mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-16 14:21:57 -06:00
878 lines
26 KiB
C++
878 lines
26 KiB
C++
/*
|
|
Copyright 2015 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
#ifndef OPM_AUTODIFF_VFPHELPERS_HPP_
|
|
#define OPM_AUTODIFF_VFPHELPERS_HPP_
|
|
|
|
#include <opm/common/OpmLog/OpmLog.hpp>
|
|
|
|
#include <cmath>
|
|
#include <opm/common/ErrorMacros.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/Schedule/VFPProdTable.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/Schedule/VFPInjTable.hpp>
|
|
#include <opm/material/densead/Math.hpp>
|
|
#include <opm/material/densead/Evaluation.hpp>
|
|
|
|
/**
|
|
* This file contains a set of helper functions used by VFPProd / VFPInj.
|
|
*/
|
|
namespace Opm {
|
|
namespace detail {
|
|
|
|
|
|
/**
|
|
* Returns zero if input value is NaN of INF
|
|
*/
|
|
inline double zeroIfNanInf(const double& value) {
|
|
const bool nan_or_inf = std::isnan(value) || std::isinf(value);
|
|
|
|
if (nan_or_inf) {
|
|
OpmLog::warning("NAN_OR_INF_VFP", "NAN or INF value encountered during VFP calculation, the value is set to zero");
|
|
}
|
|
|
|
return nan_or_inf ? 0.0 : value;
|
|
}
|
|
|
|
|
|
/**
|
|
* Returns zero if input value is NaN or INF
|
|
*/
|
|
template <class EvalWell>
|
|
inline EvalWell zeroIfNanInf(const EvalWell& value) {
|
|
const bool nan_or_inf = std::isnan(value.value()) || std::isinf(value.value());
|
|
|
|
if (nan_or_inf) {
|
|
OpmLog::warning("NAN_OR_INF_VFP_EVAL", "NAN or INF Evalution encountered during VFP calculation, the Evalution is set to zero");
|
|
}
|
|
|
|
using Toolbox = MathToolbox<EvalWell>;
|
|
|
|
return nan_or_inf ? Toolbox::createConstantZero(value) : value;
|
|
}
|
|
|
|
|
|
/**
|
|
* Computes the flo parameter according to the flo_type_
|
|
* for production tables
|
|
* @return Production rate of oil, gas or liquid.
|
|
*/
|
|
template <typename T>
|
|
static T getFlo(const T& aqua, const T& liquid, const T& vapour,
|
|
const VFPProdTable::FLO_TYPE& type) {
|
|
switch (type) {
|
|
case VFPProdTable::FLO_OIL:
|
|
//Oil = liquid phase
|
|
return liquid;
|
|
case VFPProdTable::FLO_LIQ:
|
|
//Liquid = aqua + liquid phases
|
|
return aqua + liquid;
|
|
case VFPProdTable::FLO_GAS:
|
|
//Gas = vapor phase
|
|
return vapour;
|
|
case VFPProdTable::FLO_INVALID: //Intentional fall-through
|
|
default:
|
|
OPM_THROW(std::logic_error, "Invalid FLO_TYPE: '" << type << "'");
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* Computes the flo parameter according to the flo_type_
|
|
* for injection tables
|
|
* @return Production rate of oil, gas or liquid.
|
|
*/
|
|
template <typename T>
|
|
static T getFlo(const T& aqua, const T& liquid, const T& vapour,
|
|
const VFPInjTable::FLO_TYPE& type) {
|
|
switch (type) {
|
|
case VFPInjTable::FLO_OIL:
|
|
//Oil = liquid phase
|
|
return liquid;
|
|
case VFPInjTable::FLO_WAT:
|
|
//Liquid = aqua phase
|
|
return aqua;
|
|
case VFPInjTable::FLO_GAS:
|
|
//Gas = vapor phase
|
|
return vapour;
|
|
case VFPInjTable::FLO_INVALID: //Intentional fall-through
|
|
default:
|
|
OPM_THROW(std::logic_error, "Invalid FLO_TYPE: '" << type << "'");
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
* Computes the wfr parameter according to the wfr_type_
|
|
* @return Production rate of oil, gas or liquid.
|
|
*/
|
|
template <typename T>
|
|
static T getWFR(const T& aqua, const T& liquid, const T& vapour,
|
|
const VFPProdTable::WFR_TYPE& type) {
|
|
switch(type) {
|
|
case VFPProdTable::WFR_WOR: {
|
|
//Water-oil ratio = water / oil
|
|
T wor = aqua / liquid;
|
|
return zeroIfNanInf(wor);
|
|
}
|
|
case VFPProdTable::WFR_WCT:
|
|
//Water cut = water / (water + oil)
|
|
return zeroIfNanInf(aqua / (aqua + liquid));
|
|
case VFPProdTable::WFR_WGR:
|
|
//Water-gas ratio = water / gas
|
|
return zeroIfNanInf(aqua / vapour);
|
|
case VFPProdTable::WFR_INVALID: //Intentional fall-through
|
|
default:
|
|
OPM_THROW(std::logic_error, "Invalid WFR_TYPE: '" << type << "'");
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
* Computes the gfr parameter according to the gfr_type_
|
|
* @return Production rate of oil, gas or liquid.
