++) {
WellsGroupInterface* result = roots_[i]->findGroup(name);
if (result) {
return result;
}
}
return NULL;
}
const WellsGroupInterface* WellCollection::findNode(const std::string& name) const
{
for (size_t i = 0; i < roots_.size(); i++) {
WellsGroupInterface* result = roots_[i]->findGroup(name);
if (result) {
return result;
}
}
return NULL;
}
WellNode& WellCollection::findWellNode(const std::string& name) const
{
auto well_node = std::find_if(leaf_nodes_.begin(), leaf_nodes_.end(),
[&] ( WellNode* w) {
return w->name() == name;
});
// Does not find the well
if (well_node == leaf_nodes_.end()) {
OPM_THROW(std::runtime_error, "Could not find well " << name << " in the well collection!\n");
}
return *(*well_node);
}
/// Adds the child to the collection
/// and appends it to parent's children.
/// \param[in] child the child node
/// \param[in] parent name of parent node
void WellCollection::addChild(std::shared_ptr<WellsGroupInterface>& child_node,
const std::string& parent_name)
{
WellsGroupInterface* parent = findNode(parent_name);
if (parent == NULL) {
OPM_THROW(std::runtime_error, "Parent with name = " << parent_name << " not found.");
}
assert(!parent->isLeafNode());
static_cast<WellsGroup*>(parent)->addChild(child_node);
if (child_node->isLeafNode()) {
leaf_nodes_.push_back(static_cast<WellNode*>(child_node.get()));
}
}
/// Adds the node to the collection (as a root node)
void WellCollection::addChild(std::shared_ptr<WellsGroupInterface>& child_node)
{
roots_.push_back(child_node);
if (child_node->isLeafNode()) {
leaf_nodes_.push_back(static_cast<WellNode*> (child_node.get()));
}
}
bool WellCollection::conditionsMet(const std::vector<double>& well_bhp,
const std::vector<double>& well_reservoirrates_phase,
const std::vector<double>& well_surfacerates_phase)
{
for (size_t i = 0; i < roots_.size(); i++) {
WellPhasesSummed phases;
if (!roots_[i]->conditionsMet(well_bhp,
well_reservoirrates_phase,
well_surfacerates_phase,
phases)) {
return false;
}
}
return true;
}
void WellCollection::setWellsPointer(Wells* wells) {
for(size_t i = 0; i < leaf_nodes_.size(); i++) {
leaf_nodes_[i]->setWellsPointer(wells, i);
}
}
void WellCollection::applyGroupControls()
{
for (size_t i = 0; i < roots_.size(); ++i) {
roots_[i]->applyProdGroupControls();
roots_[i]->applyInjGroupControls();
}
group_control_applied_ = true;
}
/// Applies explicit reinjection controls. This must be called at each timestep to be correct.
/// \param[in] well_reservoirrates_phase
/// A vector containing reservoir rates by phase for each well.
/// Is assumed to be ordered the same way as the related Wells-struct,
/// with all phase rates of a single well adjacent in the array.
/// \param[in] well_surfacerates_phase
/// A vector containing surface rates by phase for each well.
/// Is assumed to be ordered the same way as the related Wells-struct,
/// with all phase rates of a single well adjacent in the array.
void WellCollection::applyExplicitReinjectionControls(const std::vector<double>& well_reservoirrates_phase,
const std::vector<double>& well_surfacerates_phase)
{
for (size_t i = 0; i < roots_.size(); ++i) {
roots_[i]->applyExplicitReinjectionControls(well_reservoirrates_phase, well_surfacerates_phase);
}
}
void WellCollection::applyVREPGroupControls(const std::vector<double>& well_voidage_rates,
const std::vector<double>& conversion_coeffs)
{
for (size_t i = 0; i < roots_.size(); ++i) {
roots_[i]->applyVREPGroupControls(well_voidage_rates, conversion_coeffs);
}
}
// TODO: later, it should be extended to update group targets
bool WellCollection::needUpdateWellTargets() const
{
return needUpdateInjectionTargets() || needUpdateProductionTargets();
}
bool WellCollection::needUpdateInjectionTargets() const
{
// TODO: it should based on individual group
// With current approach, it will potentially result in more update,
// thus more iterations, while it will not cause result wrong.
// If the group control and individual control is mixed, then it need to
// update the well targets
bool any_group_control_node = false;
bool any_individual_control_node = false;
for (size_t i = 0; i < leaf_nodes_.size(); ++i) {
if (leaf_nodes_[i]->isInjector()) {
if (leaf_nodes_[i]->individualControl()) {
any_individual_control_node = true;
} else {
any_group_control_node = true;
}
}
}
return (any_group_control_node && any_individual_control_node);
}
// These two functions should be made one
bool WellCollection::needUpdateProductionTargets() const
{
// TODO: it should based on individual group
// With current approach, it will potentially result in more update,
// thus more iterations, while it will not cause result wrong.
