mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-22 09:16:27 -06:00
499 lines
15 KiB
C++
499 lines
15 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
* \copydoc Opm::InfiltrationProblem
|
|
*/
|
|
#ifndef EWOMS_INFILTRATION_PROBLEM_HH
|
|
#define EWOMS_INFILTRATION_PROBLEM_HH
|
|
|
|
#include <opm/models/pvs/pvsproperties.hh>
|
|
|
|
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
|
|
#include <opm/material/fluidsystems/H2OAirMesityleneFluidSystem.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/ThreePhaseParkerVanGenuchten.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
|
|
#include <opm/material/constraintsolvers/ComputeFromReferencePhase.hpp>
|
|
#include <opm/material/common/Valgrind.hpp>
|
|
|
|
#include <dune/grid/yaspgrid.hh>
|
|
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
|
|
|
|
#include <dune/common/version.hh>
|
|
#include <dune/common/fvector.hh>
|
|
#include <dune/common/fmatrix.hh>
|
|
|
|
#include <sstream>
|
|
#include <string>
|
|
|
|
namespace Opm {
|
|
template <class TypeTag>
|
|
class InfiltrationProblem;
|
|
}
|
|
|
|
namespace Opm::Properties {
|
|
|
|
namespace TTag {
|
|
struct InfiltrationBaseProblem {};
|
|
}
|
|
|
|
// Set the grid type
|
|
template<class TypeTag>
|
|
struct Grid<TypeTag, TTag::InfiltrationBaseProblem> { using type = Dune::YaspGrid<2>; };
|
|
|
|
// Set the problem property
|
|
template<class TypeTag>
|
|
struct Problem<TypeTag, TTag::InfiltrationBaseProblem> { using type = Opm::InfiltrationProblem<TypeTag>; };
|
|
|
|
// Set the fluid system
|
|
template<class TypeTag>
|
|
struct FluidSystem<TypeTag, TTag::InfiltrationBaseProblem>
|
|
{ using type = Opm::H2OAirMesityleneFluidSystem<GetPropType<TypeTag, Properties::Scalar>>; };
|
|
|
|
// Set the material Law
|
|
template<class TypeTag>
|
|
struct MaterialLaw<TypeTag, TTag::InfiltrationBaseProblem>
|
|
{
|
|
private:
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
|
|
using Traits= Opm::ThreePhaseMaterialTraits<
|
|
Scalar,
|
|
/*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx,
|
|
/*nonWettingPhaseIdx=*/FluidSystem::naplPhaseIdx,
|
|
/*gasPhaseIdx=*/FluidSystem::gasPhaseIdx>;
|
|
|
|
public:
|
|
using type = Opm::ThreePhaseParkerVanGenuchten<Traits>;
|
|
};
|
|
|
|
} // namespace Opm::Properties
|
|
|
|
namespace Opm::Parameters {
|
|
|
|
// Enable gravity?
|
|
template<class TypeTag>
|
|
struct EnableGravity<TypeTag, Properties::TTag::InfiltrationBaseProblem>
|
|
{ static constexpr bool value = true; };
|
|
|
|
// The default for the end time of the simulation
|
|
template<class TypeTag>
|
|
struct EndTime<TypeTag, Properties::TTag::InfiltrationBaseProblem>
|
|
{
|
|
using type = GetPropType<TypeTag, Properties::Scalar>;
|
|
static constexpr type value = 6e3;
|
|
};
|
|
|
|
// The default DGF file to load
|
|
template<class TypeTag>
|
|
struct GridFile<TypeTag, Properties::TTag::InfiltrationBaseProblem>
|
|
{ static constexpr auto value = "./data/infiltration_50x3.dgf"; };
|
|
|
|
// The default for the initial time step size of the simulation
|
|
template<class TypeTag>
|
|
struct InitialTimeStepSize<TypeTag, Properties::TTag::InfiltrationBaseProblem>
|
|
{
|
|
using type = GetPropType<TypeTag, Properties::Scalar>;
|
|
static constexpr type value = 60;
|
|
};
|
|
|
|
// Write newton convergence?
