mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-11 05:35:33 -06:00
1102 lines
46 KiB
C++
1102 lines
46 KiB
C++
/*
|
|
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
|
|
Copyright 2017 Statoil ASA.
|
|
Copyright 2018 IRIS
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <config.h>
|
|
|
|
#include <opm/simulators/wells/WellBhpThpCalculator.hpp>
|
|
|
|
#include <opm/common/utility/numeric/RootFinders.hpp>
|
|
|
|
#include <opm/input/eclipse/Schedule/VFPInjTable.hpp>
|
|
#include <opm/input/eclipse/Schedule/Well/Well.hpp>
|
|
#include <opm/input/eclipse/Units/Units.hpp>
|
|
#include <opm/input/eclipse/Schedule/Well/WVFPDP.hpp>
|
|
|
|
#include <opm/material/densead/Evaluation.hpp>
|
|
|
|
#include <opm/simulators/utils/BlackoilPhases.hpp>
|
|
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
|
|
|
|
#include <opm/simulators/wells/VFPProperties.hpp>
|
|
#include <opm/simulators/wells/WellHelpers.hpp>
|
|
#include <opm/simulators/wells/WellInterfaceGeneric.hpp>
|
|
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <optional>
|
|
|
|
#include <fmt/format.h>
|
|
|
|
static constexpr bool extraBhpAtThpLimitOutput = false;
|
|
static constexpr bool extraThpFromBhpOutput = false;
|
|
|
|
namespace Opm {
|
|
|
|
template<class Scalar>
|
|
bool WellBhpThpCalculator<Scalar>::
|
|
wellHasTHPConstraints(const SummaryState& summaryState) const
|
|
{
|
|
const auto& well_ecl = well_.wellEcl();
|
|
if (well_ecl.isInjector()) {
|
|
const auto controls = well_ecl.injectionControls(summaryState);
|
|
if (controls.hasControl(Well::InjectorCMode::THP))
|
|
return true;
|
|
}
|
|
|
|
if (well_ecl.isProducer()) {
|
|
const auto controls = well_ecl.productionControls(summaryState);
|
|
if (controls.hasControl(Well::ProducerCMode::THP))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
template<class Scalar>
|
|
Scalar WellBhpThpCalculator<Scalar>::
|
|
getTHPConstraint(const SummaryState& summaryState) const
|
|
{
|
|
const auto& well_ecl = well_.wellEcl();
|
|
if (well_ecl.isInjector()) {
|
|
const auto& controls = well_ecl.injectionControls(summaryState);
|
|
return controls.thp_limit;
|
|
}
|
|
|
|
if (well_ecl.isProducer( )) {
|
|
const auto& controls = well_ecl.productionControls(summaryState);
|
|
return controls.thp_limit;
|
|
}
|
|
|
|
return 0.0;
|
|
}
|
|
|
|
template<class Scalar>
|
|
Scalar WellBhpThpCalculator<Scalar>::
|
|
mostStrictBhpFromBhpLimits(const SummaryState& summaryState) const
|
|
{
|
|
const auto& well_ecl = well_.wellEcl();
|
|
if (well_ecl.isInjector()) {
|
|
const auto& controls = well_ecl.injectionControls(summaryState);
|
|
return controls.bhp_limit;
|
|
}
|
|
|
|
if (well_ecl.isProducer( )) {
|
|
const auto& controls = well_ecl.productionControls(summaryState);
|
|
return controls.bhp_limit;
|
|
}
|
|
|
|
return 0.0;
|
|
}
|
|
|
|
template<class Scalar>
|
|
Scalar WellBhpThpCalculator<Scalar>::
|
|
calculateThpFromBhp(const std::vector<Scalar>& rates,
|
|
const Scalar bhp,
|
|
const Scalar rho,
|
|
const std::optional<Scalar>& alq,
|
|
const Scalar thp_limit,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
assert(int(rates.size()) == 3); // the vfp related only supports three phases now.
|
|
|
|
static constexpr int Water = BlackoilPhases::Aqua;
|
|
static constexpr int Oil = BlackoilPhases::Liquid;
|
|
static constexpr int Gas = BlackoilPhases::Vapour;
|
|
|
|
const Scalar aqua = rates[Water];
|
|
const Scalar liquid = rates[Oil];
|
|
const Scalar vapour = rates[Gas];
|
|
|
|
// pick the density in the top layer
|
|
Scalar thp = 0.0;
|
|
const int table_id = well_.wellEcl().vfp_table_number();
|
|
if (well_.isInjector()) {
|
|
assert(!alq.has_value());
|
|
const Scalar vfp_ref_depth = well_.vfpProperties()->getInj()->getTable(table_id).getDatumDepth();
|
|
const Scalar dp = wellhelpers::computeHydrostaticCorrection(well_.refDepth(), vfp_ref_depth, rho, well_.gravity());
|
|
auto thp_func =
|
|
[this, table_id, aqua, liquid, vapour, dp](
|
|
const Scalar bhp_value, const Scalar pressure_loss) {
|
|
return this->well_.vfpProperties()->getInj()->thp(
|
|
table_id, aqua, liquid, vapour, bhp_value + dp - pressure_loss);
|
|
};
|
|
thp = findThpFromBhpIteratively(thp_func, bhp, thp_limit, dp, deferred_logger);
|
|
}
|
|
else if (well_.isProducer()) {
|
|
const Scalar vfp_ref_depth = well_.vfpProperties()->getProd()->getTable(table_id).getDatumDepth();
|
|
const Scalar dp = wellhelpers::computeHydrostaticCorrection(well_.refDepth(), vfp_ref_depth, rho, well_.gravity());
|
|
const bool use_vfpexp = well_.useVfpExplicit();
|
|
const Scalar wfr = well_.vfpProperties()->getExplicitWFR(table_id, well_.indexOfWell());
|
|
const Scalar gfr = well_.vfpProperties()->getExplicitGFR(table_id, well_.indexOfWell());
|
|
auto thp_func =
|
|
[this, table_id, aqua, liquid, vapour, dp, &alq, wfr, gfr, use_vfpexp]
|
|
(const Scalar bhp_value, const Scalar pressure_loss) {
|
|
return this->well_.vfpProperties()->getProd()->thp(
|
|
table_id, aqua, liquid, vapour, bhp_value + dp - pressure_loss, alq.value(), wfr, gfr, use_vfpexp);
|
|
};
|
|
thp = findThpFromBhpIteratively(thp_func, bhp, thp_limit, dp, deferred_logger);
|
|
}
|
|
else {
|
|
OPM_DEFLOG_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well", deferred_logger);
|
|
}
|
|
return thp;
|
|
}
|
|
|
|
template<class Scalar>
|
|
Scalar WellBhpThpCalculator<Scalar>::
|
|
findThpFromBhpIteratively(const std::function<Scalar(const Scalar, const Scalar)>& thp_func,
|
|
const Scalar bhp,
|
|
const Scalar thp_limit,
