opm-simulators/opm/simulators/wells/WellInterfaceGeneric.cpp
2022-09-12 09:29:37 +02:00

769 lines
27 KiB
C++

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2018 IRIS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/WellInterfaceGeneric.hpp>
#include <opm/input/eclipse/Schedule/Well/WellTestState.hpp>
#include <opm/common/utility/numeric/RootFinders.hpp>
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <opm/simulators/wells/PerforationData.hpp>
#include <opm/simulators/wells/ParallelWellInfo.hpp>
#include <opm/simulators/wells/VFPProperties.hpp>
#include <opm/simulators/wells/WellState.hpp>
#include <opm/simulators/wells/WellHelpers.hpp>
#include <opm/simulators/wells/VFPHelpers.hpp>
#include <cassert>
#include <cmath>
#include <cstddef>
#include <stdexcept>
namespace Opm
{
WellInterfaceGeneric::WellInterfaceGeneric(const Well& well,
const ParallelWellInfo& pw_info,
const int time_step,
const int pvtRegionIdx,
const int num_components,
const int num_phases,
const int index_of_well,
const std::vector<PerforationData>& perf_data)
: well_ecl_(well)
, parallel_well_info_(pw_info)
, current_step_(time_step)
, pvtRegionIdx_(pvtRegionIdx)
, num_components_(num_components)
, number_of_phases_(num_phases)
, index_of_well_(index_of_well)
, perf_data_(&perf_data)
, ipr_a_(num_components)
, ipr_b_(num_components)
{
assert(well.name()==pw_info.name());
assert(std::is_sorted(perf_data.begin(), perf_data.end(),
[](const auto& perf1, const auto& perf2){
return perf1.ecl_index < perf2.ecl_index;
}));
if (time_step < 0) {
OPM_THROW(std::invalid_argument, "Negtive time step is used to construct WellInterface");
}
ref_depth_ = well.getRefDepth();
// We do not want to count SHUT perforations here, so
// it would be wrong to use wells.getConnections().size().
number_of_perforations_ = perf_data.size();
// perforations related
{
well_cells_.resize(number_of_perforations_);
well_index_.resize(number_of_perforations_);
saturation_table_number_.resize(number_of_perforations_);
int perf = 0;
for (const auto& pd : perf_data) {
well_cells_[perf] = pd.cell_index;
well_index_[perf] = pd.connection_transmissibility_factor;
saturation_table_number_[perf] = pd.satnum_id;
++perf;
}
}
// initialization of the completions mapping
initCompletions();
well_efficiency_factor_ = 1.0;
this->wellStatus_ = Well::Status::OPEN;
if (well.getStatus() == Well::Status::STOP) {
this->wellStatus_ = Well::Status::STOP;
}
wsolvent_ = 0.0;
well_control_log_.clear();
}
// Currently the VFP calculations requires three-phase input data, see
// the documentation for keyword VFPPROD and its implementation in
// VFPProdProperties.cpp. However, by setting the gas flow rate to a dummy
// value in VFPPROD record 5 (GFR values) and supplying a dummy input value
// for the gas rate to the methods in VFPProdProperties.cpp, we can extend
// the VFP calculations to the two-phase oil-water case.