|
|
template<class TypeTag>
|
|
struct NewtonWriteConvergence<TypeTag, Properties::TTag::InfiltrationBaseProblem>
|
|
{ static constexpr bool value = false; };
|
|
|
|
// -1 backward differences, 0: central differences, +1: forward differences
|
|
template<class TypeTag>
|
|
struct NumericDifferenceMethod<TypeTag, Properties::TTag::InfiltrationBaseProblem>
|
|
{ static constexpr int value = 1; };
|
|
|
|
} // namespace Opm::Parameters
|
|
|
|
namespace Opm {
|
|
/*!
|
|
* \ingroup TestProblems
|
|
* \brief Isothermal NAPL infiltration problem where LNAPL
|
|
* contaminates the unsaturated and the saturated groundwater
|
|
* zone.
|
|
*
|
|
* The 2D domain of this test problem is 500 m long and 10 m deep,
|
|
* where the lower part represents a slightly inclined groundwater
|
|
* table, and the upper part is the vadose zone. A LNAPL (Non-Aqueous
|
|
* Phase Liquid which is lighter than water) infiltrates (modelled
|
|
* with a Neumann boundary condition) into the vadose zone. Upon
|
|
* reaching the water table, it spreads (since lighter than water) and
|
|
* migrates on top of the water table in the direction of the slope.
|
|
* On its way through the vadose zone, it leaves a trace of residually
|
|
* trapped immobile NAPL, which can in the following dissolve and
|
|
* evaporate slowly, and eventually be transported by advection and
|
|
* diffusion.
|
|
*
|
|
* Left and right boundaries are constant hydraulic head boundaries
|
|
* (Dirichlet), Top and bottom are Neumann boundaries, all no-flow
|
|
* except for the small infiltration zone in the upper left part.
|
|
*/
|
|
template <class TypeTag>
|
|
class InfiltrationProblem : public GetPropType<TypeTag, Properties::BaseProblem>
|
|
{
|
|
using ParentType = GetPropType<TypeTag, Properties::BaseProblem>;
|
|
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
|
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
|
|
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
|
|
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
|
|
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
|
|
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
|
|
using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;
|
|
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using Model = GetPropType<TypeTag, Properties::Model>;
|
|
|
|
// copy some indices for convenience
|
|
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
|
enum {
|
|
// equation indices
|
|
conti0EqIdx = Indices::conti0EqIdx,
|
|
|
|
// number of phases/components
|
|
numPhases = FluidSystem::numPhases,
|
|
|
|
// component indices
|
|
NAPLIdx = FluidSystem::NAPLIdx,
|
|
H2OIdx = FluidSystem::H2OIdx,
|
|
airIdx = FluidSystem::airIdx,
|
|
|
|
// phase indices
|
|
waterPhaseIdx = FluidSystem::waterPhaseIdx,
|
|
gasPhaseIdx = FluidSystem::gasPhaseIdx,
|
|
naplPhaseIdx = FluidSystem::naplPhaseIdx,
|
|
|
|
// Grid and world dimension
|
|
dim = GridView::dimension,
|
|
dimWorld = GridView::dimensionworld
|
|
};
|
|
|
|
using CoordScalar = typename GridView::ctype;
|
|
using GlobalPosition = Dune::FieldVector<CoordScalar, dimWorld>;
|
|
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
|
|
|
|
public:
|
|
/*!
|
|
* \copydoc Doxygen::defaultProblemConstructor
|
|
*/
|
|
InfiltrationProblem(Simulator& simulator)
|
|
: ParentType(simulator)
|
|
, eps_(1e-6)
|
|
{ }
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::finishInit
|
|
*/
|
|
void finishInit()
|
|
{
|
|
ParentType::finishInit();
|
|
|
|
temperature_ = 273.15 + 10.0; // -> 10 degrees Celsius
|
|
FluidSystem::init(/*tempMin=*/temperature_ - 1,
|
|
/*tempMax=*/temperature_ + 1,
|
|
/*nTemp=*/3,
|
|
/*pressMin=*/0.8 * 1e5,
|
|
/*pressMax=*/3 * 1e5,
|
|
/*nPress=*/200);
|
|
|
|
// intrinsic permeabilities
|
|
fineK_ = this->toDimMatrix_(1e-11);
|
|
coarseK_ = this->toDimMatrix_(1e-11);
|
|
|
|
// porosities
|
|
porosity_ = 0.40;
|
|
|
|
// residual saturations
|
|
materialParams_.setSwr(0.12);
|
|
materialParams_.setSwrx(0.12);
|
|
materialParams_.setSnr(0.07);
|
|
materialParams_.setSgr(0.03);
|
|
|
|
// parameters for the three-phase van Genuchten law
|
|
materialParams_.setVgAlpha(0.0005);
|
|
materialParams_.setVgN(4.);
|
|
materialParams_.setkrRegardsSnr(false);
|
|
|
|
materialParams_.finalize();
|
|
materialParams_.checkDefined();
|
|
}
|
|
|
|
/*!
