opm-simulators/opm/models/common/energymodule.hh
2024-08-01 13:03:16 +02:00

849 lines
29 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief Contains the classes required to consider energy as a
* conservation quantity in a multi-phase module.
*/
#ifndef EWOMS_ENERGY_MODULE_HH
#define EWOMS_ENERGY_MODULE_HH
#include <dune/common/fvector.hh>
#include <opm/material/common/Valgrind.hpp>
#include <opm/models/common/multiphasebaseproperties.hh>
#include <opm/models/common/quantitycallbacks.hh>
#include <opm/models/discretization/common/fvbaseproperties.hh>
#include <string>
namespace Opm {
/*!
* \ingroup Energy
* \brief Provides the auxiliary methods required for consideration of
* the energy equation.
*/
template <class TypeTag, bool enableEnergy>
class EnergyModule;
/*!
* \copydoc Opm::EnergyModule
*/
template <class TypeTag>
class EnergyModule<TypeTag, /*enableEnergy=*/false>
{
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using ExtensiveQuantities = GetPropType<TypeTag, Properties::ExtensiveQuantities>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using Model = GetPropType<TypeTag, Properties::Model>;
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
using EvalEqVector = Dune::FieldVector<Evaluation, numEq>;
public:
/*!
* \brief Register all run-time parameters for the energy module.
*/
static void registerParameters()
{}
/*!
* \brief Returns the name of a primary variable or an empty
* string if the specified primary variable index does not belong to
* the energy module.
*/
static std::string primaryVarName(unsigned)
{ return ""; }
/*!
* \brief Returns the name of an equation or an empty
* string if the specified equation index does not belong to
* the energy module.
*/
static std::string eqName(unsigned)
{ return ""; }
/*!
* \brief Returns the relative weight of a primary variable for
* calculating relative errors.
*/
static Scalar primaryVarWeight(const Model&,
unsigned,
unsigned)
{ return -1; }
/*!
* \brief Returns the relative weight of a equation of the residual.
*/
static Scalar eqWeight(const Model&,
unsigned,
unsigned)
{ return -1; }
/*!
* \brief Given a fluid state, set the temperature in the primary variables
*/
template <class FluidState>
static void setPriVarTemperatures(PrimaryVariables&,
const FluidState&)
{}
/*!
* \brief Given a fluid state, set the enthalpy rate which emerges
* from a volumetric rate.
*/
template <class RateVector, class FluidState>
static void setEnthalpyRate(RateVector&,
const FluidState&,
unsigned,
const Evaluation&)
{}
/*!
* \brief Add the rate of the enthalpy flux to a rate vector.
*/
static void setEnthalpyRate(RateVector&,
const Evaluation&)
{}
/*!
* \brief Add the rate of the enthalpy flux to a rate vector.
*/
static void addToEnthalpyRate(RateVector&,
const Evaluation&)
{}
/*!
* \brief Add the rate of the conductive energy flux to a rate vector.
*/
static Scalar thermalConductionRate(const ExtensiveQuantities&)
{ return 0.0; }
/*!
* \brief Add the energy storage term for a fluid phase to an equation
* vector
*/
template <class LhsEval>
static void addPhaseStorage(Dune::FieldVector<LhsEval, numEq>&,
const IntensiveQuantities&,
unsigned)
{}
/*!
* \brief Add the energy storage term for a fluid phase to an equation
* vector
*/
template <class LhsEval, class Scv>
static void addFracturePhaseStorage(Dune::FieldVector<LhsEval, numEq>&,
const IntensiveQuantities&,
const Scv&,
unsigned)
{}
/*!
* \brief Add the energy storage term for the fracture part a fluid phase to an
* equation vector
*/
template <class LhsEval>
static void addSolidEnergyStorage(Dune::FieldVector<LhsEval, numEq>&,
const IntensiveQuantities&)
{}
/*!
* \brief Evaluates the advective energy fluxes over a face of a
* subcontrol volume and adds the result in the flux vector.
