mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-29 10:40:59 -06:00
2ef11d18d6
Set eq weights externally in the blackoil model
613 lines
24 KiB
C++
613 lines
24 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Opm::BlackOilModel
|
|
*/
|
|
#ifndef EWOMS_BLACK_OIL_MODEL_HH
|
|
#define EWOMS_BLACK_OIL_MODEL_HH
|
|
|
|
#include <opm/material/densead/Math.hpp>
|
|
|
|
#include "blackoilproblem.hh"
|
|
#include "blackoilindices.hh"
|
|
#include "blackoiltwophaseindices.hh"
|
|
#include "blackoilextensivequantities.hh"
|
|
#include "blackoilprimaryvariables.hh"
|
|
#include "blackoilintensivequantities.hh"
|
|
#include "blackoilratevector.hh"
|
|
#include "blackoilboundaryratevector.hh"
|
|
#include "blackoillocalresidual.hh"
|
|
#include "blackoilnewtonmethod.hh"
|
|
#include "blackoilproperties.hh"
|
|
#include "blackoilsolventmodules.hh"
|
|
#include "blackoilpolymermodules.hh"
|
|
#include "blackoilfoammodules.hh"
|
|
#include "blackoilbrinemodules.hh"
|
|
#include "blackoilextbomodules.hh"
|
|
#include "blackoildarcyfluxmodule.hh"
|
|
#include "blackoilmicpmodules.hh"
|
|
|
|
#include <opm/models/common/multiphasebasemodel.hh>
|
|
#include <opm/models/io/vtkcompositionmodule.hh>
|
|
#include <opm/models/io/vtkblackoilmodule.hh>
|
|
#include "blackoildiffusionmodule.hh"
|
|
#include <opm/models/io/vtkdiffusionmodule.hh>
|
|
|
|
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
|
|
|
|
#include <sstream>
|
|
#include <string>
|
|
|
|
namespace Opm {
|
|
template <class TypeTag>
|
|
class BlackOilModel;
|
|
|
|
template <class TypeTag>
|
|
class EclVanguard;
|
|
}
|
|
|
|
namespace Opm::Properties {
|
|
|
|
namespace TTag {
|
|
//! The type tag for the black-oil problems
|
|
struct BlackOilModel { using InheritsFrom = std::tuple<VtkComposition,
|
|
VtkBlackOilEnergy,
|
|
VtkDiffusion,
|
|
VtkBlackOilPolymer,
|
|
VtkBlackOilSolvent,
|
|
VtkBlackOil,
|
|
MultiPhaseBaseModel,
|
|
VtkBlackOilMICP>; };
|
|
} // namespace TTag
|
|
|
|
//! Set the local residual function
|
|
template<class TypeTag>
|
|
struct LocalResidual<TypeTag, TTag::BlackOilModel> { using type = BlackOilLocalResidual<TypeTag>; };
|
|
|
|
//! Use the black-oil specific newton method
|
|
template<class TypeTag>
|
|
struct NewtonMethod<TypeTag, TTag::BlackOilModel> { using type = BlackOilNewtonMethod<TypeTag>; };
|
|
|
|
//! The Model property
|
|
template<class TypeTag>
|
|
struct Model<TypeTag, TTag::BlackOilModel> { using type = BlackOilModel<TypeTag>; };
|
|
|
|
//! The Problem property
|
|
template<class TypeTag>
|
|
struct BaseProblem<TypeTag, TTag::BlackOilModel> { using type = BlackOilProblem<TypeTag>; };
|
|
|
|
//! the RateVector property
|
|
template<class TypeTag>
|
|
struct RateVector<TypeTag, TTag::BlackOilModel> { using type = BlackOilRateVector<TypeTag>; };
|
|
|
|
//! the BoundaryRateVector property
|
|
template<class TypeTag>
|
|
struct BoundaryRateVector<TypeTag, TTag::BlackOilModel> { using type = BlackOilBoundaryRateVector<TypeTag>; };
|
|
|
|
//! the PrimaryVariables property
|
|
template<class TypeTag>
|
|
struct PrimaryVariables<TypeTag, TTag::BlackOilModel> { using type = BlackOilPrimaryVariables<TypeTag>; };
|
|
|
|
//! the IntensiveQuantities property
|
|
template<class TypeTag>
|
|
struct IntensiveQuantities<TypeTag, TTag::BlackOilModel> { using type = BlackOilIntensiveQuantities<TypeTag>; };
|
|
|
|
