opm-simulators/opm/autodiff/SimulatorFullyImplicitBlackoilOutput.cpp
2015-02-12 17:25:40 +01:00

350 lines
13 KiB
C++

/*
Copyright (c) 2014 SINTEF ICT, Applied Mathematics.
Copyright (c) 2015 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include "SimulatorFullyImplicitBlackoilOutput.hpp"
#include <opm/core/utility/DataMap.hpp>
#include <opm/core/io/vtk/writeVtkData.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/utility/Units.hpp>
#include <opm/autodiff/GridHelpers.hpp>
#include <opm/autodiff/BackupRestore.hpp>
#include <sstream>
#include <iomanip>
#include <fstream>
#include <boost/filesystem.hpp>
#ifdef HAVE_DUNE_CORNERPOINT
#include <opm/core/utility/platform_dependent/disable_warnings.h>
#include <dune/common/version.hh>
#include <dune/grid/io/file/vtk/vtkwriter.hh>
#include <opm/core/utility/platform_dependent/reenable_warnings.h>
#endif
namespace Opm
{
void outputStateVtk(const UnstructuredGrid& grid,
const SimulatorState& state,
const int step,
const std::string& output_dir)
{
// Write data in VTK format.
std::ostringstream vtkfilename;
vtkfilename << output_dir << "/vtk_files";
boost::filesystem::path fpath(vtkfilename.str());
try {
create_directories(fpath);
}
catch (...) {
OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath);
}
vtkfilename << "/output-" << std::setw(3) << std::setfill('0') << step << ".vtu";
std::ofstream vtkfile(vtkfilename.str().c_str());
if (!vtkfile) {
OPM_THROW(std::runtime_error, "Failed to open " << vtkfilename.str());
}
Opm::DataMap dm;
dm["saturation"] = &state.saturation();
dm["pressure"] = &state.pressure();
std::vector<double> cell_velocity;
Opm::estimateCellVelocity(AutoDiffGrid::numCells(grid),
AutoDiffGrid::numFaces(grid),
AutoDiffGrid::beginFaceCentroids(grid),
AutoDiffGrid::faceCells(grid),
AutoDiffGrid::beginCellCentroids(grid),
AutoDiffGrid::beginCellVolumes(grid),
AutoDiffGrid::dimensions(grid),
state.faceflux(), cell_velocity);
dm["velocity"] = &cell_velocity;
Opm::writeVtkData(grid, dm, vtkfile);
}
void outputStateMatlab(const UnstructuredGrid& grid,
const Opm::BlackoilState& state,
const int step,
const std::string& output_dir)
{
Opm::DataMap dm;
dm["saturation"] = &state.saturation();
dm["pressure"] = &state.pressure();
dm["surfvolume"] = &state.surfacevol();
dm["rs"] = &state.gasoilratio();
dm["rv"] = &state.rv();
std::vector<double> cell_velocity;
Opm::estimateCellVelocity(AutoDiffGrid::numCells(grid),
AutoDiffGrid::numFaces(grid),
AutoDiffGrid::beginFaceCentroids(grid),
UgGridHelpers::faceCells(grid),
AutoDiffGrid::beginCellCentroids(grid),
AutoDiffGrid::beginCellVolumes(grid),
AutoDiffGrid::dimensions(grid),
state.faceflux(), cell_velocity);
dm["velocity"] = &cell_velocity;
// Write data (not grid) in Matlab format
for (Opm::DataMap::const_iterator it = dm.begin(); it != dm.end(); ++it) {
std::ostringstream fname;
fname << output_dir << "/" << it->first;
boost::filesystem::path fpath = fname.str();
try {
create_directories(fpath);
}
catch (...) {
OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath);
}
fname << "/" << std::setw(3) << std::setfill('0') << step << ".txt";
std::ofstream file(fname.str().c_str());
if (!file) {
OPM_THROW(std::runtime_error, "Failed to open " << fname.str());
}
file.precision(15);
const std::vector<double>& d = *(it->second);
std::copy(d.begin(), d.end(), std::ostream_iterator<double>(file, "\n"));
}
}
void outputWellStateMatlab(const Opm::WellState& well_state,
const int step,
const std::string& output_dir)
{
Opm::DataMap dm;
dm["bhp"] = &well_state.bhp();
dm["wellrates"] = &well_state.wellRates();
// Write data (not grid) in Matlab format
for (Opm::DataMap::const_iterator it = dm.begin(); it != dm.end(); ++it) {
std::ostringstream fname;
fname << output_dir << "/" << it->first;
boost::filesystem::path fpath = fname.str();
try {
create_directories(fpath);
}
catch (...) {
OPM_THROW(std::runtime_error,"Creating directories failed: " << fpath);
}
fname << "/" << std::setw(3) << std::setfill('0') << step << ".txt";
std::ofstream file(fname.str().c_str());
if (!file) {
OPM_THROW(std::runtime_error,"Failed to open " << fname.str());
}
file.precision(15);
const std::vector<double>& d = *(it->second);
std::copy(d.begin(), d.end(), std::ostream_iterator<double>(file, "\n"));
}
}
#if 0
void outputWaterCut(const Opm::Watercut& watercut,
const std::string& output_dir)
{
// Write water cut curve.
std::string fname = output_dir + "/watercut.txt";
std::ofstream os(fname.c_str());
if (!os) {
OPM_THROW(std::runtime_error, "Failed to open " << fname);
}
watercut.write(os);
}
void outputWellReport(const Opm::WellReport& wellreport,
const std::string& output_dir)
{
// Write well report.