// If the group control and individual control is mixed, then it need to
// update the well targets
bool any_group_control_node = false;
bool any_individual_control_node = false;
for (size_t i = 0; i < leaf_nodes_.size(); ++i) {
if (leaf_nodes_[i]->isProducer()) {
if (leaf_nodes_[i]->individualControl()) {
any_individual_control_node = true;
} else {
any_group_control_node = true;
}
}
}
return (any_group_control_node && any_individual_control_node);
}
void WellCollection::updateWellTargets(const std::vector<double>& well_rates)
{
// TODO: if it gets converged, should we still update targets?
// set the target_updated to be false
for (WellNode* well_node : leaf_nodes_) {
well_node->setTargetUpdated(false);
}
// TODO: currently, we only handle the level of the well groups for the moment, i.e. the level just above wells
// We believe the relations between groups are similar to the relations between different wells inside the same group.
// While there will be somre more complication invloved for sure.
for (size_t i = 0; i < leaf_nodes_.size(); ++i) {
// find a node needs to update targets, then update targets for all the wellls inside the group.
if (!leaf_nodes_[i]->targetUpdated()) {
WellsGroupInterface* parent_node = leaf_nodes_[i]->getParent();
// update the target within this group.
if (leaf_nodes_[i]->isProducer()) {
if (parent_node->prodSpec().control_mode_ == ProductionSpecification::NONE) {
continue;
}
parent_node->updateWellProductionTargets(well_rates);
}
if (leaf_nodes_[i]->isInjector()) {
if (parent_node->injSpec().control_mode_ == InjectionSpecification::NONE) {
continue;
}
parent_node->updateWellInjectionTargets(well_rates);
}
}
}
}
bool WellCollection::havingVREPGroups() const
{
return having_vrep_groups_;
}
bool WellCollection::groupControlActive() const
{
return group_control_active_;
}
bool WellCollection::groupControlApplied() const
{
return group_control_applied_;
}
bool WellCollection::groupTargetConverged(const std::vector<double>& well_rates) const
{
// TODO: eventually, there should be only one root node
// TODO: we also need to check the injection target, while we have not done that.
for (const std::shared_ptr<WellsGroupInterface>& root_node : roots_) {
if ( !root_node->groupProdTargetConverged(well_rates) ) {
return false;
}
}
return true;
}
void WellCollection::
setGuideRatesWithPotentials(const Wells* wells,
const PhaseUsage& phase_usage,
const std::vector<double>& well_potentials) const
{
// TODO: assuming the order of well_potentials is the same with the order in wells struct
// TODO: it will overwrite the well potentials from other means. It should be changed after
// fixing the other part of the code. It makes the current flow only support guide rates based on
// well potentials.
const int np = wells->number_of_phases;
const int nw = wells->number_of_wells;
for (int w = 0; w < nw; ++w) {
const std::string well_name = wells->name[w];
WellNode& well_node = findWellNode(well_name);
const WellType well_type = wells->type[w];
// TODO: eventually the following standard will be wrong, it will belong to FIELD group
if (well_node.getParent() != nullptr) { // If it does not belong a group, will it belong to FIELD?
const WellsGroupInterface* group = well_node.getParent();
if (well_type == PRODUCER) {
// The guide rates is calculated based on the group control
// Currently only supporting WRAT, ORAT and GRAT.
