opm-simulators/examples/tutorialspatialparameters_decoupled.hh
2012-07-12 21:23:12 +02:00

116 lines
4.6 KiB
C++

// $Id: test_2p_spatialparamsinjection.hh 3456 2010-04-09 12:11:51Z mwolff $
/*****************************************************************************
* Copyright (C) 2008-2009 by Markus Wolff *
* Institute of Hydraulic Engineering *
* University of Stuttgart, Germany *
* email: <givenname>.<name>@iws.uni-stuttgart.de *
* *
* This program is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
*****************************************************************************/
/*!
* \file
*
* \brief spatial parameters for the sequential tutorial
*/
#ifndef TUTORIALSPATIALPARAMETERS_DECOUPLED_HH
#define TUTORIALSPATIALPARAMETERS_DECOUPLED_HH
//#include <dumux/material/fluidmatrixinteractions/2p/linearmaterial.hh>
#include <dumux/material/fluidmatrixinteractions/2p/regularizedbrookscorey.hh>
#include <dumux/material/fluidmatrixinteractions/2p/efftoabslaw.hh>
namespace Dumux
{
//! Definition of the spatial parameters for the decoupled tutorial
template<class TypeTag>
class TutorialSpatialParametersDecoupled
{
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Grid)) Grid;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(GridView)) GridView;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
typedef typename Grid::ctype CoordScalar;
enum
{dim=Grid::dimension, dimWorld=Grid::dimensionworld, numEq=1};
typedef typename Grid::Traits::template Codim<0>::Entity Element;
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
typedef Dune::FieldVector<CoordScalar, dim> LocalPosition;
typedef Dune::FieldMatrix<Scalar,dim,dim> FieldMatrix;
// material law typedefs
typedef RegularizedBrooksCorey<Scalar> EffectiveMaterialLaw;
// typedef LinearMaterial<Scalar> EffectiveMaterialLaw;
public:
typedef EffToAbsLaw<EffectiveMaterialLaw> MaterialLaw;
typedef typename MaterialLaw::Params MaterialLawParams;
//! Update the spatial parameters with the flow solution after a timestep.
/*! Function left blank as there is nothing to do for the tutorial.
*/
void update (Scalar saturationW, const Element& element)
{ }
//! Intrinsic permeability tensor
/*! Apply the intrinsic permeability tensor \f$[m^2]\f$ to a
* pressure potential gradient.
*/
const FieldMatrix& intrinsicPermeability (const GlobalPosition& globalPos,
const Element& element) const
{
return K_;
}
//! Define the porosity \f$[-]\f$ of the spatial parameters
double porosity(const GlobalPosition& globalPos, const Element& element) const
{
return 0.2;
}
//! return the parameter object for the material law (i.e. Brooks-Corey)
//! which may vary with the spatial position
const MaterialLawParams& materialLawParams(const GlobalPosition& globalPos,
const Element &element) const
{
return materialLawParams_;
}
//! Constructor
TutorialSpatialParametersDecoupled(const GridView& gridView)
: K_(0)
{
for (int i = 0; i < dim; i++)
K_[i][i] = 1e-7;
// residual saturations
materialLawParams_.setSwr(0);
materialLawParams_.setSnr(0);
// parameters for the Brooks-Corey Law
// entry pressures
materialLawParams_.setPe(500);
// Brooks-Corey shape parameters
materialLawParams_.setLambda(2);
}
private:
MaterialLawParams materialLawParams_;
FieldMatrix K_;
};
} // end namespace
#endif