opm-simulators/examples/problems/lensproblem.hh
Andreas Lauser a626ab869e make the vertex centered FV method work with automatic differentiation
This works by having a "focus degree of freedom" during
linearization. When evaluating the local residual, all derivatives of
the residual/fluxes are with regard to the primary variables of that
DOF.

The two main offenders were the Forchheimer velocity model and the
model for the Stokes equations. To ensure that they continue to work,
the "powerinjection" and the "stokestest2c" problems are now both
compiled and tested with both, automatic differentiation and finite
differences, and the results of these tests is compared against the
same reference solution.

The majority of the time required to develop this patch was actually
required for testing: All tests compile and pass with debugging and
aggressive optimization flags with at least GCC 5, GCC 7 and clang
3.8, as well as Dune 2.3 and 2.4. Also, the results of flow_ebos stay
identical for Norne whilst the performance difference is below the
measurement noise on my machine. (the version with this patch applied
was actually about 1% faster.)
2017-07-21 18:35:08 +02:00

589 lines
19 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Ewoms::LensProblem
*/
#ifndef EWOMS_LENS_PROBLEM_HH
#define EWOMS_LENS_PROBLEM_HH
#include <ewoms/io/structuredgridmanager.hh>
#include <ewoms/models/immiscible/immiscibleproperties.hh>
#include <opm/material/fluidmatrixinteractions/RegularizedVanGenuchten.hpp>
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/fluidsystems/TwoPhaseImmiscibleFluidSystem.hpp>
#include <opm/material/fluidstates/ImmiscibleFluidState.hpp>
#include <opm/material/components/SimpleH2O.hpp>
#include <opm/material/components/Dnapl.hpp>
#include <opm/common/Unused.hpp>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <sstream>
#include <string>
#include <iostream>
namespace Ewoms {
template <class TypeTag>
class LensProblem;
namespace Properties {
NEW_TYPE_TAG(LensBaseProblem, INHERITS_FROM(StructuredGridManager));
// declare the properties specific for the lens problem
NEW_PROP_TAG(LensLowerLeftX);
NEW_PROP_TAG(LensLowerLeftY);
NEW_PROP_TAG(LensLowerLeftZ);
NEW_PROP_TAG(LensUpperRightX);
NEW_PROP_TAG(LensUpperRightY);
NEW_PROP_TAG(LensUpperRightZ);
// Set the problem property
SET_TYPE_PROP(LensBaseProblem, Problem, Ewoms::LensProblem<TypeTag>);
// Use Dune-grid's YaspGrid
SET_TYPE_PROP(LensBaseProblem, Grid, Dune::YaspGrid<2>);
// Set the wetting phase
SET_PROP(LensBaseProblem, WettingPhase)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
public:
typedef Opm::LiquidPhase<Scalar, Opm::SimpleH2O<Scalar> > type;
};
// Set the non-wetting phase
SET_PROP(LensBaseProblem, NonwettingPhase)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
public:
typedef Opm::LiquidPhase<Scalar, Opm::DNAPL<Scalar> > type;
};
// Set the material Law
SET_PROP(LensBaseProblem, MaterialLaw)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
enum { wettingPhaseIdx = FluidSystem::wettingPhaseIdx };
enum { nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx };
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef Opm::TwoPhaseMaterialTraits<Scalar,
/*wettingPhaseIdx=*/FluidSystem::wettingPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::nonWettingPhaseIdx> Traits;
// define the material law which is parameterized by effective
// saturations
typedef Opm::RegularizedVanGenuchten<Traits> EffectiveLaw;
public:
// define the material law parameterized by absolute saturations
typedef Opm::EffToAbsLaw<EffectiveLaw> type;
};
// Write the solutions of individual newton iterations?