void WellInterfaceGeneric::adaptRatesForVFP(std::vector<double>& rates) const
{
const auto& pu = this->phaseUsage();
if (pu.num_phases == 2) {
if ( pu.phase_used[BlackoilPhases::Aqua] == 1
&& pu.phase_used[BlackoilPhases::Liquid] == 1
&& pu.phase_used[BlackoilPhases::Vapour] == 0)
{
assert(rates.size() == 2);
rates.push_back(0.0); // set gas rate to zero
}
else {
throw std::logic_error("Two-phase VFP calculation only "
"supported for oil and water");
}
}
}
const std::vector<PerforationData>& WellInterfaceGeneric::perforationData() const
{
return *perf_data_;
}
const std::string& WellInterfaceGeneric::name() const
{
return well_ecl_.name();
}
bool WellInterfaceGeneric::isInjector() const
{
return well_ecl_.isInjector();
}
bool WellInterfaceGeneric::isProducer() const
{
return well_ecl_.isProducer();
}
int WellInterfaceGeneric::indexOfWell() const
{
return index_of_well_;
}
bool WellInterfaceGeneric::getAllowCrossFlow() const
{
return well_ecl_.getAllowCrossFlow();
}
const Well& WellInterfaceGeneric::wellEcl() const
{
return well_ecl_;
}
const PhaseUsage& WellInterfaceGeneric::phaseUsage() const
{
assert(phase_usage_ != nullptr);
return *phase_usage_;
}
double WellInterfaceGeneric::wsolvent() const
{
return wsolvent_;
}
double WellInterfaceGeneric::rsRvInj() const
{
return well_ecl_.getInjectionProperties().rsRvInj;
}
bool WellInterfaceGeneric::wellHasTHPConstraints(const SummaryState& summaryState) const
{
if (dynamic_thp_limit_) {
return true;
}
if (well_ecl_.isInjector()) {
const auto controls = well_ecl_.injectionControls(summaryState);
if (controls.hasControl(Well::InjectorCMode::THP))
return true;
}
if (well_ecl_.isProducer( )) {
const auto controls = well_ecl_.productionControls(summaryState);
if (controls.hasControl(Well::ProducerCMode::THP))
return true;
}
return false;
}
double WellInterfaceGeneric::mostStrictBhpFromBhpLimits(const SummaryState& summaryState) const
{
if (well_ecl_.isInjector()) {
const auto& controls = well_ecl_.injectionControls(summaryState);
return controls.bhp_limit;
}
if (well_ecl_.isProducer( )) {
const auto& controls = well_ecl_.productionControls(summaryState);
return controls.bhp_limit;
}
return 0.0;
}
double WellInterfaceGeneric::getTHPConstraint(const SummaryState& summaryState) const
{
if (dynamic_thp_limit_) {
return *dynamic_thp_limit_;
}
if (well_ecl_.isInjector()) {
const auto& controls = well_ecl_.injectionControls(summaryState);
return controls.thp_limit;
}
if (well_ecl_.isProducer( )) {
const auto& controls = well_ecl_.productionControls(summaryState);
return controls.thp_limit;
}
return 0.0;
}
bool WellInterfaceGeneric::underPredictionMode() const
{
return well_ecl_.predictionMode();
}
void WellInterfaceGeneric::initCompletions()
{
assert(completions_.empty() );
const WellConnections& connections = well_ecl_.getConnections();
const std::size_t num_conns = connections.size();
int num_active_connections = 0;
auto my_next_perf = perf_data_->begin();
for (std::size_t c = 0; c < num_conns; ++c) {
if (my_next_perf == perf_data_->end())
{
break;
}
if (my_next_perf->ecl_index > c)
{
continue;
}
assert(my_next_perf->ecl_index == c);
if (connections[c].state() == Connection::State::OPEN) {
completions_[connections[c].complnum()].push_back(num_active_connections++);
}
++my_next_perf;
}
assert(my_next_perf == perf_data_->end());
}
void WellInterfaceGeneric::closeCompletions(const WellTestState& wellTestState)
{
const auto& connections = well_ecl_.getConnections();
int perfIdx = 0;
for (const auto& connection : connections) {
if (connection.state() == Connection::State::OPEN) {
if (wellTestState.completion_is_closed(name(), connection.complnum())) {