|
|
const Scalar dp,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
auto pressure_loss = getVfpBhpAdjustment(bhp + dp, thp_limit);
|
|
auto thp = thp_func(bhp, pressure_loss);
|
|
const Scalar tolerance = 1e-5 * unit::barsa;
|
|
bool do_iterate = true;
|
|
int it = 1;
|
|
int max_iterations = 50;
|
|
while (do_iterate) {
|
|
if (it > max_iterations) {
|
|
break;
|
|
}
|
|
Scalar thp_prev = thp;
|
|
pressure_loss = getVfpBhpAdjustment(bhp + dp - pressure_loss, thp_prev);
|
|
thp = thp_func(bhp, pressure_loss);
|
|
auto error = std::fabs(thp - thp_prev);
|
|
if (extraThpFromBhpOutput) {
|
|
const std::string msg = fmt::format(
|
|
"findThpFromBhpIteratively(): iteration {}, thp = {}, bhp = {}, "
|
|
"pressure_loss = {}, error = {}", it, thp, bhp+dp-pressure_loss, pressure_loss, error);
|
|
deferred_logger.debug(msg);
|
|
}
|
|
if (std::fabs(thp - thp_prev) < tolerance) {
|
|
break;
|
|
}
|
|
it++;
|
|
}
|
|
return thp;
|
|
}
|
|
|
|
template<class Scalar>
|
|
std::optional<Scalar>
|
|
WellBhpThpCalculator<Scalar>::
|
|
computeBhpAtThpLimitProd(const std::function<std::vector<Scalar>(const Scalar)>& frates,
|
|
const SummaryState& summary_state,
|
|
const Scalar maxPerfPress,
|
|
const Scalar rho,
|
|
const Scalar alq_value,
|
|
const Scalar thp_limit,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
// Given a VFP function returning bhp as a function of phase
|
|
// rates and thp:
|
|
// fbhp(rates, thp),
|
|
// a function extracting the particular flow rate used for VFP
|
|
// lookups:
|
|
// flo(rates)
|
|
// and the inflow function (assuming the reservoir is fixed):
|
|
// frates(bhp)
|
|
// we want to solve the equation:
|
|
// fbhp(frates(bhp, thplimit)) - bhp = 0
|
|
// for bhp.
|
|
//
|
|
// This may result in 0, 1 or 2 solutions. If two solutions,
|
|
// the one corresponding to the lowest bhp (and therefore
|
|
// highest rate) should be returned.
|
|
|
|
static constexpr int Water = BlackoilPhases::Aqua;
|
|
static constexpr int Oil = BlackoilPhases::Liquid;
|
|
static constexpr int Gas = BlackoilPhases::Vapour;
|
|
|
|
// Make the fbhp() function.
|
|
const auto& controls = well_.wellEcl().productionControls(summary_state);
|
|
const auto& table = well_.vfpProperties()->getProd()->getTable(controls.vfp_table_number);
|
|
const Scalar vfp_ref_depth = table.getDatumDepth();
|
|
const Scalar dp = wellhelpers::computeHydrostaticCorrection(well_.refDepth(),
|
|
vfp_ref_depth,
|
|
rho,
|
|
well_.gravity());
|
|
|
|
auto fbhp = [this, &controls, thp_limit, dp, alq_value](const std::vector<Scalar>& rates) {
|
|
assert(rates.size() == 3);
|
|
const auto& wfr = well_.vfpProperties()->getExplicitWFR(controls.vfp_table_number,
|
|
well_.indexOfWell());
|
|
const auto& gfr = well_.vfpProperties()->getExplicitGFR(controls.vfp_table_number,
|
|
well_.indexOfWell());
|
|
const bool use_vfpexp = well_.useVfpExplicit();
|
|
const Scalar bhp = well_.vfpProperties()->getProd()->bhp(controls.vfp_table_number,
|
|
rates[Water],
|
|
rates[Oil],
|
|
rates[Gas],
|
|
thp_limit,
|
|
alq_value,
|
|
wfr,
|
|
gfr,
|
|
use_vfpexp);
|
|
return bhp - dp + getVfpBhpAdjustment(bhp, thp_limit);
|
|
};
|
|
|
|
// Make the flo() function.
|
|
auto flo = [&table](const std::vector<Scalar>& rates) {
|
|
return detail::getFlo(table, rates[Water], rates[Oil], rates[Gas]);
|
|
};
|
|
|
|
// Find the bhp-point where production becomes nonzero.
|
|
auto fflo = [&flo, &frates](Scalar bhp) { return flo(frates(bhp)); };
|
|
auto bhp_max = this->bhpMax(fflo,
|
|
controls.bhp_limit,
|
|
maxPerfPress,
|
|
table.getFloAxis().front(),
|
|
deferred_logger);
|
|
|
|
// could not solve for the bhp-point, we could not continue to find the bhp
|
|
if (!bhp_max.has_value()) {
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
|
|
"Robust bhp(thp) solve failed due to not being able to "
|
|
"find bhp-point where production becomes non-zero for well " + well_.name());
|
|
return std::nullopt;
|
|
}
|
|
const std::array<Scalar, 2> range {static_cast<Scalar>(controls.bhp_limit), *bhp_max};
|
|
return this->computeBhpAtThpLimit(frates, fbhp, range, deferred_logger);
|
|
}
|
|
|
|
template<class Scalar>
|
|
std::optional<Scalar>
|
|
WellBhpThpCalculator<Scalar>::
|
|
computeBhpAtThpLimitInj(const std::function<std::vector<Scalar>(const Scalar)>& frates,
|
|
const SummaryState& summary_state,
|
|
const Scalar rho,
|
|
const Scalar flo_rel_tol,
|
|
const int max_iteration,
|
|
const bool throwOnError,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
if (throwOnError) {
|
|
return computeBhpAtThpLimitInjImpl<ThrowOnError>(frates, summary_state,
|
|
rho, flo_rel_tol,
|
|
max_iteration, deferred_logger);
|
|
} else {
|
|
return computeBhpAtThpLimitInjImpl<WarnAndContinueOnError>(frates, summary_state,
|
|
rho, flo_rel_tol,
|
|
max_iteration, deferred_logger);
|
|
}
|
|
}
|
|
|
|
template<class Scalar>
|
|
void WellBhpThpCalculator<Scalar>::
|
|
updateThp(const Scalar rho,
|
|
const bool stop_or_zero_rate_target,
|
|
const std::function<Scalar()>& alq_value,
|
|
const std::array<unsigned,3>& active,
|
|
WellState<Scalar>& well_state,
|
|
const SummaryState& summary_state,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
static constexpr int Gas = BlackoilPhases::Vapour;
|
|
static constexpr int Oil = BlackoilPhases::Liquid;
|
|
static constexpr int Water = BlackoilPhases::Aqua;
|
|
auto& ws = well_state.well(well_.indexOfWell());
|
|
|
|
// When there is no vaild VFP table provided, we set the thp to be zero.