//! the ExtensiveQuantities property
|
|
template<class TypeTag>
|
|
struct ExtensiveQuantities<TypeTag, TTag::BlackOilModel> { using type = BlackOilExtensiveQuantities<TypeTag>; };
|
|
|
|
//! Use the the velocity module which is aware of the black-oil specific model extensions
|
|
//! (i.e., the polymer and solvent extensions)
|
|
template<class TypeTag>
|
|
struct FluxModule<TypeTag, TTag::BlackOilModel> { using type = BlackOilDarcyFluxModule<TypeTag>; };
|
|
|
|
//! The indices required by the model
|
|
template<class TypeTag>
|
|
struct Indices<TypeTag, TTag::BlackOilModel>
|
|
{ using type = BlackOilIndices<getPropValue<TypeTag, Properties::EnableSolvent>(),
|
|
getPropValue<TypeTag, Properties::EnableExtbo>(),
|
|
getPropValue<TypeTag, Properties::EnablePolymer>(),
|
|
getPropValue<TypeTag, Properties::EnableEnergy>(),
|
|
getPropValue<TypeTag, Properties::EnableFoam>(),
|
|
getPropValue<TypeTag, Properties::EnableBrine>(),
|
|
/*PVOffset=*/0,
|
|
getPropValue<TypeTag, Properties::EnableMICP>()>; };
|
|
|
|
//! Set the fluid system to the black-oil fluid system by default
|
|
template<class TypeTag>
|
|
struct FluidSystem<TypeTag, TTag::BlackOilModel>
|
|
{
|
|
private:
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
|
|
public:
|
|
using type = BlackOilFluidSystem<Scalar>;
|
|
};
|
|
|
|
// by default, all ECL extension modules are disabled
|
|
template<class TypeTag>
|
|
struct EnableSolvent<TypeTag, TTag::BlackOilModel> { static constexpr bool value = false; };
|
|
template<class TypeTag>
|
|
struct EnableExtbo<TypeTag, TTag::BlackOilModel> { static constexpr bool value = false; };
|
|
template<class TypeTag>
|
|
struct EnablePolymer<TypeTag, TTag::BlackOilModel> { static constexpr bool value = false; };
|
|
template<class TypeTag>
|
|
struct EnablePolymerMW<TypeTag, TTag::BlackOilModel> { static constexpr bool value = false; };
|
|
template<class TypeTag>
|
|
struct EnableFoam<TypeTag, TTag::BlackOilModel> { static constexpr bool value = false; };
|
|
template<class TypeTag>
|
|
struct EnableBrine<TypeTag, TTag::BlackOilModel> { static constexpr bool value = false; };
|
|
template<class TypeTag>
|
|
struct EnableEvaporation<TypeTag, TTag::BlackOilModel> { static constexpr bool value = false; };
|
|
template<class TypeTag>
|
|
struct EnableSaltPrecipitation<TypeTag, TTag::BlackOilModel> { static constexpr bool value = false; };
|
|
template<class TypeTag>
|
|
struct EnableMICP<TypeTag, TTag::BlackOilModel> { static constexpr bool value = false; };
|
|
|
|
//! By default, the blackoil model is isothermal and does not conserve energy
|
|
template<class TypeTag>
|
|
struct EnableTemperature<TypeTag, TTag::BlackOilModel> { static constexpr bool value = false; };
|
|
template<class TypeTag>
|
|
struct EnableEnergy<TypeTag, TTag::BlackOilModel> { static constexpr bool value = false; };
|
|
|
|
//! disable diffusion by default
|
|
template<class TypeTag>
|
|
struct EnableDiffusion<TypeTag, TTag::BlackOilModel> { static constexpr bool value = false; };
|
|
|
|
//! by default, scale the energy equation by the inverse of the energy required to heat
|
|
//! up one kg of water by 30 Kelvin. If we conserve surface volumes, this must be divided
|
|
//! by the weight of one cubic meter of water. This is required to make the "dumb" linear
|
|
//! solvers that do not weight the components of the solutions do the right thing.
