opm-simulators/opm/autodiff/BlackoilPropsAd.hpp
Tor Harald Sandve 3c5b0b9e73 Add interface for wet gas
The pvt interface is extened to handle wet gas
1. A function for rvSat is added to the interface
2. An interface that takes rv and the fluid condition as an input for
the gas properties is added. The old interface without rv and the fluid
condition is kept in the file.
3. The new interface is implemented in BlackoilPropsAd and
BlackoilPropsAdFromDeck.

A simulator that tests wet gas is not yet implemented.
2014-01-10 16:07:32 +01:00

327 lines
15 KiB
C++

/*
Copyright 2013 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_BLACKOILPROPSAD_HEADER_INCLUDED
#define OPM_BLACKOILPROPSAD_HEADER_INCLUDED
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
#include <opm/autodiff/AutoDiffBlock.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
namespace Opm
{
class BlackoilPropertiesInterface;
/// This class implements the AD-adapted fluid interface for
/// three-phase black-oil.
///
/// It is implemented by wrapping a BlackoilPropertiesInterface
/// object (the interface class defined in opm-core) and calling
/// its methods. This class does not implement rsMax() because the
/// required information is not available when wrapping a
/// BlackoilPropertiesInterface. Consequently, class
/// BlackoilPropsAd cannot be used to simulate problems involving
/// miscibility.
///
/// Most methods are available in two overloaded versions, one
/// taking a constant vector and returning the same, and one
/// taking an AD type and returning the same. Derivatives are not
/// returned separately by any method, only implicitly with the AD
/// version of the methods.
class BlackoilPropsAd : public BlackoilPropsAdInterface
{
public:
/// Constructor wrapping an opm-core black oil interface.
explicit BlackoilPropsAd(const BlackoilPropertiesInterface& props);
////////////////////////////
// Rock interface //
////////////////////////////
/// \return D, the number of spatial dimensions.
int numDimensions() const;
/// \return N, the number of cells.
int numCells() const;
/// \return Array of N porosity values.
const double* porosity() const;
/// \return Array of ND^2 permeability values.
/// The D^2 permeability values for a cell are organized as a matrix,
/// which is symmetric (so ordering does not matter).
const double* permeability() const;
////////////////////////////
// Fluid interface //
////////////////////////////
typedef AutoDiffBlock<double> ADB;
typedef ADB::V V;
typedef std::vector<int> Cells;
/// \return Number of active phases (also the number of components).
virtual int numPhases() const;
/// \return Object describing the active phases.
virtual PhaseUsage phaseUsage() const;
// ------ Canonical named indices for each phase ------
/// Canonical named indices for each phase.
enum PhaseIndex { Water = 0, Oil = 1, Gas = 2 };
// ------ Density ------
/// Densities of stock components at surface conditions.
/// \return Array of 3 density values.
const double* surfaceDensity() const;
// ------ Viscosity ------
/// Water viscosity.
/// \param[in] pw Array of n water pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
V muWat(const V& pw,
const Cells& cells) const;
/// Oil viscosity.
/// \param[in] po Array of n oil pressure values.
/// \param[in] rs Array of n gas solution factor values.
/// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
V muOil(const V& po,
const V& rs,
const std::vector<PhasePresence>& cond,
const Cells& cells) const;
/// Gas viscosity.
/// \param[in] pg Array of n gas pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
V muGas(const V& pg,
const Cells& cells) const;
/// Gas viscosity.
/// \param[in] pg Array of n gas pressure values.
/// \param[in] rv Array of n gas solution factor values.
/// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
V muGas(const V& pg,
const V& rv,
const std::vector<PhasePresence>& cond,
const Cells& cells) const;
/// Water viscosity.
/// \param[in] pw Array of n water pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
ADB muWat(const ADB& pw,
const Cells& cells) const;
/// Oil viscosity.
/// \param[in] po Array of n oil pressure values.
/// \param[in] rs Array of n gas solution factor values.
/// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
ADB muOil(const ADB& po,
const ADB& rs,
const std::vector<PhasePresence>& cond,
const Cells& cells) const;
/// Gas viscosity.
/// \param[in] pg Array of n gas pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
ADB muGas(const ADB& pg,
const Cells& cells) const;
/// Gas viscosity.
/// \param[in] pg Array of n gas pressure values.
/// \param[in] rv Array of n gas solution factor values.
/// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
ADB muGas(const ADB& pg,
const ADB& rv,
const std::vector<PhasePresence>& cond,