SET_BOOL_PROP(LensBaseProblem, NewtonWriteConvergence, false);
// Use forward differences instead of central differences
SET_INT_PROP(LensBaseProblem, NumericDifferenceMethod, +1);
// Enable gravity
SET_BOOL_PROP(LensBaseProblem, EnableGravity, true);
// define the properties specific for the lens problem
SET_SCALAR_PROP(LensBaseProblem, LensLowerLeftX, 1.0);
SET_SCALAR_PROP(LensBaseProblem, LensLowerLeftY, 2.0);
SET_SCALAR_PROP(LensBaseProblem, LensLowerLeftZ, 0.0);
SET_SCALAR_PROP(LensBaseProblem, LensUpperRightX, 4.0);
SET_SCALAR_PROP(LensBaseProblem, LensUpperRightY, 3.0);
SET_SCALAR_PROP(LensBaseProblem, LensUpperRightZ, 1.0);
SET_SCALAR_PROP(LensBaseProblem, DomainSizeX, 6.0);
SET_SCALAR_PROP(LensBaseProblem, DomainSizeY, 4.0);
SET_SCALAR_PROP(LensBaseProblem, DomainSizeZ, 1.0);
SET_INT_PROP(LensBaseProblem, CellsX, 48);
SET_INT_PROP(LensBaseProblem, CellsY, 32);
SET_INT_PROP(LensBaseProblem, CellsZ, 16);
// The default for the end time of the simulation
SET_SCALAR_PROP(LensBaseProblem, EndTime, 30e3);
// The default for the initial time step size of the simulation
SET_SCALAR_PROP(LensBaseProblem, InitialTimeStepSize, 250);
// By default, include the intrinsic permeability tensor to the VTK output files
SET_BOOL_PROP(LensBaseProblem, VtkWriteIntrinsicPermeabilities, true);
// enable the storage cache by default for this problem
SET_BOOL_PROP(LensBaseProblem, EnableStorageCache, true);
// enable the cache for intensive quantities by default for this problem
SET_BOOL_PROP(LensBaseProblem, EnableIntensiveQuantityCache, true);
} // namespace Properties
/*!
* \ingroup TestProblems
*
* \brief Soil contamination problem where DNAPL infiltrates a fully
* water saturated medium.
*
* The domain is sized 6m times 4m and features a rectangular lens
* with low permeablility which spans from (1 m , 2 m) to (4 m, 3 m)
* and is surrounded by a medium with higher permability. Note that
* this problem is discretized using only two dimensions, so from the
* point of view of the model, the depth of the domain is implicitly
* assumed to be 1 m everywhere.
*
* On the top and the bottom of the domain no-flow boundary conditions
* are used, while free-flow conditions apply on the left and right
* boundaries; DNAPL is injected at the top boundary from 3m to 4m at
* a rate of 0.04 kg/(s m^2).
*
* At the boundary on the left, a free-flow condition using the
* hydrostatic pressure scaled by a factor of 1.125 is imposed, while
* on the right, it is just the hydrostatic pressure. The DNAPL
* saturation on both sides is zero.
*/
template <class TypeTag>
class LensProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
{
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, WettingPhase) WettingPhase;
typedef typename GET_PROP_TYPE(TypeTag, NonwettingPhase) NonwettingPhase;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
enum {
// number of phases
numPhases = FluidSystem::numPhases,
// phase indices
wettingPhaseIdx = FluidSystem::wettingPhaseIdx,
nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx,
// equation indices
contiNEqIdx = Indices::conti0EqIdx + nonWettingPhaseIdx,
// Grid and world dimension
dim = GridView::dimension,
dimWorld = GridView::dimensionworld
};
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
typedef typename GridView::ctype CoordScalar;
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
LensProblem(Simulator& simulator)
: ParentType(simulator)
{ }
/*!
* \copydoc FvBaseProblem::finishInit
*/
void finishInit()
{
ParentType::finishInit();
eps_ = 3e-6;
FluidSystem::init();
temperature_ = 273.15 + 20; // -> 20°C
lensLowerLeft_[0] = EWOMS_GET_PARAM(TypeTag, Scalar, LensLowerLeftX);
lensLowerLeft_[1] = EWOMS_GET_PARAM(TypeTag, Scalar, LensLowerLeftY);
lensUpperRight_[0] = EWOMS_GET_PARAM(TypeTag, Scalar, LensUpperRightX);
lensUpperRight_[1] = EWOMS_GET_PARAM(TypeTag, Scalar, LensUpperRightY);
if (dimWorld == 3) {
lensLowerLeft_[2] = EWOMS_GET_PARAM(TypeTag, Scalar, LensLowerLeftZ);
lensUpperRight_[2] = EWOMS_GET_PARAM(TypeTag, Scalar, LensUpperRightZ);
}
// residual saturations
lensMaterialParams_.setResidualSaturation(wettingPhaseIdx, 0.18);
lensMaterialParams_.setResidualSaturation(nonWettingPhaseIdx, 0.0);
outerMaterialParams_.setResidualSaturation(wettingPhaseIdx, 0.05);
outerMaterialParams_.setResidualSaturation(nonWettingPhaseIdx, 0.0);
// parameters for the Van Genuchten law: alpha and n
lensMaterialParams_.setVgAlpha(0.00045);
lensMaterialParams_.setVgN(7.3);
outerMaterialParams_.setVgAlpha(0.0037);
outerMaterialParams_.setVgN(4.7);
lensMaterialParams_.finalize();
outerMaterialParams_.finalize();
lensK_ = this->toDimMatrix_(9.05e-12);
outerK_ = this->toDimMatrix_(4.6e-10);
if (dimWorld == 3) {
this->gravity_ = 0;
this->gravity_[1] = -9.81;
}
}
/*!