|
|
if (!well_.isVFPActive(deferred_logger) || stop_or_zero_rate_target) {
|
|
ws.thp = 0;
|
|
return;
|
|
}
|
|
// For THP controlled wells, we know the thp value
|
|
bool thp_controlled = well_.isInjector() ? ws.injection_cmode == Well::InjectorCMode::THP:
|
|
ws.production_cmode == Well::ProducerCMode::THP;
|
|
if (thp_controlled) {
|
|
return;
|
|
}
|
|
|
|
// the well is under other control types, we calculate the thp based on bhp and rates
|
|
std::vector<Scalar> rates(3, 0.0);
|
|
|
|
const PhaseUsage& pu = well_.phaseUsage();
|
|
if (active[Water]) {
|
|
rates[ Water ] = ws.surface_rates[pu.phase_pos[ Water ] ];
|
|
}
|
|
if (active[Oil]) {
|
|
rates[ Oil ] = ws.surface_rates[pu.phase_pos[ Oil ] ];
|
|
}
|
|
if (active[Gas]) {
|
|
rates[ Gas ] = ws.surface_rates[pu.phase_pos[ Gas ] ];
|
|
}
|
|
const std::optional<Scalar> alq = this->well_.isProducer() ? std::optional<Scalar>(alq_value()) : std::nullopt;
|
|
const Scalar thp_limit = well_.getTHPConstraint(summary_state);
|
|
ws.thp = this->calculateThpFromBhp(rates, ws.bhp, rho, alq, thp_limit, deferred_logger);
|
|
}
|
|
|
|
template<class Scalar>
|
|
template<class EvalWell>
|
|
EvalWell WellBhpThpCalculator<Scalar>::
|
|
calculateBhpFromThp(const WellState<Scalar>& well_state,
|
|
const std::vector<EvalWell>& rates,
|
|
const Well& well,
|
|
const SummaryState& summaryState,
|
|
const Scalar rho,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
// TODO: when well is under THP control, the BHP is dependent on the rates,
|
|
// the well rates is also dependent on the BHP, so it might need to do some iteration.
|
|
// However, when group control is involved, change of the rates might impacts other wells
|
|
// so iterations on a higher level will be required. Some investigation might be needed when
|
|
// we face problems under THP control.
|
|
|
|
assert(int(rates.size()) == 3); // the vfp related only supports three phases now.
|
|
|
|
static constexpr int Gas = BlackoilPhases::Vapour;
|
|
static constexpr int Oil = BlackoilPhases::Liquid;
|
|
static constexpr int Water = BlackoilPhases::Aqua;
|
|
|
|
const EvalWell aqua = rates[Water];
|
|
const EvalWell liquid = rates[Oil];
|
|
const EvalWell vapour = rates[Gas];
|
|
const Scalar thp_limit = well_.getTHPConstraint(summaryState);
|
|
Scalar vfp_ref_depth;
|
|
EvalWell bhp_tab;
|
|
if (well_.isInjector() )
|
|
{
|
|
const auto& controls = well.injectionControls(summaryState);
|
|
vfp_ref_depth = well_.vfpProperties()->getInj()->getTable(controls.vfp_table_number).getDatumDepth();
|
|
bhp_tab = well_.vfpProperties()->getInj()->bhp(
|
|
controls.vfp_table_number, aqua, liquid, vapour, thp_limit);
|
|
}
|
|
else if (well_.isProducer()) {
|
|
const auto& controls = well.productionControls(summaryState);
|
|
vfp_ref_depth = well_.vfpProperties()->getProd()->getTable(controls.vfp_table_number).getDatumDepth();
|
|
const auto& wfr = well_.vfpProperties()->getExplicitWFR(controls.vfp_table_number, well_.indexOfWell());
|
|
const auto& gfr = well_.vfpProperties()->getExplicitGFR(controls.vfp_table_number, well_.indexOfWell());
|
|
const bool use_vfpexplicit = well_.useVfpExplicit();
|
|
|
|
bhp_tab = well_.vfpProperties()->getProd()->bhp(controls.vfp_table_number,
|
|
aqua, liquid, vapour,
|
|
thp_limit,
|
|
well_.getALQ(well_state),
|
|
wfr, gfr, use_vfpexplicit);
|
|
}
|
|
else {
|
|
OPM_DEFLOG_THROW(std::logic_error, "Expected INJECTOR or PRODUCER for well " + well_.name(), deferred_logger);
|
|
}
|
|
Scalar bhp_tab_double_value;
|
|
if constexpr (std::is_same_v<EvalWell, Scalar>) {
|
|
bhp_tab_double_value = bhp_tab;
|
|
}
|
|
else { // EvalWell and bhp_tab is of type DenseAd::Evaluation<double,...,...>
|
|
bhp_tab_double_value = bhp_tab.value();
|
|
}
|
|
const auto bhp_adjustment = getVfpBhpAdjustment(bhp_tab_double_value, thp_limit);
|
|
const Scalar dp_hydro = wellhelpers::computeHydrostaticCorrection(well_.refDepth(),
|
|
vfp_ref_depth,
|
|
rho,
|
|
well_.gravity());
|
|
return bhp_tab - dp_hydro + bhp_adjustment;
|
|
}
|
|
|
|
template<class Scalar>
|
|
Scalar WellBhpThpCalculator<Scalar>::
|
|
calculateMinimumBhpFromThp(const WellState<Scalar>& well_state,
|
|
const Well& well,
|
|
const SummaryState& summaryState,
|
|
const Scalar rho) const
|
|
{
|
|
assert(well_.isProducer()); // only producers can go here for now
|
|
|
|
const Scalar thp_limit = well_.getTHPConstraint(summaryState);
|
|
|
|
const auto& controls = well.productionControls(summaryState);
|
|
const auto& wfr = well_.vfpProperties()->getExplicitWFR(controls.vfp_table_number, well_.indexOfWell());
|
|
const auto& gfr = well_.vfpProperties()->getExplicitGFR(controls.vfp_table_number, well_.indexOfWell());
|
|
|
|
const Scalar bhp_min = well_.vfpProperties()->getProd()->minimumBHP(controls.vfp_table_number,
|
|
thp_limit, wfr, gfr,
|
|
well_.getALQ(well_state));
|
|
|
|