|
|
*/
|
|
template <typename T>
|
|
static T getGFR(const T& aqua, const T& liquid, const T& vapour,
|
|
const VFPProdTable::GFR_TYPE& type) {
|
|
switch(type) {
|
|
case VFPProdTable::GFR_GOR:
|
|
// Gas-oil ratio = gas / oil
|
|
return zeroIfNanInf(vapour / liquid);
|
|
case VFPProdTable::GFR_GLR:
|
|
// Gas-liquid ratio = gas / (oil + water)
|
|
return zeroIfNanInf(vapour / (liquid + aqua));
|
|
case VFPProdTable::GFR_OGR:
|
|
// Oil-gas ratio = oil / gas
|
|
return zeroIfNanInf(liquid / vapour);
|
|
case VFPProdTable::GFR_INVALID: //Intentional fall-through
|
|
default:
|
|
OPM_THROW(std::logic_error, "Invalid GFR_TYPE: '" << type << "'");
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
* Helper struct for linear interpolation
|
|
*/
|
|
struct InterpData {
|
|
InterpData() : ind_{0, 0}, inv_dist_(0.0), factor_(0.0) {}
|
|
int ind_[2]; //[First element greater than or equal to value, Last element smaller than or equal to value]
|
|
double inv_dist_; // 1 / distance between the two end points of the segment. Used to calculate derivatives and uses 1.0 / 0.0 = 0.0 as a convention
|
|
double factor_; // Interpolation factor
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
* Helper function to find indices etc. for linear interpolation and extrapolation
|
|
* @param value_in Value to find in values
|
|
* @param values Sorted list of values to search for value in.
|
|
* @return Data required to find the interpolated value
|
|
*/
|
|
inline InterpData findInterpData(const double& value_in, const std::vector<double>& values) {
|
|
InterpData retval;
|
|
|
|
const int nvalues = values.size();
|
|
|
|
// chopping the value to be zero, which means we do not
|
|
// extrapolate the table towards nagative ranges
|
|
const double value = value_in < 0.? 0. : value_in;
|
|
|
|
//If we only have one value in our vector, return that
|
|
if (values.size() == 1) {
|
|
retval.ind_[0] = 0;
|
|
retval.ind_[1] = 0;
|
|
retval.inv_dist_ = 0.0;
|
|
retval.factor_ = 0.0;
|
|
}
|
|
// Else search in the vector
|
|
else {
|
|
//If value is less than all values, use first interval
|
|
if (value < values.front()) {
|
|
retval.ind_[0] = 0;
|
|
retval.ind_[1] = 1;
|
|
}
|
|
//If value is greater than all values, use last interval
|
|
else if (value >= values.back()) {
|
|
retval.ind_[0] = nvalues-2;
|
|
retval.ind_[1] = nvalues-1;
|
|
}
|
|
else {
|
|
//Search internal intervals
|
|
for (int i=1; i<nvalues; ++i) {
|
|
if (values[i] >= value) {
|
|
retval.ind_[0] = i-1;
|
|
retval.ind_[1] = i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
const double start = values[retval.ind_[0]];
|
|
const double end = values[retval.ind_[1]];
|
|
|
|
//Find interpolation ratio
|
|
if (end > start) {
|
|
//FIXME: Possible source for floating point error here if value and floor are large,
|
|
//but very close to each other
|
|
retval.inv_dist_ = 1.0 / (end-start);
|
|
retval.factor_ = (value-start) * retval.inv_dist_;
|
|
}
|
|
else {
|
|
retval.inv_dist_ = 0.0;
|
|
retval.factor_ = 0.0;
|
|
}
|
|
}
|
|
|
|
// Disallow extrapolation with higher factor than 3.0.
|
|
// The factor 3.0 has been chosen because it works well
|
|
// with certain testcases, and may not be optimal.