std::string fname = output_dir + "/wellreport.txt";
std::ofstream os(fname.c_str());
if (!os) {
OPM_THROW(std::runtime_error, "Failed to open " << fname);
}
wellreport.write(os);
}
#endif
#ifdef HAVE_DUNE_CORNERPOINT
void outputStateVtk(const Dune::CpGrid& grid,
const Opm::SimulatorState& state,
const int step,
const std::string& output_dir)
{
// Write data in VTK format.
std::ostringstream vtkfilename;
std::ostringstream vtkpath;
vtkpath << output_dir << "/vtk_files";
vtkpath << "/output-" << std::setw(3) << std::setfill('0') << step;
boost::filesystem::path fpath(vtkpath.str());
try {
create_directories(fpath);
}
catch (...) {
OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath);
}
vtkfilename << "output-" << std::setw(3) << std::setfill('0') << step;
#if DUNE_VERSION_NEWER(DUNE_GRID, 2, 3)
Dune::VTKWriter<Dune::CpGrid::LeafGridView> writer(grid.leafGridView(), Dune::VTK::nonconforming);
#else
Dune::VTKWriter<Dune::CpGrid::LeafGridView> writer(grid.leafView(), Dune::VTK::nonconforming);
#endif
writer.addCellData(state.saturation(), "saturation", state.numPhases());
writer.addCellData(state.pressure(), "pressure", 1);
std::vector<double> cell_velocity;
Opm::estimateCellVelocity(AutoDiffGrid::numCells(grid),
AutoDiffGrid::numFaces(grid),
AutoDiffGrid::beginFaceCentroids(grid),
AutoDiffGrid::faceCells(grid),
AutoDiffGrid::beginCellCentroids(grid),
AutoDiffGrid::beginCellVolumes(grid),
AutoDiffGrid::dimensions(grid),
state.faceflux(), cell_velocity);
writer.addCellData(cell_velocity, "velocity", Dune::CpGrid::dimension);
writer.pwrite(vtkfilename.str(), vtkpath.str(), std::string("."), Dune::VTK::ascii);
}
#endif
void
BlackoilOutputWriter::
writeInit(const SimulatorTimerInterface& timer)
{
if( eclWriter_ ) {
eclWriter_->writeInit(timer);
}
}
void
BlackoilOutputWriter::
writeTimeStep(const SimulatorTimerInterface& timer,
const SimulatorState& state,
const WellState& wellState)
{
// VTK output
if( vtkWriter_ ) {
vtkWriter_->writeTimeStep( timer, state, wellState );
}
// Matlab output
if( matlabWriter_ ) {
matlabWriter_->writeTimeStep( timer, state, wellState );
}
// ECL output
if ( eclWriter_ ) {
eclWriter_->writeTimeStep(timer, state, wellState);
}
// write backup file
if( backupfile_ )
{
int reportStep = timer.reportStepNum();
int currentTimeStep = timer.currentStepNum();
if( (reportStep == currentTimeStep || // true for SimulatorTimer
currentTimeStep == 0 || // true for AdaptiveSimulatorTimer at reportStep
timer.done() ) // true for AdaptiveSimulatorTimer at reportStep
&& lastBackupReportStep_ != reportStep ) // only backup report step once
{
// store report step
lastBackupReportStep_ = reportStep;
// write resport step number
backupfile_.write( (const char *) &reportStep, sizeof(int) );
const BlackoilState& boState = dynamic_cast< const BlackoilState& > (state);
backupfile_ << boState;
const WellStateFullyImplicitBlackoil& boWellState = static_cast< const WellStateFullyImplicitBlackoil& > (wellState);
backupfile_ << boWellState;
/*
const WellStateFullyImplicitBlackoil* boWellState =
dynamic_cast< const WellStateFullyImplicitBlackoil* > (&wellState);
if( boWellState ) {
backupfile_ << (*boWellState);
}
else
OPM_THROW(std::logic_error,"cast to WellStateFullyImplicitBlackoil failed");
*/
backupfile_ << std::flush;
}
}
}
void
BlackoilOutputWriter::
restore(SimulatorTimerInterface& timer,
BlackoilState& state,
WellStateFullyImplicitBlackoil& wellState,
const std::string& filename,
const int desiredResportStep )
{
std::ifstream restorefile( filename.c_str() );
if( restorefile )
{
std::cout << "============================================================================"<<std::endl;
std::cout << "Restoring from ";
if( desiredResportStep < 0 ) {
std::cout << "last";
}
else {
std::cout << desiredResportStep;
}
std::cout << " report step! filename = " << filename << std::endl << std::endl;
int reportStep;
restorefile.read( (char *) &reportStep, sizeof(int) );
const int readReportStep = (desiredResportStep < 0) ?
std::numeric_limits<int>::max() : desiredResportStep;
while( reportStep <= readReportStep && ! timer.done() && restorefile )
{
restorefile >> state;
restorefile >> wellState;
writeTimeStep( timer, state, wellState );
// some output
std::cout << "Restored step " << timer.reportStepNum() << " at day "
<< unit::convert::to(timer.simulationTimeElapsed(),unit::day) << std::endl;
if( readReportStep == reportStep ) {
break;
}
// if the stream is not valid anymore we just use the last state read
if( ! restorefile ) {
std::cerr << "Reached EOF, using last state read!" << std::endl;
break;
}
// next step
timer.advance();
// read next report step
restorefile.read( (char *) &reportStep, sizeof(int) );
if( timer.reportStepNum() != reportStep ) {
break;
}
}
}
else
{
std::cerr << "Warning: Couldn't open restore file '" << filename << "'" << std::endl;
}
}
}