|
|
//! by default, don't scale the energy equation, i.e. assume that a reasonable linear
|
|
//! solver is used. (Not scaling it makes debugging quite a bit easier.)
|
|
template<class TypeTag>
|
|
struct BlackOilEnergyScalingFactor<TypeTag, TTag::BlackOilModel>
|
|
{
|
|
private:
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
static constexpr Scalar alpha = getPropValue<TypeTag, Properties::BlackoilConserveSurfaceVolume>() ? 1000.0 : 1.0;
|
|
|
|
public:
|
|
using type = Scalar;
|
|
static constexpr Scalar value = 1.0/(30.0*4184.0*alpha);
|
|
};
|
|
|
|
// by default, ebos formulates the conservation equations in terms of mass not surface
|
|
// volumes
|
|
template<class TypeTag>
|
|
struct BlackoilConserveSurfaceVolume<TypeTag, TTag::BlackOilModel> { static constexpr bool value = false; };
|
|
|
|
} // namespace Opm::Properties
|
|
|
|
namespace Opm {
|
|
|
|
/*!
|
|
* \ingroup BlackOilModel
|
|
* \brief A fully-implicit black-oil flow model.
|
|
*
|
|
* The black-oil model is a three-phase, three-component model widely
|
|
* used for oil reservoir simulation. The phases are denoted by lower
|
|
* index \f$\alpha \in \{ w, g, o \}\f$ ("water", "gas" and "oil") and
|
|
* the components by upper index \f$\kappa \in \{ W, G, O \}\f$
|
|
* ("Water", "Gas" and "Oil"). The model assumes partial miscibility:
|
|
*
|
|
* - Water and the gas phases are immisicible and are assumed to be
|
|
* only composed of the water and gas components respectively-
|
|
* - The oil phase is assumed to be a mixture of the gas and the oil
|
|
* components.
|
|
*
|
|
* The densities of the phases are determined by so-called
|
|
* <i>formation volume factors</i>:
|
|
*
|
|
* \f[
|
|
* B_\alpha := \frac{\varrho_\alpha(1\,\text{bar})}{\varrho_\alpha(p_\alpha)}
|
|
* \f]
|
|
*
|
|
* Since the gas and water phases are assumed to be immiscible, this
|
|
* is sufficint to calculate their density. For the formation volume
|
|
* factor of the the oil phase \f$B_o\f$ determines the density of
|
|
* *saturated* oil, i.e. the density of the oil phase if some gas
|
|
* phase is present.
|
|
*
|
|
* The composition of the oil phase is given by the <i>gas dissolution factor</i>
|
|
* \f$R_s\f$, which defined as the volume of gas at atmospheric pressure that is
|
|
* dissolved in a given amount of oil at reservoir pressure:
|
|
*
|
|
* \f[
|
|
* R_s := \frac{\varrho_{o}^G}{\varrho_o^O}\;.
|
|
* \f]
|
|
*
|
|
* This allows to calculate all quantities required for the
|
|
* mass-conservation equations for each component, i.e.
|
|
*
|
|
* \f[
|
|
* \sum_\alpha \frac{\partial\;\phi c_\alpha^\kappa S_\alpha }{\partial t}
|
|
* - \sum_\alpha \mathrm{div} \left\{ c_\alpha^\kappa \mathbf{v}_\alpha \right\}
|
|
* - q^\kappa = 0 \;,
|
|
* \f]
|
|
* where \f$\mathrm{v}_\alpha\f$ is the filter velocity of the phase
|
|
* \f$\alpha\f$.