const Scalar vfp_ref_depth = well_.vfpProperties()->getProd()->getTable(controls.vfp_table_number).getDatumDepth();
|
|
const auto bhp_adjustment = getVfpBhpAdjustment(bhp_min, thp_limit);
|
|
const Scalar dp_hydro = wellhelpers::computeHydrostaticCorrection(well_.refDepth(), vfp_ref_depth,
|
|
rho, well_.gravity());
|
|
return bhp_min - dp_hydro + bhp_adjustment;
|
|
}
|
|
|
|
template<class Scalar>
|
|
Scalar WellBhpThpCalculator<Scalar>::
|
|
getVfpBhpAdjustment(const Scalar bhp_tab, const Scalar thp_limit) const
|
|
{
|
|
return well_.wellEcl().getWVFPDP().getPressureLoss(bhp_tab, thp_limit);
|
|
}
|
|
|
|
template<class Scalar>
|
|
template<class ErrorPolicy>
|
|
std::optional<Scalar>
|
|
WellBhpThpCalculator<Scalar>::
|
|
computeBhpAtThpLimitInjImpl(const std::function<std::vector<Scalar>(const Scalar)>& frates,
|
|
const SummaryState& summary_state,
|
|
const Scalar rho,
|
|
const Scalar flo_rel_tol,
|
|
const int max_iteration,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
// Given a VFP function returning bhp as a function of phase
|
|
// rates and thp:
|
|
// fbhp(rates, thp),
|
|
// a function extracting the particular flow rate used for VFP
|
|
// lookups:
|
|
// flo(rates)
|
|
// and the inflow function (assuming the reservoir is fixed):
|
|
// frates(bhp)
|
|
// we want to solve the equation:
|
|
// fbhp(frates(bhp, thplimit)) - bhp = 0
|
|
// for bhp.
|
|
//
|
|
// This may result in 0, 1 or 2 solutions. If two solutions,
|
|
// the one corresponding to the lowest bhp (and therefore
|
|
// highest rate) is returned.
|
|
//
|
|
// In order to detect these situations, we will find piecewise
|
|
// linear approximations both to the inverse of the frates
|
|
// function and to the fbhp function.
|
|
//
|
|
// We first take the FLO sample points of the VFP curve, and
|
|
// find the corresponding bhp values by solving the equation:
|
|
// flo(frates(bhp)) - flo_sample = 0
|
|
// for bhp, for each flo_sample. The resulting (flo_sample,
|
|
// bhp_sample) values give a piecewise linear approximation to
|
|
// the true inverse inflow function, at the same flo values as
|
|
// the VFP data.
|
|
//
|
|
// Then we extract a piecewise linear approximation from the
|
|
// multilinear fbhp() by evaluating it at the flo_sample
|
|
// points, with fractions given by the frates(bhp_sample)
|
|
// values.
|
|
//
|
|
// When we have both piecewise linear curves defined on the
|
|
// same flo_sample points, it is easy to distinguish between
|
|
// the 0, 1 or 2 solution cases, and obtain the right interval
|
|
// in which to solve for the solution we want (with highest
|
|
// flow in case of 2 solutions).
|
|
|
|
static constexpr int Water = BlackoilPhases::Aqua;
|
|
static constexpr int Oil = BlackoilPhases::Liquid;
|
|
static constexpr int Gas = BlackoilPhases::Vapour;
|
|
|
|
// Make the fbhp() function.
|
|
const auto& controls = well_.wellEcl().injectionControls(summary_state);
|
|
const auto& table = well_.vfpProperties()->getInj()->getTable(controls.vfp_table_number);
|
|
const Scalar vfp_ref_depth = table.getDatumDepth();
|
|
const Scalar thp_limit = this->getTHPConstraint(summary_state);
|
|
const Scalar dp = wellhelpers::computeHydrostaticCorrection(well_.refDepth(),
|
|
vfp_ref_depth,
|
|
rho, well_.gravity());
|
|
auto fbhp = [this, &controls, thp_limit, dp](const std::vector<Scalar>& rates) {
|
|
assert(rates.size() == 3);
|
|
const auto bhp = well_.vfpProperties()->getInj()
|
|
->bhp(controls.vfp_table_number, rates[Water], rates[Oil], rates[Gas], thp_limit);
|
|
return bhp - dp + getVfpBhpAdjustment(bhp, thp_limit);
|
|
};
|
|
|
|
// Make the flo() function.
|
|
auto flo = [&table](const std::vector<Scalar>& rates) {
|
|
return detail::getFlo(table, rates[Water], rates[Oil], rates[Gas]);
|
|
};
|
|
|
|
// Get the flo samples, add extra samples at low rates and bhp
|
|
// limit point if necessary.
|
|
std::vector<double> flo_samples = table.getFloAxis();
|
|
if (flo_samples[0] > 0.0) {
|
|
const double f0 = flo_samples[0];
|
|
flo_samples.insert(flo_samples.begin(), { f0/20.0, f0/10.0, f0/5.0, f0/2.0 });
|
|
}
|
|
const Scalar flo_bhp_limit = flo(frates(controls.bhp_limit));
|
|
if (flo_samples.back() < flo_bhp_limit) {
|
|
flo_samples.push_back(flo_bhp_limit);
|
|
}
|
|
|
|
// Find bhp values for inflow relation corresponding to flo samples.
|
|
std::vector<Scalar> bhp_samples;
|
|
for (Scalar flo_sample : flo_samples) {
|
|
if (flo_sample > flo_bhp_limit) {
|
|
// We would have to go over the bhp limit to obtain a
|
|
// flow of this magnitude. We associate all such flows
|
|
// with simply the bhp limit. The first one
|
|
// encountered is considered valid, the rest not. They
|
|
// are therefore skipped.
|
|
bhp_samples.push_back(controls.bhp_limit);
|
|
break;
|
|
}
|
|
auto eq = [&flo, &frates, flo_sample](Scalar bhp) {
|
|
return flo(frates(bhp)) - flo_sample;
|
|
};
|
|
// TODO: replace hardcoded low/high limits.