*
* This method is called by compute flux (base class)
*/
template <class Context>
static void addAdvectiveFlux(RateVector&,
const Context&,
unsigned,
unsigned)
{}
/*!
* \brief Evaluates the advective energy fluxes over a fracture
* which should be attributed to a face of a subcontrol
* volume and adds the result in the flux vector.
*/
template <class Context>
static void handleFractureFlux(RateVector&,
const Context&,
unsigned,
unsigned)
{}
/*!
* \brief Adds the diffusive energy flux to the flux vector over the face of a
* sub-control volume.
*
* This method is called by compute flux (base class)
*/
template <class Context>
static void addDiffusiveFlux(RateVector&,
const Context&,
unsigned,
unsigned)
{}
};
/*!
* \copydoc Opm::EnergyModule
*/
template <class TypeTag>
class EnergyModule<TypeTag, /*enableEnergy=*/true>
{
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using ExtensiveQuantities = GetPropType<TypeTag, Properties::ExtensiveQuantities>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
using Model = GetPropType<TypeTag, Properties::Model>;
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
enum { numPhases = FluidSystem::numPhases };
enum { energyEqIdx = Indices::energyEqIdx };
enum { temperatureIdx = Indices::temperatureIdx };
using EvalEqVector = Dune::FieldVector<Evaluation, numEq>;
using Toolbox = Opm::MathToolbox<Evaluation>;
public:
/*!
* \brief Register all run-time parameters for the energy module.
*/
static void registerParameters()
{}
/*!
* \brief Returns the name of a primary variable or an empty
* string if the specified primary variable index does not belong to
* the energy module.
*/
static std::string primaryVarName(unsigned pvIdx)
{
if (pvIdx == temperatureIdx)
return "temperature";
return "";
}
/*!
* \brief Returns the name of an equation or an empty
* string if the specified equation index does not belong to
* the energy module.
*/
static std::string eqName(unsigned eqIdx)
{
if (eqIdx == energyEqIdx)
return "energy";
return "";
}
/*!
* \brief Returns the relative weight of a primary variable for
* calculating relative errors.
*/
static Scalar primaryVarWeight(const Model& model, unsigned globalDofIdx, unsigned pvIdx)
{
if (pvIdx != temperatureIdx)
return -1;
// make the weight of the temperature primary variable inversly proportional to its value
return std::max(1.0/1000, 1.0/model.solution(/*timeIdx=*/0)[globalDofIdx][temperatureIdx]);
}
/*!
* \brief Returns the relative weight of a equation.
*/
static Scalar eqWeight(const Model&,
unsigned,
unsigned eqIdx)
{
if (eqIdx != energyEqIdx)
return -1;
// approximate change of internal energy of 1kg of liquid water for a temperature
// change of 30K
return 1.0 / (4.184e3 * 30.0);
}
/*!
* \brief Set the rate of energy flux of a rate vector.
*/
static void setEnthalpyRate(RateVector& rateVec, const Evaluation& rate)
{ rateVec[energyEqIdx] = rate; }
/*!
* \brief Add the rate of the enthalpy flux to a rate vector.
*/
static void addToEnthalpyRate(RateVector& rateVec, const Evaluation& rate)
{ rateVec[energyEqIdx] += rate; }
/*!
* \brief Returns the conductive energy flux for a given flux integration point.
*/
static Evaluation thermalConductionRate(const ExtensiveQuantities& extQuants)
{ return -extQuants.temperatureGradNormal() * extQuants.thermalConductivity(); }
/*!
* \brief Given a fluid state, set the enthalpy rate which emerges
* from a volumetric rate.
*/
template <class RateVector, class FluidState>
static void setEnthalpyRate(RateVector& rateVec,
const FluidState& fluidState,
unsigned phaseIdx,
const Evaluation& volume)
{
rateVec[energyEqIdx] =
volume
* fluidState.density(phaseIdx)
* fluidState.enthalpy(phaseIdx);
}
/*!