|
|
*
|
|
* By default \f$\mathrm{v}_\alpha\f$ is determined by using the
|
|
* standard multi-phase Darcy approach, i.e.
|
|
* \f[ \mathbf{v}_\alpha = - \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K}
|
|
*\left(\mathbf{grad}\, p_\alpha - \varrho_{\alpha} \mathbf{g} \right) \;, \f]
|
|
* although the actual approach which is used can be specified via the
|
|
* \c FluxModule property. For example, the velocity model can by
|
|
* changed to the Forchheimer approach by
|
|
* \code
|
|
* template<class TypeTag>
|
|
struct FluxModule<TypeTag, TTag::MyProblemTypeTag> { using type = Opm::ForchheimerFluxModule<TypeTag>; };
|
|
* \endcode
|
|
*
|
|
* The primary variables used by this model are:
|
|
* - The pressure of the phase with the lowest index
|
|
* - The two saturations of the phases with the lowest indices
|
|
*/
|
|
template<class TypeTag >
|
|
class BlackOilModel
|
|
: public MultiPhaseBaseModel<TypeTag>
|
|
{
|
|
using Implementation = GetPropType<TypeTag, Properties::Model>;
|
|
using ParentType = MultiPhaseBaseModel<TypeTag>;
|
|
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
|
using Discretization = GetPropType<TypeTag, Properties::Discretization>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
|
|
|
|
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
|
|
enum { numComponents = FluidSystem::numComponents };
|
|
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
|
|
enum { enableDiffusion = getPropValue<TypeTag, Properties::EnableDiffusion>() };
|
|
|
|
static constexpr bool compositionSwitchEnabled = Indices::compositionSwitchIdx >= 0;
|
|
static constexpr bool waterEnabled = Indices::waterEnabled;
|
|
|
|
using SolventModule = BlackOilSolventModule<TypeTag>;
|
|
using ExtboModule = BlackOilExtboModule<TypeTag>;
|
|
using PolymerModule = BlackOilPolymerModule<TypeTag>;
|
|
using EnergyModule = BlackOilEnergyModule<TypeTag>;
|
|
using DiffusionModule = BlackOilDiffusionModule<TypeTag, enableDiffusion>;
|
|
using MICPModule = BlackOilMICPModule<TypeTag>;
|
|
|
|
public:
|
|
|
|
using LocalResidual = GetPropType<TypeTag, Properties::LocalResidual>;
|
|
|
|
BlackOilModel(Simulator& simulator)
|
|
: ParentType(simulator)
|
|
{
|
|
eqWeights_.resize(numEq, 1.0);
|
|
}
|
|
|
|
/*!
|
|
* \brief Register all run-time parameters for the immiscible model.