|
|
const Scalar low = 10.0 * unit::barsa;
|
|
const Scalar high = 800.0 * unit::barsa;
|
|
const Scalar flo_tolerance = flo_rel_tol * std::fabs(flo_samples.back());
|
|
int iteration = 0;
|
|
try {
|
|
const Scalar solved_bhp = RegulaFalsiBisection<ErrorPolicy>::
|
|
solve(eq, low, high, max_iteration, flo_tolerance, iteration);
|
|
bhp_samples.push_back(solved_bhp);
|
|
}
|
|
catch (...) {
|
|
// Use previous value (or max value if at start) if we failed.
|
|
bhp_samples.push_back(bhp_samples.empty() ? low : bhp_samples.back());
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_EXTRACT_SAMPLES",
|
|
"Robust bhp(thp) solve failed extracting bhp values at flo samples for well " + well_.name());
|
|
}
|
|
}
|
|
|
|
// Find bhp values for VFP relation corresponding to flo samples.
|
|
const int num_samples = bhp_samples.size(); // Note that this can be smaller than flo_samples.size()
|
|
std::vector<Scalar> fbhp_samples(num_samples);
|
|
for (int ii = 0; ii < num_samples; ++ii) {
|
|
fbhp_samples[ii] = fbhp(frates(bhp_samples[ii]));
|
|
}
|
|
if constexpr (extraBhpAtThpLimitOutput) {
|
|
std::string dbgmsg;
|
|
dbgmsg += "flo: ";
|
|
for (int ii = 0; ii < num_samples; ++ii) {
|
|
dbgmsg += " " + std::to_string(flo_samples[ii]);
|
|
}
|
|
dbgmsg += "\nbhp: ";
|
|
for (int ii = 0; ii < num_samples; ++ii) {
|
|
dbgmsg += " " + std::to_string(bhp_samples[ii]);
|
|
}
|
|
dbgmsg += "\nfbhp: ";
|
|
for (int ii = 0; ii < num_samples; ++ii) {
|
|
dbgmsg += " " + std::to_string(fbhp_samples[ii]);
|
|
}
|
|
OpmLog::debug(dbgmsg);
|
|
}
|
|
|
|
// Look for sign changes for the (fbhp_samples - bhp_samples) piecewise linear curve.
|
|
// We only look at the valid
|
|
int sign_change_index = -1;
|
|
for (int ii = 0; ii < num_samples - 1; ++ii) {
|
|
const Scalar curr = fbhp_samples[ii] - bhp_samples[ii];
|
|
const Scalar next = fbhp_samples[ii + 1] - bhp_samples[ii + 1];
|
|
if (curr * next < 0.0) {
|
|
// Sign change in the [ii, ii + 1] interval.
|
|
sign_change_index = ii; // May overwrite, thereby choosing the highest-flo solution.
|
|
}
|
|
}
|
|
|
|
// Handle the no solution case.
|
|
if (sign_change_index == -1) {
|
|
return std::nullopt;
|
|
}
|
|
|
|
// Solve for the proper solution in the given interval.
|
|
auto eq = [&fbhp, &frates](Scalar bhp) {
|
|
return fbhp(frates(bhp)) - bhp;
|
|
};
|
|
// TODO: replace hardcoded low/high limits.
|
|
const Scalar low = bhp_samples[sign_change_index + 1];
|
|
const Scalar high = bhp_samples[sign_change_index];
|
|
const Scalar bhp_tolerance = 0.01 * unit::barsa;
|
|
int iteration = 0;
|
|
if (low == high) {
|
|
// We are in the high flow regime where the bhp_samples
|
|
// are all equal to the bhp_limit.
|
|
assert(low == controls.bhp_limit);
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
|
|
"Robust bhp(thp) solve failed for well " + well_.name());
|
|
return std::nullopt;
|
|
}
|
|
try {
|
|
const Scalar solved_bhp = RegulaFalsiBisection<ErrorPolicy>::
|
|
solve(eq, low, high, max_iteration, bhp_tolerance, iteration);
|
|
if constexpr (extraBhpAtThpLimitOutput) {
|
|
OpmLog::debug("***** " + well_.name() + " solved_bhp = " + std::to_string(solved_bhp)
|
|
+ " flo_bhp_limit = " + std::to_string(flo_bhp_limit));
|
|
}
|
|
return solved_bhp;
|
|
}
|
|
catch (...) {
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
|
|
"Robust bhp(thp) solve failed for well " + well_.name());
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
|
|
template<class Scalar>
|
|
std::optional<Scalar>
|
|
WellBhpThpCalculator<Scalar>::
|
|
bhpMax(const std::function<Scalar(const Scalar)>& fflo,
|
|
const Scalar bhp_limit,
|
|
const Scalar maxPerfPress,
|
|
const Scalar vfp_flo_front,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
// Find the bhp-point where production becomes nonzero.
|
|
Scalar bhp_max = 0.0;
|
|
Scalar low = bhp_limit;
|
|
Scalar high = maxPerfPress + 1.0 * unit::barsa;
|
|
Scalar f_low = fflo(low);
|
|
Scalar f_high = fflo(high);
|
|
if constexpr (extraBhpAtThpLimitOutput) {
|
|
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + well_.name() +
|
|
" low = " + std::to_string(low) +
|
|
" high = " + std::to_string(high) +
|
|
" f(low) = " + std::to_string(f_low) +
|
|
" f(high) = " + std::to_string(f_high));
|
|
}
|
|
int adjustments = 0;
|
|
const int max_adjustments = 10;
|
|
const Scalar adjust_amount = 5.0 * unit::barsa;
|
|
while (f_low * f_high > 0.0 && adjustments < max_adjustments) {
|
|
// Same sign, adjust high to see if we can flip it.
|
|
high += adjust_amount;
|
|
f_high = fflo(high);
|
|
++adjustments;
|
|
}
|
|
if (f_low * f_high > 0.0) {
|
|
if (f_low > 0.0) {
|
|
// Even at the BHP limit, we are injecting.
|
|
// There will be no solution here, return an
|
|
// empty optional.