ProductionSpecification::ControlMode control_mode = group->prodSpec().control_mode_;
if (control_mode == ProductionSpecification::FLD) {
if (group->getParent() != nullptr) {
// TODO: only handle one level FLD control
const WellsGroupInterface* higher_group = group->getParent();
control_mode = higher_group->prodSpec().control_mode_;
} else {
OPM_THROW(std::runtime_error, "Group " << group->name() << " is under FLD control while no higher level of group is specified.");
}
}
switch (control_mode) {
case ProductionSpecification::WRAT: {
if (!phase_usage.phase_used[BlackoilPhases::Aqua]) {
OPM_THROW(std::runtime_error, "Water phase not used, yet found water rate controlled well.");
}
const int water_index = phase_usage.phase_pos[BlackoilPhases::Aqua];
well_node.prodSpec().guide_rate_ = well_potentials[np * w + water_index];
well_node.prodSpec().guide_rate_type_ = ProductionSpecification::WATER;
break;
}
case ProductionSpecification::ORAT: {
if (!phase_usage.phase_used[BlackoilPhases::Liquid]) {
OPM_THROW(std::runtime_error, "Oil phase not used, yet found oil rate controlled well.");
}
const int oil_index = phase_usage.phase_pos[BlackoilPhases::Liquid];
well_node.prodSpec().guide_rate_ = well_potentials[np * w + oil_index];
well_node.prodSpec().guide_rate_type_ = ProductionSpecification::OIL;
break;
}
case ProductionSpecification::GRAT: {
if (!phase_usage.phase_used[BlackoilPhases::Vapour]) {
OPM_THROW(std::runtime_error, "Gas phase not used, yet found gas rate controlled well.");
}
const int gas_index = phase_usage.phase_pos[BlackoilPhases::Vapour];
well_node.prodSpec().guide_rate_ = well_potentials[np * w + gas_index];
well_node.prodSpec().guide_rate_type_ = ProductionSpecification::GAS;
break;
}
case ProductionSpecification::FLD: {
OPM_THROW(std::logic_error, "Not support more than one continous level of FLD control");
}
case ProductionSpecification::LRAT: {
double guide_rate = 0;
if (phase_usage.phase_used[BlackoilPhases::Liquid]) {
const int oil_index = phase_usage.phase_pos[BlackoilPhases::Liquid];
const double potential_oil = well_potentials[np * w + oil_index];
guide_rate += potential_oil;
}
if (phase_usage.phase_used[BlackoilPhases::Aqua]) {
const int water_index = phase_usage.phase_pos[BlackoilPhases::Aqua];
const double potential_water = well_potentials[np * w + water_index];
guide_rate += potential_water;
}
// not sure if no water and no oil, what will happen here, zero guide_rate?
well_node.prodSpec().guide_rate_ = guide_rate;
well_node.prodSpec().guide_rate_type_ = ProductionSpecification::LIQ;
break;
}
case ProductionSpecification::NONE: {
// Group control is not in use for this group.
break;
}
default:
OPM_THROW(std::logic_error, "Not supported control_mode for guide rate computed" <<
" from well potentials: " << ProductionSpecification::toString(group->prodSpec().control_mode_) );
}
} else if (well_type == INJECTOR) {
// The guide rates is calculated based on the group injector type
switch (group->injSpec().injector_type_) {
case InjectionSpecification::WATER: {
if (!phase_usage.phase_used[BlackoilPhases::Aqua]) {
OPM_THROW(std::runtime_error, "Water phase not used, yet found water injecting well.");
}
const int water_index = phase_usage.phase_pos[BlackoilPhases::Aqua];
well_node.injSpec().guide_rate_ = well_potentials[np * w + water_index];
// Guide rates applies to the phase that the well is injecting i.e water
well_node.injSpec().guide_rate_type_ = InjectionSpecification::RAT;
break;
}
case InjectionSpecification::OIL: {
if (!phase_usage.phase_used[BlackoilPhases::Liquid]) {
OPM_THROW(std::runtime_error, "Oil phase not used, yet found oil injecting well.");
}
const int oil_index = phase_usage.phase_pos[BlackoilPhases::Liquid];
well_node.injSpec().guide_rate_ = well_potentials[np * w + oil_index];
// Guide rates applies to the phase that the well is injecting i.e. oil
well_node.injSpec().guide_rate_type_ = InjectionSpecification::RAT;
break;
}
case InjectionSpecification::GAS: {
if (!phase_usage.phase_used[BlackoilPhases::Vapour]) {
OPM_THROW(std::runtime_error, "Gas phase not used, yet found gas injecting well.");
}
const int gas_index = phase_usage.phase_pos[BlackoilPhases::Vapour];
well_node.injSpec().guide_rate_ = well_potentials[np * w + gas_index];
// Guide rates applies to the phase that the well is injecting i.e gas
well_node.injSpec().guide_rate_type_ = InjectionSpecification::RAT;
break;
}
default:
OPM_THROW(std::logic_error, "Not supported injector type for guide rate computed" <<
" from well potentials: " << InjectionSpecification::toString(group->injSpec().injector_type_) );
}
} else { // neither injector nor producer
OPM_THROW(std::logic_error, "Expected well type to be either INJECTOR or PRODUCER for well " << well_node.name() );
}
} // end of if (well_node.getParent() != nullptr)
} // end of for (int w = 0; w < nw; ++w)
}
bool WellCollection::requireWellPotentials() const
{
for (const auto& well_node : leaf_nodes_) {
if (well_node->isGuideRateWellPotential()) {
return true;
}
}
return false;
}
}