|
|
*/
|
|
static void registerParameters()
|
|
{
|
|
ParentType::registerParameters();
|
|
|
|
SolventModule::registerParameters();
|
|
ExtboModule::registerParameters();
|
|
PolymerModule::registerParameters();
|
|
EnergyModule::registerParameters();
|
|
DiffusionModule::registerParameters();
|
|
MICPModule::registerParameters();
|
|
|
|
// register runtime parameters of the VTK output modules
|
|
VtkBlackOilModule<TypeTag>::registerParameters();
|
|
VtkCompositionModule<TypeTag>::registerParameters();
|
|
|
|
if constexpr (enableDiffusion)
|
|
VtkDiffusionModule<TypeTag>::registerParameters();
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseDiscretization::name
|
|
*/
|
|
static std::string name()
|
|
{ return "blackoil"; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseDiscretization::primaryVarName
|
|
*/
|
|
std::string primaryVarName(int pvIdx) const
|
|
{
|
|
std::ostringstream oss;
|
|
|
|
if (pvIdx == Indices::waterSaturationIdx)
|
|
oss << "saturation_" << FluidSystem::phaseName(FluidSystem::waterPhaseIdx);
|
|
else if (pvIdx == Indices::pressureSwitchIdx)
|
|
oss << "pressure_switching";
|
|
else if (static_cast<int>(pvIdx) == Indices::compositionSwitchIdx)
|
|
oss << "composition_switching";
|
|
else if (SolventModule::primaryVarApplies(pvIdx))
|
|
return SolventModule::primaryVarName(pvIdx);
|
|
else if (ExtboModule::primaryVarApplies(pvIdx))
|
|
return ExtboModule::primaryVarName(pvIdx);
|
|
else if (PolymerModule::primaryVarApplies(pvIdx))
|
|
return PolymerModule::primaryVarName(pvIdx);
|
|
else if (EnergyModule::primaryVarApplies(pvIdx))
|
|
return EnergyModule::primaryVarName(pvIdx);
|
|
else
|
|
assert(false);
|
|
|
|
return oss.str();
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseDiscretization::eqName
|
|
*/
|
|
std::string eqName(int eqIdx) const
|
|
{
|
|
std::ostringstream oss;
|
|
|
|
if (Indices::conti0EqIdx <= eqIdx && eqIdx < Indices::conti0EqIdx + numComponents)
|
|
oss << "conti_" << FluidSystem::phaseName(eqIdx - Indices::conti0EqIdx);
|
|
else if (SolventModule::eqApplies(eqIdx))
|
|
return SolventModule::eqName(eqIdx);
|
|
else if (ExtboModule::eqApplies(eqIdx))
|
|
return ExtboModule::eqName(eqIdx);
|
|
else if (PolymerModule::eqApplies(eqIdx))
|
|
return PolymerModule::eqName(eqIdx);
|
|
else if (EnergyModule::eqApplies(eqIdx))
|
|
return EnergyModule::eqName(eqIdx);
|
|
else
|
|
assert(false);
|
|
|
|
return oss.str();
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseDiscretization::primaryVarWeight
|
|
*/
|
|
Scalar primaryVarWeight(unsigned globalDofIdx, unsigned pvIdx) const
|
|
{
|
|
// do not care about the auxiliary equations as they are supposed to scale
|
|
// themselves
|
|
if (globalDofIdx >= this->numGridDof())
|
|
return 1.0;
|
|
|
|
// saturations are always in the range [0, 1]!
|
|
if (int(Indices::waterSaturationIdx) == int(pvIdx))
|
|
return 1.0;
|
|
|
|
// oil pressures usually are in the range of 100 to 500 bars for typical oil
|
|
// reservoirs (which is the only relevant application for the black-oil model).
|
|
else if (int(Indices::pressureSwitchIdx) == int(pvIdx))
|
|
return 1.0/300e5;
|
|
|
|
// deal with primary variables stemming from the solvent module
|
|
else if (SolventModule::primaryVarApplies(pvIdx))
|
|
return SolventModule::primaryVarWeight(pvIdx);
|
|
|
|
// deal with primary variables stemming from the extBO module
|
|
else if (ExtboModule::primaryVarApplies(pvIdx))
|
|
return ExtboModule::primaryVarWeight(pvIdx);
|
|
|
|
// deal with primary variables stemming from the polymer module
|
|
else if (PolymerModule::primaryVarApplies(pvIdx))
|
|
return PolymerModule::primaryVarWeight(pvIdx);
|
|
|
|
// deal with primary variables stemming from the energy module
|
|
else if (EnergyModule::primaryVarApplies(pvIdx))
|
|
return EnergyModule::primaryVarWeight(pvIdx);
|
|
|
|
// if the primary variable is either the gas saturation, Rs or Rv
|
|
assert(int(Indices::compositionSwitchIdx) == int(pvIdx));
|
|
|
|
auto pvMeaning = this->solution(0)[globalDofIdx].primaryVarsMeaning();
|
|
if (pvMeaning == PrimaryVariables::Sw_po_Sg)
|
|
return 1.0; // gas saturation
|
|
else if (pvMeaning == PrimaryVariables::Sw_po_Rs)
|
|
return 1.0/250.; // gas dissolution factor
|
|
else {
|
|
assert(pvMeaning == PrimaryVariables::Sw_pg_Rv);
|
|
return 1.0/0.025; // oil vaporization factor
|
|
}
|
|
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseDiscretization::eqWeight
|
|
*/
|
|
Scalar eqWeight(unsigned globalDofIdx, unsigned eqIdx) const
|
|
{
|
|
// do not care about the auxiliary equations as they are supposed to scale
|
|
// themselves
|
|
if (globalDofIdx >= this->numGridDof())
|
|
return 1.0;
|
|
|
|
return eqWeights_[eqIdx];
|
|
}
|
|
|
|
void setEqWeight(unsigned eqIdx, Scalar value) {
|
|
eqWeights_[eqIdx] = value;
|
|
}
|
|
|
|
/*!