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
|
|
"Robust bhp(thp) solve failed due to inoperability for well " + well_.name());
|
|
return std::nullopt;
|
|
} else {
|
|
// Still producing, even at high bhp.
|
|
assert(f_high < 0.0);
|
|
bhp_max = high;
|
|
}
|
|
} else {
|
|
// Bisect to find a bhp point where we produce, but
|
|
// not a large amount ('eps' below).
|
|
const Scalar eps = 0.1 * std::fabs(vfp_flo_front);
|
|
const int maxit = 50;
|
|
int it = 0;
|
|
while (std::fabs(f_low) > eps && it < maxit) {
|
|
const Scalar curr = 0.5*(low + high);
|
|
const Scalar f_curr = fflo(curr);
|
|
if (f_curr * f_low > 0.0) {
|
|
low = curr;
|
|
f_low = f_curr;
|
|
} else {
|
|
high = curr;
|
|
f_high = f_curr;
|
|
}
|
|
++it;
|
|
}
|
|
if (it < maxit) {
|
|
bhp_max = low;
|
|
} else {
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
|
|
"Bisect did not find the bhp-point where we produce for well " + well_.name());
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
if constexpr (extraBhpAtThpLimitOutput) {
|
|
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + well_.name() +
|
|
" low = " + std::to_string(low) +
|
|
" high = " + std::to_string(high) +
|
|
" f(low) = " + std::to_string(f_low) +
|
|
" f(high) = " + std::to_string(f_high) +
|
|
" bhp_max = " + std::to_string(bhp_max));
|
|
}
|
|
return bhp_max;
|
|
}
|
|
|
|
template<class Scalar>
|
|
std::optional<Scalar>
|
|
WellBhpThpCalculator<Scalar>::
|
|
computeBhpAtThpLimit(const std::function<std::vector<Scalar>(const Scalar)>& frates,
|
|
const std::function<Scalar(const std::vector<Scalar>)>& fbhp,
|
|
const std::array<Scalar, 2>& range,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
// Given a VFP function returning bhp as a function of phase
|
|
// rates and thp:
|
|
// fbhp(rates, thp),
|
|
// a function extracting the particular flow rate used for VFP
|
|
// lookups:
|
|
// flo(rates)
|
|
// and the inflow function (assuming the reservoir is fixed):
|
|
// frates(bhp)
|
|
// we want to solve the equation:
|
|
// fbhp(frates(bhp, thplimit)) - bhp = 0
|
|
// for bhp.
|
|
//
|
|
// This may result in 0, 1 or 2 solutions. If two solutions,
|
|
// the one corresponding to the lowest bhp (and therefore
|
|
// highest rate) should be returned.
|
|
|
|
// Define the equation we want to solve.
|
|
auto eq = [&fbhp, &frates](Scalar bhp) {
|
|
return fbhp(frates(bhp)) - bhp;
|
|
};
|
|
|
|
// Find appropriate brackets for the solution.
|
|
std::optional<Scalar> approximate_solution;
|
|
Scalar low, high;
|
|
// trying to use bisect way to locate a bracket
|
|
bool finding_bracket = this->bisectBracket(eq, range, low, high,
|
|
approximate_solution, deferred_logger);
|
|
|
|
// based on the origional design, if an approximate solution is suggested, we use this value directly
|
|
// in the long run, we might change it
|
|
if (approximate_solution.has_value()) {
|
|
return *approximate_solution;
|
|
}
|
|
|
|
if (!finding_bracket) {
|
|
deferred_logger.debug(" Trying the brute force search to bracket the bhp for last attempt ");
|
|
finding_bracket = this->bruteForceBracket(eq, range, low, high, deferred_logger);
|
|
}
|
|
|
|
if (!finding_bracket) {
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
|
|
"Robust bhp(thp) solve failed due to not being able to "
|
|
"bracket the bhp solution with the brute force search for " + well_.name());
|
|
return std::nullopt;
|
|
}
|
|
|
|
// Solve for the proper solution in the given interval.
|
|
const int max_iteration = 100;
|
|
const Scalar bhp_tolerance = 0.01 * unit::barsa;
|
|
int iteration = 0;
|
|
try {
|
|
const Scalar solved_bhp = RegulaFalsiBisection<ThrowOnError>::
|
|
solve(eq, low, high, max_iteration, bhp_tolerance, iteration);
|
|
return solved_bhp;
|
|
}
|
|
catch (...) {
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
|
|
"Robust bhp(thp) solve failed for well " + well_.name());
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
|
|
template<class Scalar>
|
|
bool WellBhpThpCalculator<Scalar>::
|
|
bisectBracket(const std::function<Scalar(const Scalar)>& eq,
|
|
const std::array<Scalar, 2>& range,
|
|
Scalar& low, Scalar& high,
|
|
std::optional<Scalar>& approximate_solution,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
bool finding_bracket = false;
|
|
low = range[0];
|
|
high = range[1];
|
|
|
|
Scalar eq_high = eq(high);
|
|
Scalar eq_low = eq(low);
|
|
const Scalar eq_bhplimit = eq_low;
|
|
if constexpr (extraBhpAtThpLimitOutput) {
|
|
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + well_.name() +
|
|
" low = " + std::to_string(low) +
|
|
" high = " + std::to_string(high) +
|
|
" eq(low) = " + std::to_string(eq_low) +
|
|
" eq(high) = " + std::to_string(eq_high));
|
|
}
|
|
if (eq_low * eq_high > 0.0) {
|
|
// Failed to bracket the zero.
|
|
// If this is due to having two solutions, bisect until bracketed.
|
|
Scalar abs_low = std::fabs(eq_low);
|
|
Scalar abs_high = std::fabs(eq_high);
|
|
int bracket_attempts = 0;
|
|
const int max_bracket_attempts = 20;
|
|
Scalar interval = high - low;
|
|
const Scalar min_interval = 1.0 * unit::barsa;
|
|
while (eq_low * eq_high > 0.0 && bracket_attempts < max_bracket_attempts && interval > min_interval) {
|
|
if (abs_high < abs_low) {
|
|
low = 0.5 * (low + high);
|
|
eq_low = eq(low);
|
|
abs_low = std::fabs(eq_low);
|
|
} else {
|
|
high = 0.5 * (low + high);
|
|
eq_high = eq(high);
|
|
abs_high = std::fabs(eq_high);
|
|
}
|
|
interval = high - low;
|
|
++bracket_attempts;
|
|
}
|
|
|
|
if (eq_low * eq_high <= 0.) {
|
|
// We have a bracket!
|
|
finding_bracket = true;
|
|
// Now, see if (bhplimit, low) is a bracket in addition to (low, high).
|
|
// If so, that is the bracket we shall use, choosing the solution with the
|
|
// highest flow.
|
|
if (eq_low * eq_bhplimit <= 0.0) {
|
|
high = low;
|
|
low = range[0];
|
|
}
|
|
} else { // eq_low * eq_high > 0.0
|
|
// Still failed bracketing!
|
|
const Scalar limit = 0.1 * unit::barsa;
|
|
if (std::min(abs_low, abs_high) < limit) {
|
|
// Return the least bad solution if less off than 0.1 bar.