* \brief Given a fluid state, set the temperature in the primary variables
*/
template <class FluidState>
static void setPriVarTemperatures(PrimaryVariables& priVars,
const FluidState& fs)
{
priVars[temperatureIdx] = Toolbox::value(fs.temperature(/*phaseIdx=*/0));
#ifndef NDEBUG
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
assert(std::abs(Toolbox::value(fs.temperature(/*phaseIdx=*/0))
- Toolbox::value(fs.temperature(phaseIdx))) < 1e-30);
}
#endif
}
/*!
* \brief Add the energy storage term for a fluid phase to an equation
* vector
*/
template <class LhsEval>
static void addPhaseStorage(Dune::FieldVector<LhsEval, numEq>& storage,
const IntensiveQuantities& intQuants,
unsigned phaseIdx)
{
const auto& fs = intQuants.fluidState();
storage[energyEqIdx] +=
Toolbox::template decay<LhsEval>(fs.density(phaseIdx))
* Toolbox::template decay<LhsEval>(fs.internalEnergy(phaseIdx))
* Toolbox::template decay<LhsEval>(fs.saturation(phaseIdx))
* Toolbox::template decay<LhsEval>(intQuants.porosity());
}
/*!
* \brief Add the energy storage term for a fluid phase to an equation
* vector
*/
template <class Scv, class LhsEval>
static void addFracturePhaseStorage(Dune::FieldVector<LhsEval, numEq>& storage,
const IntensiveQuantities& intQuants,
const Scv& scv,
unsigned phaseIdx)
{
const auto& fs = intQuants.fractureFluidState();
storage[energyEqIdx] +=
Toolbox::template decay<LhsEval>(fs.density(phaseIdx))
* Toolbox::template decay<LhsEval>(fs.internalEnergy(phaseIdx))
* Toolbox::template decay<LhsEval>(fs.saturation(phaseIdx))
* Toolbox::template decay<LhsEval>(intQuants.fracturePorosity())
* Toolbox::template decay<LhsEval>(intQuants.fractureVolume())/scv.volume();
}
/*!
* \brief Add the energy storage term for a fluid phase to an equation
* vector
*/
template <class LhsEval>
static void addSolidEnergyStorage(Dune::FieldVector<LhsEval, numEq>& storage,
const IntensiveQuantities& intQuants)
{ storage[energyEqIdx] += Opm::decay<LhsEval>(intQuants.solidInternalEnergy()); }
/*!
* \brief Evaluates the advective energy fluxes for a flux integration point and adds
* the result in the flux vector.
*
* This method is called by compute flux (base class)
*/
template <class Context>
static void addAdvectiveFlux(RateVector& flux,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx)
{
const auto& extQuants = context.extensiveQuantities(spaceIdx, timeIdx);
// advective energy flux in all phases
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!context.model().phaseIsConsidered(phaseIdx))
continue;
// intensive quantities of the upstream and the downstream DOFs
unsigned upIdx = static_cast<unsigned>(extQuants.upstreamIndex(phaseIdx));
const IntensiveQuantities& up = context.intensiveQuantities(upIdx, timeIdx);
flux[energyEqIdx] +=
extQuants.volumeFlux(phaseIdx)
* up.fluidState().enthalpy(phaseIdx)
* up.fluidState().density(phaseIdx);
}
}
/*!
* \brief Evaluates the advective energy fluxes over a fracture which should be
* attributed to a face of a subcontrol volume and adds the result in the flux
* vector.