|
|
* \brief Write the current solution for a degree of freedom to a
|
|
* restart file.
|
|
*
|
|
* \param outstream The stream into which the vertex data should
|
|
* be serialized to
|
|
* \param dof The Dune entity which's data should be serialized
|
|
*/
|
|
template <class DofEntity>
|
|
void serializeEntity(std::ostream& outstream, const DofEntity& dof)
|
|
{
|
|
unsigned dofIdx = static_cast<unsigned>(asImp_().dofMapper().index(dof));
|
|
|
|
// write phase state
|
|
if (!outstream.good())
|
|
throw std::runtime_error("Could not serialize degree of freedom "+std::to_string(dofIdx));
|
|
|
|
// write the primary variables
|
|
const auto& priVars = this->solution(/*timeIdx=*/0)[dofIdx];
|
|
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx)
|
|
outstream << priVars[eqIdx] << " ";
|
|
|
|
// write the pseudo primary variables
|
|
outstream << priVars.primaryVarsMeaning() << " ";
|
|
outstream << priVars.pvtRegionIndex() << " ";
|
|
|
|
SolventModule::serializeEntity(*this, outstream, dof);
|
|
ExtboModule::serializeEntity(*this, outstream, dof);
|
|
PolymerModule::serializeEntity(*this, outstream, dof);
|
|
EnergyModule::serializeEntity(*this, outstream, dof);
|
|
}
|
|
|
|
/*!
|
|
* \brief Reads the current solution variables for a degree of
|
|
* freedom from a restart file.
|
|
*
|
|
* \param instream The stream from which the vertex data should
|
|
* be deserialized from
|
|
* \param dof The Dune entity which's data should be deserialized
|
|
*/
|
|
template <class DofEntity>
|
|
void deserializeEntity(std::istream& instream,
|
|
const DofEntity& dof)
|
|
{
|
|
unsigned dofIdx = static_cast<unsigned>(asImp_().dofMapper().index(dof));
|
|
|
|
// read in the "real" primary variables of the DOF
|
|
auto& priVars = this->solution(/*timeIdx=*/0)[dofIdx];
|
|
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx) {
|
|
if (!instream.good())
|
|
throw std::runtime_error("Could not deserialize degree of freedom "+std::to_string(dofIdx));
|
|
instream >> priVars[eqIdx];
|
|
}
|
|
|
|
// read the pseudo primary variables
|
|
unsigned primaryVarsMeaning;
|
|
instream >> primaryVarsMeaning;
|
|
|
|
unsigned pvtRegionIdx;
|
|
instream >> pvtRegionIdx;
|
|
|
|
if (!instream.good())
|
|
throw std::runtime_error("Could not deserialize degree of freedom "+std::to_string(dofIdx));
|
|
|
|
SolventModule::deserializeEntity(*this, instream, dof);
|
|
ExtboModule::deserializeEntity(*this, instream, dof);
|
|
PolymerModule::deserializeEntity(*this, instream, dof);
|
|
EnergyModule::deserializeEntity(*this, instream, dof);
|
|
|
|
using PVM = typename PrimaryVariables::PrimaryVarsMeaning;
|
|
priVars.setPrimaryVarsMeaning(static_cast<PVM>(primaryVarsMeaning));
|
|
priVars.setPvtRegionIndex(pvtRegionIdx);
|
|
}
|
|
|
|
/*!