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_BRACKETING_FAILURE",
|
|
"Robust bhp(thp) not solved precisely for well " + well_.name());
|
|
approximate_solution = abs_low < abs_high ? low : high;
|
|
} else {
|
|
// Return failure.
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_BRACKETING_FAILURE",
|
|
"Robust bhp(thp) solve failed due to bracketing failure for well " +
|
|
well_.name());
|
|
}
|
|
}
|
|
} else {
|
|
finding_bracket = true;
|
|
}
|
|
return finding_bracket;
|
|
}
|
|
|
|
template<class Scalar>
|
|
bool WellBhpThpCalculator<Scalar>::
|
|
bruteForceBracket(const std::function<Scalar(const Scalar)>& eq,
|
|
const std::array<Scalar, 2>& range,
|
|
Scalar& low, Scalar& high,
|
|
DeferredLogger& deferred_logger)
|
|
{
|
|
bool bracket_found = false;
|
|
low = range[0];
|
|
high = range[1];
|
|
const int sample_number = 200;
|
|
const Scalar interval = (high - low) / sample_number;
|
|
Scalar eq_low = eq(low);
|
|
Scalar eq_high = 0.0;
|
|
for (int i = 0; i < sample_number + 1; ++i) {
|
|
high = range[0] + interval * i;
|
|
eq_high = eq(high);
|
|
if (eq_high * eq_low <= 0.) {
|
|
bracket_found = true;
|
|
break;
|
|
}
|
|
low = high;
|
|
eq_low = eq_high;
|
|
}
|
|
if (bracket_found) {
|
|
deferred_logger.debug(
|
|
" brute force solve found low " + std::to_string(low) + " with eq_low " + std::to_string(eq_low) +
|
|
" high " + std::to_string(high) + " with eq_high " + std::to_string(eq_high));
|
|
}
|
|
return bracket_found;
|
|
}
|
|
|
|
template<class Scalar>
|
|
bool WellBhpThpCalculator<Scalar>::
|
|
isStableSolution(const WellState<Scalar>& well_state,
|
|
const Well& well,
|
|
const std::vector<Scalar>& rates,
|
|
const SummaryState& summaryState) const
|
|
{
|
|
assert(int(rates.size()) == 3); // the vfp related only supports three phases now.
|
|
assert(well_.isProducer()); // only valid for producers
|
|
|
|
static constexpr int Gas = BlackoilPhases::Vapour;
|
|
static constexpr int Oil = BlackoilPhases::Liquid;
|
|
static constexpr int Water = BlackoilPhases::Aqua;
|
|
|
|
const Scalar aqua = rates[Water];
|
|
const Scalar liquid = rates[Oil];
|
|
const Scalar vapour = rates[Gas];
|
|
const Scalar thp = well_.getTHPConstraint(summaryState);
|
|
|
|
const auto& controls = well.productionControls(summaryState);
|
|
const auto& wfr = well_.vfpProperties()->getExplicitWFR(controls.vfp_table_number, well_.indexOfWell());
|
|
const auto& gfr = well_.vfpProperties()->getExplicitGFR(controls.vfp_table_number, well_.indexOfWell());
|
|
|
|
const auto& table = well_.vfpProperties()->getProd()->getTable(controls.vfp_table_number);
|
|
const bool use_vfpexplicit = well_.useVfpExplicit();
|
|
|
|
auto bhp = VFPHelpers<double>::bhp(table, aqua, liquid, vapour, thp,
|
|
well_.getALQ(well_state), wfr, gfr,
|
|
use_vfpexplicit);
|
|
|
|
if (bhp.dflo >= 0) {
|
|
return true;
|
|
} else { // maybe check if ipr is available
|
|
const auto ipr = getFloIPR(well_state, well, summaryState);
|
|
return bhp.dflo + 1.0 / ipr.second >= 0;
|
|
}
|
|
}
|
|
|
|
template<class Scalar>
|
|
std::optional<Scalar> WellBhpThpCalculator<Scalar>::
|
|
estimateStableBhp(const WellState<Scalar>& well_state,
|
|
const Well& well,
|
|
const std::vector<Scalar>& rates,
|
|
const Scalar rho,
|
|
const SummaryState& summaryState) const
|
|
{
|
|
// Given a *converged* well_state with ipr, estimate bhp of the stable solution
|
|
const auto& controls = well.productionControls(summaryState);
|
|
const Scalar thp = well_.getTHPConstraint(summaryState);
|
|
const auto& table = well_.vfpProperties()->getProd()->getTable(controls.vfp_table_number);
|
|
|
|
const Scalar aqua = rates[BlackoilPhases::Aqua];
|
|
const Scalar liquid = rates[BlackoilPhases::Liquid];
|
|
const Scalar vapour = rates[BlackoilPhases::Vapour];
|
|
Scalar flo = detail::getFlo(table, aqua, liquid, vapour);
|
|
Scalar wfr, gfr;
|
|
if (well_.useVfpExplicit() || -flo < table.getFloAxis().front()) {
|
|
wfr = well_.vfpProperties()->getExplicitWFR(controls.vfp_table_number, well_.indexOfWell());
|
|
gfr = well_.vfpProperties()->getExplicitGFR(controls.vfp_table_number, well_.indexOfWell());
|
|
} else {
|
|
wfr = detail::getWFR(table, aqua, liquid, vapour);
|
|
gfr = detail::getGFR(table, aqua, liquid, vapour);
|
|
}
|
|
|
|
auto ipr = getFloIPR(well_state, well, summaryState);
|
|
|
|
const Scalar vfp_ref_depth = well_.vfpProperties()->getProd()->getTable(controls.vfp_table_number).getDatumDepth();
|
|
|
|
const Scalar dp_hydro = wellhelpers::computeHydrostaticCorrection(well_.refDepth(), vfp_ref_depth,
|
|
rho, well_.gravity());
|
|
auto bhp_adjusted = [this, &thp, &dp_hydro](const Scalar bhp) {
|
|
return bhp - dp_hydro + getVfpBhpAdjustment(bhp, thp);
|
|
};
|
|
const auto retval = VFPHelpers<double>::intersectWithIPR(table, thp, wfr, gfr,
|
|
well_.getALQ(well_state),
|
|