this->well_index_[perfIdx] = 0.0;
}
perfIdx++;
}
}
}
void WellInterfaceGeneric::setVFPProperties(const VFPProperties* vfp_properties_arg)
{
vfp_properties_ = vfp_properties_arg;
}
void WellInterfaceGeneric::setGuideRate(const GuideRate* guide_rate_arg)
{
guide_rate_ = guide_rate_arg;
}
void WellInterfaceGeneric::setWellEfficiencyFactor(const double efficiency_factor)
{
well_efficiency_factor_ = efficiency_factor;
}
void WellInterfaceGeneric::setRepRadiusPerfLength()
{
const int nperf = number_of_perforations_;
perf_rep_radius_.clear();
perf_length_.clear();
bore_diameters_.clear();
perf_rep_radius_.reserve(nperf);
perf_length_.reserve(nperf);
bore_diameters_.reserve(nperf);
const WellConnections& connections = well_ecl_.getConnections();
const std::size_t num_conns = connections.size();
int num_active_connections = 0;
auto my_next_perf = perf_data_->begin();
for (std::size_t c = 0; c < num_conns; ++c) {
if (my_next_perf == perf_data_->end())
{
break;
}
if (my_next_perf->ecl_index > c)
{
continue;
}
assert(my_next_perf->ecl_index == c);
const auto& connection = connections[c];
if (connection.state() == Connection::State::OPEN) {
double radius = connection.rw();
double re = connection.re(); // area equivalent radius of the grid block
double perf_length = connection.connectionLength(); // the length of the well perforation
const double repR = std::sqrt(re * radius);
perf_rep_radius_.push_back(repR);
perf_length_.push_back(perf_length);
bore_diameters_.push_back(2. * radius);
num_active_connections++;
}
++my_next_perf;
}
assert(my_next_perf == perf_data_->end());
assert(num_active_connections == nperf);
}
void WellInterfaceGeneric::setWsolvent(const double wsolvent)
{
wsolvent_ = wsolvent;
}
void WellInterfaceGeneric::setDynamicThpLimit(const double thp_limit)
{
dynamic_thp_limit_ = thp_limit;
}
void WellInterfaceGeneric::updatePerforatedCell(std::vector<bool>& is_cell_perforated)
{
for (int perf_idx = 0; perf_idx<number_of_perforations_; ++perf_idx) {
is_cell_perforated[well_cells_[perf_idx]] = true;
}
}
bool WellInterfaceGeneric::isVFPActive(DeferredLogger& deferred_logger) const
{
// since the well_controls only handles the VFP number when THP constraint/target is there.
// we need to get the table number through the parser, in case THP constraint/target is not there.
// When THP control/limit is not active, if available VFP table is provided, we will still need to
// update THP value. However, it will only used for output purpose.
if (isProducer()) { // producer
const int table_id = well_ecl_.vfp_table_number();
if (table_id <= 0) {
return false;
} else {
if (vfp_properties_->getProd()->hasTable(table_id)) {
return true;
} else {
OPM_DEFLOG_THROW(std::runtime_error, "VFPPROD table " << std::to_string(table_id) << " is specified,"
<< " for well " << name() << ", while we could not access it during simulation", deferred_logger);
}
}
} else { // injector
const int table_id = well_ecl_.vfp_table_number();
if (table_id <= 0) {
return false;
} else {
if (vfp_properties_->getInj()->hasTable(table_id)) {
return true;
} else {
OPM_DEFLOG_THROW(std::runtime_error, "VFPINJ table " << std::to_string(table_id) << " is specified,"
<< " for well " << name() << ", while we could not access it during simulation", deferred_logger);
}
}
}
}
void WellInterfaceGeneric::updateWellTestStatePhysical(const double simulation_time,
const bool write_message_to_opmlog,
WellTestState& well_test_state,
DeferredLogger& deferred_logger) const
{
if (!isOperableAndSolvable()) {
if (well_test_state.well_is_closed(name())) {
// Already closed, do nothing.