*/
template <class Context>
static void handleFractureFlux(RateVector& flux,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx)
{
const auto& scvf = context.stencil(timeIdx).interiorFace(spaceIdx);
const auto& extQuants = context.extensiveQuantities(spaceIdx, timeIdx);
// reduce the energy flux in the matrix by the half the width occupied by the
// fracture
flux[energyEqIdx] *=
1 - extQuants.fractureWidth()/(2*scvf.area());
// advective energy flux in all phases
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!context.model().phaseIsConsidered(phaseIdx))
continue;
// intensive quantities of the upstream and the downstream DOFs
unsigned upIdx = static_cast<unsigned>(extQuants.upstreamIndex(phaseIdx));
const IntensiveQuantities& up = context.intensiveQuantities(upIdx, timeIdx);
flux[energyEqIdx] +=
extQuants.fractureVolumeFlux(phaseIdx)
* up.fluidState().enthalpy(phaseIdx)
* up.fluidState().density(phaseIdx);
}
}
/*!
* \brief Adds the diffusive energy flux to the flux vector over the face of a
* sub-control volume.
*
* This method is called by compute flux (base class)
*/
template <class Context>
static void addDiffusiveFlux(RateVector& flux,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx)
{
const auto& extQuants = context.extensiveQuantities(spaceIdx, timeIdx);
// diffusive energy flux
flux[energyEqIdx] +=
- extQuants.temperatureGradNormal()
* extQuants.thermalConductivity();
}
};
/*!
* \ingroup Energy
* \class Opm::EnergyIndices
*
* \brief Provides the indices required for the energy equation.
*/
template <unsigned PVOffset, bool enableEnergy>
struct EnergyIndices;
/*!
* \copydoc Opm::EnergyIndices
*/
template <unsigned PVOffset>
struct EnergyIndices<PVOffset, /*enableEnergy=*/false>
{
//! The index of the primary variable representing temperature
enum { temperatureIdx = -1000 };
//! The index of the equation representing the conservation of energy
enum { energyEqIdx = -1000 };
protected:
enum { numEq_ = 0 };
};
/*!
* \copydoc Opm::EnergyIndices
*/
template <unsigned PVOffset>
struct EnergyIndices<PVOffset, /*enableEnergy=*/true>
{
//! The index of the primary variable representing temperature
enum { temperatureIdx = PVOffset };
//! The index of the equation representing the conservation of energy
enum { energyEqIdx = PVOffset };
protected:
enum { numEq_ = 1 };
};
/*!
* \ingroup Energy
* \class Opm::EnergyIntensiveQuantities
*
* \brief Provides the volumetric quantities required for the energy equation.
*/
template <class TypeTag, bool enableEnergy>
class EnergyIntensiveQuantities;
/*!
* \copydoc Opm::EnergyIntensiveQuantities
*/
template <class TypeTag>
class EnergyIntensiveQuantities<TypeTag, /*enableEnergy=*/false>
{
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using Toolbox = Opm::MathToolbox<Evaluation>;
public:
/*!
* \brief Returns the volumetric internal energy \f$\mathrm{[J/(m^3]}\f$ of the
* solid matrix in the sub-control volume.
*/
Evaluation solidInternalEnergy() const
{
throw std::logic_error("solidInternalEnergy() does not make sense for isothermal models");
}
/*!
* \brief Returns the total thermal conductivity \f$\mathrm{[W/m^2 / (K/m)]}\f$ of
* the solid matrix in the sub-control volume.
*/
Evaluation thermalConductivity() const
{
throw std::logic_error("thermalConductivity() does not make sense for isothermal models");
}
protected:
/*!
* \brief Update the temperatures of the fluids of a fluid state.
*/
template <class FluidState, class Context>
static void updateTemperatures_(FluidState& fluidState,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx)
{
Scalar T = context.problem().temperature(context, spaceIdx, timeIdx);
fluidState.setTemperature(Toolbox::createConstant(T));
}
/*!
* \brief Update the quantities required to calculate
* energy fluxes.
*/
template <class FluidState>
void update_(FluidState&,
typename FluidSystem::template ParameterCache<typename FluidState::Scalar>&,
const ElementContext&,
unsigned,
unsigned)
{ }
};
/*!