* \copydoc FvBaseMultiPhaseProblem::registerParameters
*/
static void registerParameters()
{
ParentType::registerParameters();
EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensLowerLeftX,
"The x-coordinate of the lens' lower-left corner "
"[m].");
EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensLowerLeftY,
"The y-coordinate of the lens' lower-left corner "
"[m].");
EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensUpperRightX,
"The x-coordinate of the lens' upper-right corner "
"[m].");
EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensUpperRightY,
"The y-coordinate of the lens' upper-right corner "
"[m].");
if (dimWorld == 3) {
EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensLowerLeftZ,
"The z-coordinate of the lens' lower-left "
"corner [m].");
EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensUpperRightZ,
"The z-coordinate of the lens' upper-right "
"corner [m].");
}
}
/*!
* \name Soil parameters
*/
//! \{
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*/
template <class Context>
const DimMatrix& intrinsicPermeability(const Context& context, unsigned spaceIdx,
unsigned timeIdx) const
{
const GlobalPosition& globalPos = context.pos(spaceIdx, timeIdx);
if (isInLens_(globalPos))
return lensK_;
return outerK_;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*/
template <class Context>
Scalar porosity(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return 0.4; }
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template <class Context>
const MaterialLawParams& materialLawParams(const Context& context,
unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition& globalPos = context.pos(spaceIdx, timeIdx);
if (isInLens_(globalPos))
return lensMaterialParams_;
return outerMaterialParams_;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::temperature
*/
template <class Context>
Scalar temperature(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return temperature_; }
//! \}
/*!
* \name Auxiliary methods
*/
//! \{
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{
typedef typename GET_PROP_TYPE(TypeTag, LocalLinearizerSplice) LLS;
bool useAutoDiff = std::is_same<LLS, TTAG(AutoDiffLocalLinearizer)>::value;
std::ostringstream oss;
oss << "lens_" << Model::name()
<< "_" << Model::discretizationName()
<< "_" << (useAutoDiff?"ad":"fd");
return oss.str();
}
/*!
* \copydoc FvBaseProblem::beginTimeStep
*/
void beginTimeStep()
{ }
/*!
* \copydoc FvBaseProblem::beginIteration
*/
void beginIteration()
{ }
/*!