} else {
well_test_state.close_well(name(), WellTestConfig::Reason::PHYSICAL, simulation_time);
if (write_message_to_opmlog) {
const std::string action = well_ecl_.getAutomaticShutIn() ? "shut" : "stopped";
const std::string msg = "Well " + name()
+ " will be " + action + " as it can not operate under current reservoir conditions.";
deferred_logger.info(msg);
}
}
}
}
bool WellInterfaceGeneric::isOperableAndSolvable() const
{
return operability_status_.isOperableAndSolvable();
}
bool WellInterfaceGeneric::useVfpExplicit() const
{
const auto& wvfpexp = well_ecl_.getWVFPEXP();
return ((wvfpexp.explicit_lookup() && !changedToOpenThisStep())|| operability_status_.use_vfpexplicit);
}
double WellInterfaceGeneric::getALQ(const WellState& well_state) const
{
return well_state.getALQ(name());
}
void WellInterfaceGeneric::reportWellSwitching(const SingleWellState& ws, DeferredLogger& deferred_logger) const
{
if (well_control_log_.empty())
return;
std::string msg = " Well " + name()
+ " control mode changed from ";
for (const std::string& from : well_control_log_) {
msg += from + "->";
}
std::string to;
if (isInjector()) {
to = Well::InjectorCMode2String(ws.injection_cmode);
} else {
to = Well::ProducerCMode2String(ws.production_cmode);
}
msg += to;
deferred_logger.info(msg);
}
std::optional<double>
WellInterfaceGeneric::
bhpMax(const std::function<double(const double)>& fflo,
const double bhp_limit,
const double maxPerfPress,
const double vfp_flo_front,
DeferredLogger& deferred_logger) const
{
// Find the bhp-point where production becomes nonzero.
double bhp_max = 0.0;
double low = bhp_limit;
double high = maxPerfPress + 1.0 * unit::barsa;
double f_low = fflo(low);
double f_high = fflo(high);
if constexpr (extraBhpAtThpLimitProdOutput) {
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + this->name() +
" low = " + std::to_string(low) +
" high = " + std::to_string(high) +
" f(low) = " + std::to_string(f_low) +
" f(high) = " + std::to_string(f_high));
}
int adjustments = 0;
const int max_adjustments = 10;
const double adjust_amount = 5.0 * unit::barsa;
while (f_low * f_high > 0.0 && adjustments < max_adjustments) {
// Same sign, adjust high to see if we can flip it.
high += adjust_amount;
f_high = fflo(high);
++adjustments;
}
if (f_low * f_high > 0.0) {
if (f_low > 0.0) {
// Even at the BHP limit, we are injecting.
// There will be no solution here, return an
// empty optional.
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
"Robust bhp(thp) solve failed due to inoperability for well " + this->name());
return std::nullopt;
} else {
// Still producing, even at high bhp.
assert(f_high < 0.0);
bhp_max = high;
}
} else {
// Bisect to find a bhp point where we produce, but
// not a large amount ('eps' below).
const double eps = 0.1 * std::fabs(vfp_flo_front);
const int maxit = 50;
int it = 0;
while (std::fabs(f_low) > eps && it < maxit) {
const double curr = 0.5*(low + high);
const double f_curr = fflo(curr);
if (f_curr * f_low > 0.0) {
low = curr;
f_low = f_curr;
} else {
high = curr;
f_high = f_curr;
}
++it;
}
if (it < maxit) {
bhp_max = low;
} else {
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
"Bisect did not find the bhp-point where we produce for well " + this->name());
return std::nullopt;
}
}
if constexpr (extraBhpAtThpLimitProdOutput) {
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + this->name() +
" low = " + std::to_string(low) +
" high = " + std::to_string(high) +
" f(low) = " + std::to_string(f_low) +
" f(high) = " + std::to_string(f_high) +
" bhp_max = " + std::to_string(bhp_max));
}
return bhp_max;
}
bool
WellInterfaceGeneric::
bisectBracket(const std::function<double(const double)>& eq,
const std::array<double, 2>& range,
double& low, double& high,
std::optional<double>& approximate_solution,
DeferredLogger& deferred_logger) const
{
bool finding_bracket = false;
low = range[0];
high = range[1];
double eq_high = eq(high);
double eq_low = eq(low);
const double eq_bhplimit = eq_low;
if constexpr (extraBhpAtThpLimitProdOutput) {
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + this->name() +
" low = " + std::to_string(low) +
" high = " + std::to_string(high) +
" eq(low) = " + std::to_string(eq_low) +
" eq(high) = " + std::to_string(eq_high));
}
if (eq_low * eq_high > 0.0) {
// Failed to bracket the zero.