ipr.first, ipr.second,
|
|
bhp_adjusted);
|
|
if (retval.has_value()) {
|
|
// returned pair is (flo, bhp)
|
|
return retval.value().second;
|
|
} else {
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
|
|
template<class Scalar>
|
|
std::pair<Scalar, Scalar> WellBhpThpCalculator<Scalar>::
|
|
getFloIPR(const WellState<Scalar>& well_state,
|
|
const Well& well,
|
|
const SummaryState& summary_state) const
|
|
{
|
|
// Convert ipr_a's and ipr_b's to our particular choice of FLO
|
|
const auto& controls = well.productionControls(summary_state);
|
|
const auto& table = well_.vfpProperties()->getProd()->getTable(controls.vfp_table_number);
|
|
const auto& pu = well_.phaseUsage();
|
|
const auto& ipr_a = well_state.well(well_.indexOfWell()).implicit_ipr_a;
|
|
const Scalar& aqua_a = pu.phase_used[BlackoilPhases::Aqua]? ipr_a[pu.phase_pos[BlackoilPhases::Aqua]] : 0.0;
|
|
const Scalar& liquid_a = pu.phase_used[BlackoilPhases::Liquid]? ipr_a[pu.phase_pos[BlackoilPhases::Liquid]] : 0.0;
|
|
const Scalar& vapour_a = pu.phase_used[BlackoilPhases::Vapour]? ipr_a[pu.phase_pos[BlackoilPhases::Vapour]] : 0.0;
|
|
const auto& ipr_b = well_state.well(well_.indexOfWell()).implicit_ipr_b;
|
|
const Scalar& aqua_b = pu.phase_used[BlackoilPhases::Aqua]? ipr_b[pu.phase_pos[BlackoilPhases::Aqua]] : 0.0;
|
|
const Scalar& liquid_b = pu.phase_used[BlackoilPhases::Liquid]? ipr_b[pu.phase_pos[BlackoilPhases::Liquid]] : 0.0;
|
|
const Scalar& vapour_b = pu.phase_used[BlackoilPhases::Vapour]? ipr_b[pu.phase_pos[BlackoilPhases::Vapour]] : 0.0;
|
|
// The getFlo helper is indended to pick one or add two of the phase rates (depending on FLO-type),
|
|
// but we can equally use it to pick/add the corresponding ipr_a, ipr_b
|
|
return std::make_pair(detail::getFlo(table, aqua_a, liquid_a, vapour_a),
|
|
detail::getFlo(table, aqua_b, liquid_b, vapour_b));
|
|
}
|
|
|
|
template<class Scalar>
|
|
bool
|
|
WellBhpThpCalculator<Scalar>::
|
|
bruteForceBracketCommonTHP(const std::function<Scalar(const Scalar)>& eq,
|
|
const std::array<Scalar, 2>& range,
|
|
Scalar& low, Scalar& high,
|
|
std::optional<Scalar>& approximate_solution,
|
|
const Scalar& limit,
|
|
DeferredLogger& deferred_logger)
|
|
{
|
|
bool bracket_found = false;
|
|
low = range[0];
|
|
high = range[1];
|
|
const int sample_number = 300;
|
|
const Scalar interval = (high - low) / sample_number;
|
|
Scalar eq_low = eq(low);
|
|
Scalar eq_high = 0.0;
|
|
for (int i = 0; i < sample_number + 1; ++i) {
|
|
high = range[0] + interval * i;
|
|
eq_high = eq(high);
|
|
if ( (std::fabs(eq_high) < limit)) {
|
|
approximate_solution = high;
|
|
break;
|
|
}
|
|
if (eq_high * eq_low <= 0.) {
|
|
bracket_found = true;
|
|
break;
|
|
}
|
|
low = high;
|
|
eq_low = eq_high;
|
|
}
|
|
|
|
if (bracket_found) {
|
|
deferred_logger.debug(
|
|
" brute force solve found low " + std::to_string(low) + " with eq_low " + std::to_string(eq_low) +
|
|
" high " + std::to_string(high) + " with eq_high " + std::to_string(eq_high));
|
|
}
|
|
return bracket_found;
|
|
}
|
|
|
|
template<class Scalar>
|
|
bool
|
|
WellBhpThpCalculator<Scalar>::
|
|
bruteForceBracketCommonTHP(const std::function<Scalar(const Scalar)>& eq,
|
|
Scalar& min_thp, Scalar& max_thp)
|
|
{
|
|
bool bracket_found = false;
|
|
constexpr int sample_number = 1000;
|
|
constexpr Scalar interval = 1E5;
|
|
Scalar eq_low = eq(min_thp);
|
|
Scalar eq_high = 0.0;
|
|
for (int i = 0; i < sample_number + 1; ++i) {
|
|
max_thp = min_thp + interval * i;
|
|
eq_high = eq(max_thp);
|
|
if (eq_high * eq_low <= 0.) {
|
|
bracket_found = true;
|
|
min_thp = max_thp - interval;
|
|
break;
|
|
}
|
|
eq_low = eq_high;
|
|
}
|
|
return bracket_found;
|
|
}
|
|
|
|
template class WellBhpThpCalculator<double>;
|
|
|
|
#define INSTANCE(...) \
|
|
template __VA_ARGS__ WellBhpThpCalculator<double>:: \
|
|
calculateBhpFromThp<__VA_ARGS__>(const WellState<double>&, \
|
|
const std::vector<__VA_ARGS__>&, \
|
|
const Well&, \
|
|
const SummaryState&, \
|
|
const double, \
|
|
DeferredLogger&) const;
|
|
|
|
INSTANCE(double)
|
|
INSTANCE(DenseAd::Evaluation<double,3,0u>)
|
|
INSTANCE(DenseAd::Evaluation<double,4,0u>)
|
|
INSTANCE(DenseAd::Evaluation<double,5,0u>)
|
|
INSTANCE(DenseAd::Evaluation<double,6,0u>)
|
|
INSTANCE(DenseAd::Evaluation<double,7,0u>)
|
|
INSTANCE(DenseAd::Evaluation<double,8,0u>)
|
|
INSTANCE(DenseAd::Evaluation<double,9,0u>)
|
|
INSTANCE(DenseAd::Evaluation<double,10,0u>)
|
|
INSTANCE(DenseAd::Evaluation<double,-1,4u>)
|
|
INSTANCE(DenseAd::Evaluation<double,-1,5u>)
|
|
INSTANCE(DenseAd::Evaluation<double,-1,6u>)
|
|
INSTANCE(DenseAd::Evaluation<double,-1,7u>)
|
|
INSTANCE(DenseAd::Evaluation<double,-1,8u>)
|
|
INSTANCE(DenseAd::Evaluation<double,-1,9u>)
|
|
INSTANCE(DenseAd::Evaluation<double,-1,10u>)
|
|
INSTANCE(DenseAd::Evaluation<double,-1,11u>)
|
|
|
|
} // namespace Opm
|