|
|
* \name Problem parameters
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::shouldWriteRestartFile
|
|
*
|
|
* This problem writes a restart file after every time step.
|
|
*/
|
|
bool shouldWriteRestartFile() const
|
|
{ return true; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::name
|
|
*/
|
|
std::string name() const
|
|
{
|
|
std::ostringstream oss;
|
|
oss << "infiltration_" << Model::name();
|
|
return oss.str();
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::endTimeStep
|
|
*/
|
|
void endTimeStep()
|
|
{
|
|
#ifndef NDEBUG
|
|
this->model().checkConservativeness();
|
|
|
|
// Calculate storage terms
|
|
EqVector storage;
|
|
this->model().globalStorage(storage);
|
|
|
|
// Write mass balance information for rank 0
|
|
if (this->gridView().comm().rank() == 0) {
|
|
std::cout << "Storage: " << storage << std::endl << std::flush;
|
|
}
|
|
#endif // NDEBUG
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::temperature
|
|
*/
|
|
template <class Context>
|
|
Scalar temperature(const Context& /*context*/,
|
|
unsigned /*spaceIdx*/,
|
|
unsigned /*timeIdx*/) const
|
|
{ return temperature_; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
|
|
*/
|
|
template <class Context>
|
|
const DimMatrix&
|
|
intrinsicPermeability(const Context& context,
|
|
unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
|
|
if (isFineMaterial_(pos))
|
|
return fineK_;
|
|
return coarseK_;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::porosity
|
|
*/
|
|
template <class Context>
|
|
Scalar porosity(const Context& /*context*/,
|
|
unsigned /*spaceIdx*/,
|
|
unsigned /*timeIdx*/) const
|
|
{ return porosity_; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
|
|
*/
|
|
template <class Context>
|
|
const MaterialLawParams&
|
|
materialLawParams(const Context& /*context*/,
|
|
unsigned /*spaceIdx*/,
|
|
unsigned /*timeIdx*/) const
|
|
{ return materialParams_; }
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Boundary conditions
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::boundary
|
|
*/
|
|
template <class Context>
|
|
void boundary(BoundaryRateVector& values,
|
|
const Context& context,
|
|
unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
const auto& pos = context.pos(spaceIdx, timeIdx);
|
|
|
|
if (onLeftBoundary_(pos) || onRightBoundary_(pos)) {
|
|
Opm::CompositionalFluidState<Scalar, FluidSystem> fs;
|
|
|
|
initialFluidState_(fs, context, spaceIdx, timeIdx);
|
|
|
|
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
|
|
}
|
|
else if (onInlet_(pos)) {
|
|
RateVector molarRate(0.0);
|
|
molarRate[conti0EqIdx + NAPLIdx] = -0.001;
|
|
|
|
values.setMolarRate(molarRate);
|
|
Opm::Valgrind::CheckDefined(values);
|
|
}
|
|
else
|
|
values.setNoFlow();
|
|
}
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Volumetric terms
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::initial
|
|
*/
|
|
template <class Context>
|
|
void initial(PrimaryVariables& values,
|
|
const Context& context,
|
|
unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
Opm::CompositionalFluidState<Scalar, FluidSystem> fs;
|
|
|
|
initialFluidState_(fs, context, spaceIdx, timeIdx);
|
|
|
|
const auto& matParams = materialLawParams(context, spaceIdx, timeIdx);
|
|
values.assignMassConservative(fs, matParams, /*inEquilibrium=*/true);
|
|
Opm::Valgrind::CheckDefined(values);
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::source
|
|
*
|
|
* For this problem, the source term of all components is 0
|
|
* everywhere.