// If this is due to having two solutions, bisect until bracketed.
double abs_low = std::fabs(eq_low);
double abs_high = std::fabs(eq_high);
int bracket_attempts = 0;
const int max_bracket_attempts = 20;
double interval = high - low;
const double min_interval = 1.0 * unit::barsa;
while (eq_low * eq_high > 0.0 && bracket_attempts < max_bracket_attempts && interval > min_interval) {
if (abs_high < abs_low) {
low = 0.5 * (low + high);
eq_low = eq(low);
abs_low = std::fabs(eq_low);
} else {
high = 0.5 * (low + high);
eq_high = eq(high);
abs_high = std::fabs(eq_high);
}
++bracket_attempts;
}
if (eq_low * eq_high <= 0.) {
// We have a bracket!
finding_bracket = true;
// Now, see if (bhplimit, low) is a bracket in addition to (low, high).
// If so, that is the bracket we shall use, choosing the solution with the
// highest flow.
if (eq_low * eq_bhplimit <= 0.0) {
high = low;
low = range[0];
}
} else { // eq_low * eq_high > 0.0
// Still failed bracketing!
const double limit = 0.1 * unit::barsa;
if (std::min(abs_low, abs_high) < limit) {
// Return the least bad solution if less off than 0.1 bar.
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_BRACKETING_FAILURE",
"Robust bhp(thp) not solved precisely for well " + this->name());
approximate_solution = abs_low < abs_high ? low : high;
} else {
// Return failure.
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_BRACKETING_FAILURE",
"Robust bhp(thp) solve failed due to bracketing failure for well " +
this->name());
}
}
} else {
finding_bracket = true;
}
return finding_bracket;
}
bool
WellInterfaceGeneric::
bruteForceBracket(const std::function<double(const double)>& eq,
const std::array<double, 2>& range,
double& low, double& high,
DeferredLogger& deferred_logger) const
{
bool finding_bracket = false;
low = range[0];
high = range[1];
const int sample_number = 100;
const double interval = (high - low) / sample_number;
double eq_low = eq(low);
double eq_high;
for (int i = 0; i < sample_number + 1; ++i) {
high = range[0] + interval * i;
eq_high = eq(high);
if (eq_high * eq_low <= 0.) {
finding_bracket = true;
break;
}
low = high;
eq_low = eq_high;
}
if (finding_bracket) {
deferred_logger.debug(
" brute force solve found low " + std::to_string(low) + " with eq_low " + std::to_string(eq_low) +
" high " + std::to_string(high) + " with eq_high " + std::to_string(eq_high));
}
return finding_bracket;
}
std::optional<double>
WellInterfaceGeneric::
computeBhpAtThpLimitProdCommon(const std::function<std::vector<double>(const double)>& frates,
const SummaryState& summary_state,
const double maxPerfPress,
const double rho,
const double alq_value,
DeferredLogger& deferred_logger) const
{
// Given a VFP function returning bhp as a function of phase
// rates and thp:
// fbhp(rates, thp),
// a function extracting the particular flow rate used for VFP
// lookups:
// flo(rates)
// and the inflow function (assuming the reservoir is fixed):
// frates(bhp)
// we want to solve the equation:
// fbhp(frates(bhp, thplimit)) - bhp = 0
// for bhp.