const Cells& cells) const;
// ------ Formation volume factor (b) ------
/// Water formation volume factor.
/// \param[in] pw Array of n water pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
V bWat(const V& pw,
const Cells& cells) const;
/// Oil formation volume factor.
/// \param[in] po Array of n oil pressure values.
/// \param[in] rs Array of n gas solution factor values.
/// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
V bOil(const V& po,
const V& rs,
const std::vector<PhasePresence>& cond,
const Cells& cells) const;
/// Gas formation volume factor.
/// \param[in] pg Array of n gas pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
V bGas(const V& pg,
const Cells& cells) const;
/// Gas formation volume factor.
/// \param[in] pg Array of n gas pressure values.
/// \param[in] rv Array of n vapor oil/gas ratio
/// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
V bGas(const V& pg,
const V& rv,
const std::vector<PhasePresence>& cond,
const Cells& cells) const;
/// Water formation volume factor.
/// \param[in] pw Array of n water pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
ADB bWat(const ADB& pw,
const Cells& cells) const;
/// Oil formation volume factor.
/// \param[in] po Array of n oil pressure values.
/// \param[in] rs Array of n gas solution factor values.
/// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
ADB bOil(const ADB& po,
const ADB& rs,
const std::vector<PhasePresence>& cond,
const Cells& cells) const;
/// Gas formation volume factor.
/// \param[in] pg Array of n gas pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
ADB bGas(const ADB& pg,
const Cells& cells) const;
/// Gas formation volume factor.
/// \param[in] pg Array of n gas pressure values.
/// \param[in] rv Array of n vapor oil/gas ratio
/// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
ADB bGas(const ADB& pg,
const ADB& rv,
const std::vector<PhasePresence>& cond,
const Cells& cells) const;
// ------ Rs bubble point curve ------
/// Solution gas/oil ratio and its derivatives at saturated condition as a function of p.
/// \param[in] po Array of n oil pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n bubble point values for Rs.
V rsSat(const V& po,
const Cells& cells) const;
/// Solution gas/oil ratio and its derivatives at saturated condition as a function of p.
/// \param[in] po Array of n oil pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n bubble point values for Rs.
ADB rsSat(const ADB& po,
const Cells& cells) const;
// ------ Rv condensation curve ------
/// Vapor oil/gas ratio and its derivatives at saturated conditions as a function of p.
/// \param[in] po Array of n oil pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n bubble point values for Rs.
V rvSat(const V& po,
const Cells& cells) const;
/// Vapor oil/gas ratio and its derivatives at saturated conditions as a function of p.
/// \param[in] po Array of n oil pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n bubble point values for Rs.
ADB rvSat(const ADB& po,
const Cells& cells) const;
// ------ Relative permeability ------
/// Relative permeabilities for all phases.
/// \param[in] sw Array of n water saturation values.
/// \param[in] so Array of n oil saturation values.
/// \param[in] sg Array of n gas saturation values.
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
/// \return An std::vector with 3 elements, each an array of n relperm values,
/// containing krw, kro, krg. Use PhaseIndex for indexing into the result.
std::vector<V> relperm(const V& sw,
const V& so,
const V& sg,
const Cells& cells) const;
/// Relative permeabilities for all phases.
/// \param[in] sw Array of n water saturation values.
/// \param[in] so Array of n oil saturation values.
/// \param[in] sg Array of n gas saturation values.
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
/// \return An std::vector with 3 elements, each an array of n relperm values,
/// containing krw, kro, krg. Use PhaseIndex for indexing into the result.
std::vector<ADB> relperm(const ADB& sw,
const ADB& so,
const ADB& sg,
const Cells& cells) const;
/// Capillary pressure for all phases.
/// \param[in] sw Array of n water saturation values.
/// \param[in] so Array of n oil saturation values.
/// \param[in] sg Array of n gas saturation values.
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
/// \return An std::vector with 3 elements, each an array of n capillary pressure values,
/// containing the offsets for each p_g, p_o, p_w. The capillary pressure between
/// two arbitrary phases alpha and beta is then given as p_alpha - p_beta.
std::vector<ADB> capPress(const ADB& sw,
const ADB& so,
const ADB& sg,
const Cells& cells) const;
private:
const BlackoilPropertiesInterface& props_;
PhaseUsage pu_;
};
} // namespace Opm
#endif // OPM_BLACKOILPROPSAD_HEADER_INCLUDED