opm-simulators/opm/simulators/aquifers/AquiferCarterTracy.hpp
2021-05-05 11:59:18 +02:00

213 lines
7.6 KiB
C++

/*
Copyright 2017 TNO - Heat Transfer & Fluid Dynamics, Modelling & Optimization of the Subsurface
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_AQUIFERCT_HEADER_INCLUDED
#define OPM_AQUIFERCT_HEADER_INCLUDED
#include <opm/simulators/aquifers/AquiferInterface.hpp>
#include <opm/output/data/Aquifer.hpp>
#include <exception>
#include <memory>
#include <stdexcept>
#include <utility>
namespace Opm
{
template <typename TypeTag>
class AquiferCarterTracy : public AquiferInterface<TypeTag>
{
public:
typedef AquiferInterface<TypeTag> Base;
using typename Base::BlackoilIndices;
using typename Base::ElementContext;
using typename Base::Eval;
using typename Base::FluidState;
using typename Base::FluidSystem;
using typename Base::IntensiveQuantities;
using typename Base::RateVector;
using typename Base::Scalar;
using typename Base::Simulator;
using typename Base::ElementMapper;
using Base::waterCompIdx;
using Base::waterPhaseIdx;
AquiferCarterTracy(const std::vector<Aquancon::AquancCell>& connections,
const Simulator& ebosSimulator,
const AquiferCT::AQUCT_data& aquct_data)
: Base(aquct_data.aquiferID, connections, ebosSimulator)
, aquct_data_(aquct_data)
{
}
void endTimeStep() override
{
for (const auto& q : this->Qai_) {
this->W_flux_ += q * this->ebos_simulator_.timeStepSize();
}
this->fluxValue_ = this->W_flux_.value();
const auto& comm = this->ebos_simulator_.vanguard().grid().comm();
comm.sum(&this->fluxValue_, 1);
}
data::AquiferData aquiferData() const
{
data::AquiferData data;
data.aquiferID = this->aquiferID;
// TODO: not sure how to get this pressure value yet
data.pressure = this->pa0_;
data.fluxRate = 0.;
for (const auto& q : this->Qai_) {
data.fluxRate += q.value();
}
data.volume = this->W_flux_.value();
data.initPressure = this->pa0_;
data.type = data::AquiferType::CarterTracy;
data.aquCT = std::make_shared<data::CarterTracyData>();
data.aquCT->dimensionless_time = this->dimensionless_time_;
data.aquCT->dimensionless_pressure = this->dimensionless_pressure_;
return data;
}
protected:
// Variables constants
const AquiferCT::AQUCT_data aquct_data_;
Scalar beta_; // Influx constant
// TODO: it is possible it should be a AD variable
Scalar mu_w_{1}; // water viscosity
Scalar fluxValue_{0}; // value of flux
Scalar dimensionless_time_{0};
Scalar dimensionless_pressure_{0};
void assignRestartData(const data::AquiferData& /* xaq */) override
{
throw std::runtime_error {"Restart-based initialization not currently supported "
"for Carter-Tracey analytic aquifers"};
}
std::pair<Scalar, Scalar>
getInfluenceTableValues(const Scalar td_plus_dt)
{
// We use the opm-common numeric linear interpolator
this->dimensionless_pressure_ =
linearInterpolation(this->aquct_data_.td,
this->aquct_data_.pi,
this->dimensionless_time_);
const auto PItd =
linearInterpolation(this->aquct_data_.td,
this->aquct_data_.pi, td_plus_dt);
const auto PItdprime =
linearInterpolationDerivative(this->aquct_data_.td,
this->aquct_data_.pi, td_plus_dt);
return std::make_pair(PItd, PItdprime);
}
Scalar dpai(const int idx) const
{
Scalar dp = this->pa0_
+ this->rhow_.at(idx).value() * this->gravity_() * (this->cell_depth_.at(idx) - this->aquiferDepth())
- this->pressure_previous_.at(idx);
return dp;
}
// This function implements Eqs 5.8 and 5.9 of the EclipseTechnicalDescription
std::pair<Scalar, Scalar>
calculateEqnConstants(const int idx, const Simulator& simulator)
{
const Scalar td_plus_dt = (simulator.timeStepSize() + simulator.time()) / this->Tc_;
this->dimensionless_time_ = simulator.time() / this->Tc_;
const auto [PItd, PItdprime] = this->getInfluenceTableValues(td_plus_dt);
const auto denom = this->Tc_ * (PItd - this->dimensionless_time_*PItdprime);
const auto a = (this->beta_*dpai(idx) - this->fluxValue_*PItdprime) / denom;
const auto b = this->beta_ / denom;
return std::make_pair(a, b);
}
// This function implements Eq 5.7 of the EclipseTechnicalDescription
inline void calculateInflowRate(int idx, const Simulator& simulator) override
{
const auto [a, b] = this->calculateEqnConstants(idx, simulator);
this->Qai_.at(idx) = this->alphai_.at(idx) *
(a - b*(this->pressure_current_.at(idx) - this->pressure_previous_.at(idx)));
}
inline void calculateAquiferConstants() override
{
// We calculate the influx constant
beta_ = aquct_data_.c2 * aquct_data_.h * aquct_data_.theta * aquct_data_.phi_aq * aquct_data_.C_t
* aquct_data_.r_o * aquct_data_.r_o;
// We calculate the time constant
this->Tc_ = mu_w_ * aquct_data_.phi_aq * aquct_data_.C_t * aquct_data_.r_o * aquct_data_.r_o
/ (aquct_data_.k_a * aquct_data_.c1);
}
inline void calculateAquiferCondition() override
{
int pvttableIdx = aquct_data_.pvttableID - 1;
this->rhow_.resize(this->size(), 0.);
if (!aquct_data_.p0.first) {
this->pa0_ = this->calculateReservoirEquilibrium();
} else {
this->pa0_ = aquct_data_.p0.second;
}
// use the thermodynamic state of the first active cell as a
// reference. there might be better ways to do this...
ElementContext elemCtx(this->ebos_simulator_);
auto elemIt = this->ebos_simulator_.gridView().template begin</*codim=*/0>();
elemCtx.updatePrimaryStencil(*elemIt);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const auto& iq0 = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
// Initialize a FluidState object first
FluidState fs_aquifer;
// We use the temperature of the first cell connected to the aquifer
// Here we copy the fluidstate of the first cell, so we do not accidentally mess up the reservoir fs
fs_aquifer.assign(iq0.fluidState());
Eval temperature_aq, pa0_mean, saltConcentration_aq;
temperature_aq = fs_aquifer.temperature(0);
saltConcentration_aq = fs_aquifer.saltConcentration();
pa0_mean = this->pa0_;
Eval mu_w_aquifer = FluidSystem::waterPvt().viscosity(pvttableIdx, temperature_aq, pa0_mean, saltConcentration_aq);
mu_w_ = mu_w_aquifer.value();
}
virtual Scalar aquiferDepth() const override
{
return aquct_data_.d0;
}
}; // class AquiferCarterTracy
} // namespace Opm
#endif