* \copydoc Opm::EnergyIntensiveQuantities
*/
template <class TypeTag>
class EnergyIntensiveQuantities<TypeTag, /*enableEnergy=*/true>
{
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using ThermalConductionLaw = GetPropType<TypeTag, Properties::ThermalConductionLaw>;
using SolidEnergyLaw = GetPropType<TypeTag, Properties::SolidEnergyLaw>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
enum { numPhases = FluidSystem::numPhases };
enum { energyEqIdx = Indices::energyEqIdx };
enum { temperatureIdx = Indices::temperatureIdx };
using Toolbox = Opm::MathToolbox<Evaluation>;
protected:
/*!
* \brief Update the temperatures of the fluids of a fluid state.
*/
template <class FluidState, class Context>
static void updateTemperatures_(FluidState& fluidState,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx)
{
const auto& priVars = context.primaryVars(spaceIdx, timeIdx);
Evaluation val;
if (std::is_same<Evaluation, Scalar>::value) // finite differences
val = Toolbox::createConstant(priVars[temperatureIdx]);
else {
// automatic differentiation
if (timeIdx == 0)
val = Toolbox::createVariable(priVars[temperatureIdx], temperatureIdx);
else
val = Toolbox::createConstant(priVars[temperatureIdx]);
}
fluidState.setTemperature(val);
}
/*!
* \brief Update the quantities required to calculate
* energy fluxes.
*/
template <class FluidState>
void update_(FluidState& fs,
typename FluidSystem::template ParameterCache<typename FluidState::Scalar>& paramCache,
const ElementContext& elemCtx,
unsigned dofIdx,
unsigned timeIdx)
{
// set the specific enthalpies of the fluids
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx))
continue;
fs.setEnthalpy(phaseIdx,
FluidSystem::enthalpy(fs, paramCache, phaseIdx));
}
// compute and set the volumetric internal energy of the solid phase
const auto& problem = elemCtx.problem();
const auto& solidEnergyParams = problem.solidEnergyLawParams(elemCtx, dofIdx, timeIdx);
const auto& thermalCondParams = problem.thermalConductionLawParams(elemCtx, dofIdx, timeIdx);
solidInternalEnergy_ = SolidEnergyLaw::solidInternalEnergy(solidEnergyParams, fs);
thermalConductivity_ = ThermalConductionLaw::thermalConductivity(thermalCondParams, fs);
Opm::Valgrind::CheckDefined(solidInternalEnergy_);
Opm::Valgrind::CheckDefined(thermalConductivity_);
}
public:
/*!
* \brief Returns the volumetric internal energy \f$\mathrm{[J/m^3]}\f$ of the
* solid matrix in the sub-control volume.
*/
const Evaluation& solidInternalEnergy() const
{ return solidInternalEnergy_; }
/*!
* \brief Returns the total conductivity capacity \f$\mathrm{[W/m^2 / (K/m)]}\f$ of
* the solid matrix in the sub-control volume.
*/
const Evaluation& thermalConductivity() const
{ return thermalConductivity_; }
private:
Evaluation solidInternalEnergy_;
Evaluation thermalConductivity_;
};
/*!
* \ingroup Energy
* \class Opm::EnergyExtensiveQuantities
*
* \brief Provides the quantities required to calculate energy fluxes.
*/
template <class TypeTag, bool enableEnergy>
class EnergyExtensiveQuantities;
/*!
* \copydoc Opm::EnergyExtensiveQuantities
*/
template <class TypeTag>
class EnergyExtensiveQuantities<TypeTag, /*enableEnergy=*/false>
{
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
protected:
/*!
* \brief Update the quantities required to calculate
* energy fluxes.
*/
void update_(const ElementContext&,
unsigned,
unsigned)
{}
template <class Context, class FluidState>
void updateBoundary_(const Context&,
unsigned,
unsigned,
const FluidState&)
{}
public:
/*!
* \brief The temperature gradient times the face normal [K m^2 / m]
*/
Scalar temperatureGradNormal() const
{
throw std::logic_error("Calling temperatureGradNormal() does not make sense "
"for isothermal models");
}
/*!