|
|
* \brief Deserializes the state of the model.
|
|
*
|
|
* \tparam Restarter The type of the serializer class
|
|
*
|
|
* \param res The serializer object
|
|
*/
|
|
template <class Restarter>
|
|
void deserialize(Restarter& res)
|
|
{
|
|
ParentType::deserialize(res);
|
|
|
|
// set the PVT indices of the primary variables. This is also done by writing
|
|
// them into the restart file and re-reading them, but it is better to calculate
|
|
// them from scratch because the input could have been changed in this regard...
|
|
ElementContext elemCtx(this->simulator_);
|
|
auto elemIt = this->gridView().template begin</*codim=*/0>();
|
|
auto elemEndIt = this->gridView().template end</*codim=*/0>();
|
|
for (; elemIt != elemEndIt; ++ elemIt) {
|
|
elemCtx.updateStencil(*elemIt);
|
|
for (unsigned dofIdx = 0; dofIdx < elemCtx.numPrimaryDof(/*timIdx=*/0); ++dofIdx) {
|
|
unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, /*timIdx=*/0);
|
|
updatePvtRegionIndex_(this->solution(/*timeIdx=*/0)[globalDofIdx],
|
|
elemCtx,
|
|
dofIdx,
|
|
/*timeIdx=*/0);
|
|
}
|
|
}
|
|
|
|
this->solution(/*timeIdx=*/1) = this->solution(/*timeIdx=*/0);
|
|
}
|
|
|
|
/*
|
|
// hack: this interferes with the static polymorphism trick
|
|
protected:
|
|
friend ParentType;
|
|
friend Discretization;
|
|
*/
|
|
|
|
template <class Context>
|
|
void supplementInitialSolution_(PrimaryVariables& priVars,
|
|
const Context& context,
|
|
unsigned dofIdx,
|
|
unsigned timeIdx)
|
|
{ updatePvtRegionIndex_(priVars, context, dofIdx, timeIdx); }
|
|
|
|
void registerOutputModules_()
|
|
{
|
|
ParentType::registerOutputModules_();
|
|
|
|
// add the VTK output modules which make sense for the blackoil model
|
|
SolventModule::registerOutputModules(*this, this->simulator_);
|
|
PolymerModule::registerOutputModules(*this, this->simulator_);
|
|
EnergyModule::registerOutputModules(*this, this->simulator_);
|
|
MICPModule::registerOutputModules(*this, this->simulator_);
|
|
|
|
this->addOutputModule(new VtkBlackOilModule<TypeTag>(this->simulator_));
|
|
this->addOutputModule(new VtkCompositionModule<TypeTag>(this->simulator_));
|
|
|
|
if constexpr (enableDiffusion)
|
|
this->addOutputModule(new VtkDiffusionModule<TypeTag>(this->simulator_));
|
|
}
|
|
|
|
private:
|
|
|
|
std::vector<Scalar> eqWeights_;
|
|
Implementation& asImp_()
|
|
{ return *static_cast<Implementation*>(this); }
|
|
const Implementation& asImp_() const
|
|
{ return *static_cast<const Implementation*>(this); }
|
|
|
|
template <class Context>
|
|
void updatePvtRegionIndex_(PrimaryVariables& priVars,
|
|
const Context& context,
|
|
unsigned dofIdx,
|
|
unsigned timeIdx)
|
|
{
|
|
unsigned regionIdx = context.problem().pvtRegionIndex(context, dofIdx, timeIdx);
|
|
priVars.setPvtRegionIndex(regionIdx);
|
|
}
|
|
};
|
|
} // namespace Opm
|
|
|
|
#endif
|