|
|
*/
|
|
template <class Context>
|
|
void source(RateVector& rate,
|
|
const Context& /*context*/,
|
|
unsigned /*spaceIdx*/,
|
|
unsigned /*timeIdx*/) const
|
|
{ rate = Scalar(0.0); }
|
|
|
|
//! \}
|
|
|
|
private:
|
|
bool onLeftBoundary_(const GlobalPosition& pos) const
|
|
{ return pos[0] < eps_; }
|
|
|
|
bool onRightBoundary_(const GlobalPosition& pos) const
|
|
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
|
|
|
|
bool onLowerBoundary_(const GlobalPosition& pos) const
|
|
{ return pos[1] < eps_; }
|
|
|
|
bool onUpperBoundary_(const GlobalPosition& pos) const
|
|
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
|
|
|
|
bool onInlet_(const GlobalPosition& pos) const
|
|
{ return onUpperBoundary_(pos) && 50 < pos[0] && pos[0] < 75; }
|
|
|
|
template <class FluidState, class Context>
|
|
void initialFluidState_(FluidState& fs, const Context& context,
|
|
unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition pos = context.pos(spaceIdx, timeIdx);
|
|
Scalar y = pos[1];
|
|
Scalar x = pos[0];
|
|
|
|
Scalar densityW = 1000.0;
|
|
Scalar pc = 9.81 * densityW * (y - (5 - 5e-4 * x));
|
|
if (pc < 0.0)
|
|
pc = 0.0;
|
|
|
|
// set pressures
|
|
const auto& matParams = materialLawParams(context, spaceIdx, timeIdx);
|
|
Scalar Sw = matParams.Swr();
|
|
Scalar Swr = matParams.Swr();
|
|
Scalar Sgr = matParams.Sgr();
|
|
if (Sw < Swr)
|
|
Sw = Swr;
|
|
if (Sw > 1 - Sgr)
|
|
Sw = 1 - Sgr;
|
|
Scalar Sg = 1 - Sw;
|
|
|
|
Opm::Valgrind::CheckDefined(Sw);
|
|
Opm::Valgrind::CheckDefined(Sg);
|
|
|
|
fs.setSaturation(waterPhaseIdx, Sw);
|
|
fs.setSaturation(gasPhaseIdx, Sg);
|
|
fs.setSaturation(naplPhaseIdx, 0);
|
|
|
|
// set temperature of all phases
|
|
fs.setTemperature(temperature_);
|
|
|
|
// compute pressures
|
|
Scalar pcAll[numPhases];
|
|
Scalar pg = 1e5;
|
|
if (onLeftBoundary_(pos))
|
|
pg += 10e3;
|
|
MaterialLaw::capillaryPressures(pcAll, matParams, fs);
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
|
fs.setPressure(phaseIdx, pg + (pcAll[phaseIdx] - pcAll[gasPhaseIdx]));
|
|
|
|
// set composition of gas phase
|
|
fs.setMoleFraction(gasPhaseIdx, H2OIdx, 1e-6);
|
|
fs.setMoleFraction(gasPhaseIdx, airIdx,
|
|
1 - fs.moleFraction(gasPhaseIdx, H2OIdx));
|
|
fs.setMoleFraction(gasPhaseIdx, NAPLIdx, 0);
|
|
|
|
using CFRP = Opm::ComputeFromReferencePhase<Scalar, FluidSystem>;
|
|
typename FluidSystem::template ParameterCache<Scalar> paramCache;
|
|
CFRP::solve(fs, paramCache, gasPhaseIdx,
|
|
/*setViscosity=*/true,
|
|
/*setEnthalpy=*/false);
|
|
|
|
fs.setMoleFraction(waterPhaseIdx, H2OIdx,
|
|
1 - fs.moleFraction(waterPhaseIdx, H2OIdx));
|
|
}
|
|
|
|
bool isFineMaterial_(const GlobalPosition& pos) const
|
|
{ return 70. <= pos[0] && pos[0] <= 85. && 7.0 <= pos[1] && pos[1] <= 7.50; }
|
|
|
|
DimMatrix fineK_;
|
|
DimMatrix coarseK_;
|
|
|
|
Scalar porosity_;
|
|
|
|
MaterialLawParams materialParams_;
|
|
|
|
Scalar temperature_;
|
|
Scalar eps_;
|
|
};
|
|
} // namespace Opm
|
|
|
|
#endif
|