//
// This may result in 0, 1 or 2 solutions. If two solutions,
// the one corresponding to the lowest bhp (and therefore
// highest rate) should be returned.
static constexpr int Water = BlackoilPhases::Aqua;
static constexpr int Oil = BlackoilPhases::Liquid;
static constexpr int Gas = BlackoilPhases::Vapour;
// Make the fbhp() function.
const auto& controls = this->wellEcl().productionControls(summary_state);
const auto& table = this->vfpProperties()->getProd()->getTable(controls.vfp_table_number);
const double vfp_ref_depth = table.getDatumDepth();
const double thp_limit = this->getTHPConstraint(summary_state);
const double dp = wellhelpers::computeHydrostaticCorrection(this->refDepth(), vfp_ref_depth, rho, this->gravity());
auto fbhp = [this, &controls, thp_limit, dp, alq_value](const std::vector<double>& rates) {
assert(rates.size() == 3);
const auto& wfr = this->vfpProperties()->getExplicitWFR(controls.vfp_table_number, this->indexOfWell());
const auto& gfr = this->vfpProperties()->getExplicitGFR(controls.vfp_table_number, this->indexOfWell());
const bool use_vfpexp = this->useVfpExplicit();
return this->vfpProperties()->getProd()
->bhp(controls.vfp_table_number, rates[Water], rates[Oil], rates[Gas], thp_limit, alq_value, wfr, gfr, use_vfpexp) - dp;
};
// Make the flo() function.
auto flo = [&table](const std::vector<double>& rates) {
return detail::getFlo(table, rates[Water], rates[Oil], rates[Gas]);
};
// Find the bhp-point where production becomes nonzero.
auto fflo = [&flo, &frates](double bhp) { return flo(frates(bhp)); };
auto bhp_max = this->bhpMax(fflo, controls.bhp_limit, maxPerfPress, table.getFloAxis().front(), deferred_logger);
// could not solve for the bhp-point, we could not continue to find the bhp
if (!bhp_max.has_value()) {
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
"Robust bhp(thp) solve failed due to not being able to "
"find bhp-point where production becomes non-zero for well " + this->name());
return std::nullopt;
}
const std::array<double, 2> range {controls.bhp_limit, *bhp_max};
return computeBhpAtThpLimitCommon(frates, fbhp, range, deferred_logger);
}
std::optional<double>
WellInterfaceGeneric::
computeBhpAtThpLimitCommon(const std::function<std::vector<double>(const double)>& frates,
const std::function<double(const std::vector<double>)>& fbhp,
const std::array<double, 2>& range,
DeferredLogger& deferred_logger) const
{
// Given a VFP function returning bhp as a function of phase
// rates and thp:
// fbhp(rates, thp),
// a function extracting the particular flow rate used for VFP
// lookups:
// flo(rates)
// and the inflow function (assuming the reservoir is fixed):
// frates(bhp)
// we want to solve the equation:
// fbhp(frates(bhp, thplimit)) - bhp = 0
// for bhp.
//
// This may result in 0, 1 or 2 solutions. If two solutions,
// the one corresponding to the lowest bhp (and therefore
// highest rate) should be returned.
// Define the equation we want to solve.
auto eq = [&fbhp, &frates](double bhp) {
return fbhp(frates(bhp)) - bhp;
};
// Find appropriate brackets for the solution.
std::optional<double> approximate_solution;
double low, high;
// trying to use bisect way to locate a bracket
bool finding_bracket = this->bisectBracket(eq, range, low, high, approximate_solution, deferred_logger);
// based on the origional design, if an approximate solution is suggested, we use this value directly
// in the long run, we might change it
if (approximate_solution.has_value()) {
return *approximate_solution;
}
if (!finding_bracket) {
deferred_logger.debug(" Trying the brute force search to bracket the bhp for last attempt ");
finding_bracket = this->bruteForceBracket(eq, range, low, high, deferred_logger);
}
if (!finding_bracket) {
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
"Robust bhp(thp) solve failed due to not being able to "
"bracket the bhp solution with the brute force search for " + this->name());
return std::nullopt;
}
// Solve for the proper solution in the given interval.
const int max_iteration = 100;
const double bhp_tolerance = 0.01 * unit::barsa;
int iteration = 0;
try {
const double solved_bhp = RegulaFalsiBisection<ThrowOnError>::
solve(eq, low, high, max_iteration, bhp_tolerance, iteration);
return solved_bhp;
}
catch (...) {
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
"Robust bhp(thp) solve failed for well " + this->name());
return std::nullopt;
}
}
} // namespace Opm