* \copydoc FvBaseProblem::endTimeStep
*/
void endTimeStep()
{
#ifndef NDEBUG
this->model().checkConservativeness();
// Calculate storage terms
EqVector storage;
this->model().globalStorage(storage);
// Write mass balance information for rank 0
if (this->gridView().comm().rank() == 0) {
std::cout << "Storage: " << storage << std::endl << std::flush;
}
#endif // NDEBUG
}
//! \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc FvBaseProblem::boundary
*/
template <class Context>
void boundary(BoundaryRateVector& values,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (onLeftBoundary_(pos) || onRightBoundary_(pos)) {
// free flow boundary
Scalar densityW = WettingPhase::density(temperature_,
/*pressure=*/Scalar(1e5));
Scalar T = temperature(context, spaceIdx, timeIdx);
Scalar pw, Sw;
// set wetting phase pressure and saturation
if (onLeftBoundary_(pos)) {
Scalar height = this->boundingBoxMax()[1] - this->boundingBoxMin()[1];
Scalar depth = this->boundingBoxMax()[1] - pos[1];
Scalar alpha = (1 + 1.5 / height);
// hydrostatic pressure scaled by alpha
pw = 1e5 - alpha * densityW * this->gravity()[1] * depth;
Sw = 1.0;
}
else {
Scalar depth = this->boundingBoxMax()[1] - pos[1];
// hydrostatic pressure
pw = 1e5 - densityW * this->gravity()[1] * depth;
Sw = 1.0;
}
// specify a full fluid state using pw and Sw
const MaterialLawParams& matParams = this->materialLawParams(context, spaceIdx, timeIdx);
Opm::ImmiscibleFluidState<Scalar, FluidSystem,
/*storeEnthalpy=*/false> fs;
fs.setSaturation(wettingPhaseIdx, Sw);
fs.setSaturation(nonWettingPhaseIdx, 1 - Sw);
fs.setTemperature(T);
Scalar pC[numPhases];
MaterialLaw::capillaryPressures(pC, matParams, fs);
fs.setPressure(wettingPhaseIdx, pw);
fs.setPressure(nonWettingPhaseIdx, pw + pC[nonWettingPhaseIdx] - pC[wettingPhaseIdx]);
// impose an freeflow boundary condition
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
}
else if (onInlet_(pos)) {
RateVector massRate(0.0);
massRate = 0.0;
massRate[contiNEqIdx] = -0.04; // kg / (m^2 * s)
// impose a forced flow boundary
values.setMassRate(massRate);
}
else {
// no flow boundary
values.setNoFlow();
}
}
//! \}
/*!
* \name Volumetric terms
*/
//! \{
/*!
* \copydoc FvBaseProblem::initial
*/
template <class Context>
void initial(PrimaryVariables& values, const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
Scalar depth = this->boundingBoxMax()[1] - pos[1];
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
fs.setPressure(wettingPhaseIdx, /*pressure=*/1e5);
Scalar Sw = 1.0;
fs.setSaturation(wettingPhaseIdx, Sw);
fs.setSaturation(nonWettingPhaseIdx, 1 - Sw);
fs.setTemperature(temperature_);
typename FluidSystem::template ParameterCache<Scalar> paramCache;
paramCache.updatePhase(fs, wettingPhaseIdx);
Scalar densityW = FluidSystem::density(fs, paramCache, wettingPhaseIdx);
// hydrostatic pressure (assuming incompressibility)
Scalar pw = 1e5 - densityW * this->gravity()[1] * depth;
// calculate the capillary pressure
const MaterialLawParams& matParams = this->materialLawParams(context, spaceIdx, timeIdx);
Scalar pC[numPhases];
MaterialLaw::capillaryPressures(pC, matParams, fs);
// make a full fluid state
fs.setPressure(wettingPhaseIdx, pw);
fs.setPressure(nonWettingPhaseIdx, pw + (pC[wettingPhaseIdx] - pC[nonWettingPhaseIdx]));
// assign the primary variables
values.assignNaive(fs);
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all components is 0
* everywhere.
*/
template <class Context>
void source(RateVector& rate,
const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ rate = Scalar(0.0); }
//! \}
private:
bool isInLens_(const GlobalPosition& pos) const
{
for (unsigned i = 0; i < dim; ++i) {
if (pos[i] < lensLowerLeft_[i] - eps_ || pos[i] > lensUpperRight_[i]
+ eps_)
return false;
}
return true;
}
bool onLeftBoundary_(const GlobalPosition& pos) const
{ return pos[0] < this->boundingBoxMin()[0] + eps_; }
bool onRightBoundary_(const GlobalPosition& pos) const
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
bool onLowerBoundary_(const GlobalPosition& pos) const
{ return pos[1] < this->boundingBoxMin()[1] + eps_; }
bool onUpperBoundary_(const GlobalPosition& pos) const
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
bool onInlet_(const GlobalPosition& pos) const
{
Scalar width = this->boundingBoxMax()[0] - this->boundingBoxMin()[0];
Scalar lambda = (this->boundingBoxMax()[0] - pos[0]) / width;
return onUpperBoundary_(pos) && 0.5 < lambda && lambda < 2.0 / 3.0;
}
GlobalPosition lensLowerLeft_;
GlobalPosition lensUpperRight_;
DimMatrix lensK_;
DimMatrix outerK_;
MaterialLawParams lensMaterialParams_;
MaterialLawParams outerMaterialParams_;
Scalar temperature_;
Scalar eps_;
};
} // namespace Ewoms
#endif