* \brief The total thermal conductivity at the face \f$\mathrm{[W/m^2 / (K/m)]}\f$
*/
Scalar thermalConductivity() const
{
throw std::logic_error("Calling thermalConductivity() does not make sense for "
"isothermal models");
}
};
/*!
* \copydoc Opm::EnergyExtensiveQuantities
*/
template <class TypeTag>
class EnergyExtensiveQuantities<TypeTag, /*enableEnergy=*/true>
{
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
enum { dimWorld = GridView::dimensionworld };
using EvalDimVector = Dune::FieldVector<Evaluation, dimWorld>;
using DimVector = Dune::FieldVector<Scalar, dimWorld>;
protected:
/*!
* \brief Update the quantities required to calculate
* energy fluxes.
*/
void update_(const ElementContext& elemCtx, unsigned faceIdx, unsigned timeIdx)
{
const auto& gradCalc = elemCtx.gradientCalculator();
Opm::TemperatureCallback<TypeTag> temperatureCallback(elemCtx);
EvalDimVector temperatureGrad;
gradCalc.calculateGradient(temperatureGrad,
elemCtx,
faceIdx,
temperatureCallback);
// scalar product of temperature gradient and scvf normal
const auto& face = elemCtx.stencil(/*timeIdx=*/0).interiorFace(faceIdx);
temperatureGradNormal_ = 0;
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
temperatureGradNormal_ += (face.normal()[dimIdx]*temperatureGrad[dimIdx]);
const auto& extQuants = elemCtx.extensiveQuantities(faceIdx, timeIdx);
const auto& intQuantsInside = elemCtx.intensiveQuantities(extQuants.interiorIndex(), timeIdx);
const auto& intQuantsOutside = elemCtx.intensiveQuantities(extQuants.exteriorIndex(), timeIdx);
// arithmetic mean
thermalConductivity_ =
0.5 * (intQuantsInside.thermalConductivity() + intQuantsOutside.thermalConductivity());
Opm::Valgrind::CheckDefined(thermalConductivity_);
}
template <class Context, class FluidState>
void updateBoundary_(const Context& context, unsigned bfIdx, unsigned timeIdx, const FluidState& fs)
{
const auto& stencil = context.stencil(timeIdx);
const auto& face = stencil.boundaryFace(bfIdx);
const auto& elemCtx = context.elementContext();
unsigned insideScvIdx = face.interiorIndex();
const auto& insideScv = elemCtx.stencil(timeIdx).subControlVolume(insideScvIdx);
const auto& intQuantsInside = elemCtx.intensiveQuantities(insideScvIdx, timeIdx);
const auto& fsInside = intQuantsInside.fluidState();
// distance between the center of the SCV and center of the boundary face
DimVector distVec = face.integrationPos();
distVec -= insideScv.geometry().center();
Scalar tmp = 0;
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
tmp += distVec[dimIdx] * face.normal()[dimIdx];
Scalar dist = tmp;
// if the following assertation triggers, the center of the
// center of the interior SCV was not inside the element!
assert(dist > 0);
// calculate the temperature gradient using two-point gradient
// appoximation
temperatureGradNormal_ =
(fs.temperature(/*phaseIdx=*/0) - fsInside.temperature(/*phaseIdx=*/0)) / dist;
// take the value for thermal conductivity from the interior finite volume
thermalConductivity_ = intQuantsInside.thermalConductivity();
}
public:
/*!
* \brief The temperature gradient times the face normal [K m^2 / m]
*/
const Evaluation& temperatureGradNormal() const
{ return temperatureGradNormal_; }
/*!
* \brief The total thermal conductivity at the face \f$\mathrm{[W/m^2 /
* (K/m)]}\f$
*/
const Evaluation& thermalConductivity() const
{ return thermalConductivity_; }
private:
Evaluation temperatureGradNormal_;
Evaluation thermalConductivity_;
};
} // namespace Opm
#endif