|
|
if (retval.factor_ > 3.0) {
|
|
retval.factor_ = 3.0;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
* An "ADB-like" structure with a single value and a set of derivatives
|
|
*/
|
|
struct VFPEvaluation {
|
|
VFPEvaluation() : value(0.0), dthp(0.0), dwfr(0.0), dgfr(0.0), dalq(0.0), dflo(0.0) {};
|
|
double value;
|
|
double dthp;
|
|
double dwfr;
|
|
double dgfr;
|
|
double dalq;
|
|
double dflo;
|
|
};
|
|
|
|
inline VFPEvaluation operator+(
|
|
VFPEvaluation lhs,
|
|
const VFPEvaluation& rhs) {
|
|
lhs.value += rhs.value;
|
|
lhs.dthp += rhs.dthp;
|
|
lhs.dwfr += rhs.dwfr;
|
|
lhs.dgfr += rhs.dgfr;
|
|
lhs.dalq += rhs.dalq;
|
|
lhs.dflo += rhs.dflo;
|
|
return lhs;
|
|
}
|
|
|
|
inline VFPEvaluation operator-(
|
|
VFPEvaluation lhs,
|
|
const VFPEvaluation& rhs) {
|
|
lhs.value -= rhs.value;
|
|
lhs.dthp -= rhs.dthp;
|
|
lhs.dwfr -= rhs.dwfr;
|
|
lhs.dgfr -= rhs.dgfr;
|
|
lhs.dalq -= rhs.dalq;
|
|
lhs.dflo -= rhs.dflo;
|
|
return lhs;
|
|
}
|
|
|
|
inline VFPEvaluation operator*(
|
|
double lhs,
|
|
const VFPEvaluation& rhs) {
|
|
VFPEvaluation retval;
|
|
retval.value = rhs.value * lhs;
|
|
retval.dthp = rhs.dthp * lhs;
|
|
retval.dwfr = rhs.dwfr * lhs;
|
|
retval.dgfr = rhs.dgfr * lhs;
|
|
retval.dalq = rhs.dalq * lhs;
|
|
retval.dflo = rhs.dflo * lhs;
|
|
return retval;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
* Helper function which interpolates data using the indices etc. given in the inputs.
|
|
*/
|
|
inline VFPEvaluation interpolate(
|
|
const VFPProdTable& table,
|
|
const InterpData& flo_i,
|
|
const InterpData& thp_i,
|
|
const InterpData& wfr_i,
|
|
const InterpData& gfr_i,
|
|
const InterpData& alq_i) {
|
|
|
|
//Values and derivatives in a 5D hypercube
|
|
VFPEvaluation nn[2][2][2][2][2];
|
|
|
|
|
|
//Pick out nearest neighbors (nn) to our evaluation point
|
|
//This is not really required, but performance-wise it may pay off, since the 32-elements
|
|
//we copy to (nn) will fit better in cache than the full original table for the
|
|
//interpolation below.
|
|
//The following ladder of for loops will presumably be unrolled by a reasonable compiler.
|
|
for (int t=0; t<=1; ++t) {
|
|
for (int w=0; w<=1; ++w) {
|
|
for (int g=0; g<=1; ++g) {
|
|
for (int a=0; a<=1; ++a) {
|
|
for (int f=0; f<=1; ++f) {
|
|
//Shorthands for indexing
|
|
const int ti = thp_i.ind_[t];
|
|
const int wi = wfr_i.ind_[w];
|
|
const int gi = gfr_i.ind_[g];
|
|
const int ai = alq_i.ind_[a];
|
|
const int fi = flo_i.ind_[f];
|
|
|
|
//Copy element
|
|
nn[t][w][g][a][f].value = table(ti,wi,gi,ai,fi);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//Calculate derivatives
|
|
//Note that the derivative of the two end points of a line aligned with the
|
|
//"axis of the derivative" are equal
|
|
for (int i=0; i<=1; ++i) {
|
|
for (int j=0; j<=1; ++j) {
|
|
for (int k=0; k<=1; ++k) {
|
|
for (int l=0; l<=1; ++l) {
|
|
nn[0][i][j][k][l].dthp = (nn[1][i][j][k][l].value - nn[0][i][j][k][l].value) * thp_i.inv_dist_;
|
|
nn[i][0][j][k][l].dwfr = (nn[i][1][j][k][l].value - nn[i][0][j][k][l].value) * wfr_i.inv_dist_;
|
|
nn[i][j][0][k][l].dgfr = (nn[i][j][1][k][l].value - nn[i][j][0][k][l].value) * gfr_i.inv_dist_;
|
|
nn[i][j][k][0][l].dalq = (nn[i][j][k][1][l].value - nn[i][j][k][0][l].value) * alq_i.inv_dist_;
|
|
nn[i][j][k][l][0].dflo = (nn[i][j][k][l][1].value - nn[i][j][k][l][0].value) * flo_i.inv_dist_;
|
|
|
|
nn[1][i][j][k][l].dthp = nn[0][i][j][k][l].dthp;
|
|
nn[i][1][j][k][l].dwfr = nn[i][0][j][k][l].dwfr;
|
|
nn[i][j][1][k][l].dgfr = nn[i][j][0][k][l].dgfr;
|
|
nn[i][j][k][1][l].dalq = nn[i][j][k][0][l].dalq;
|
|
nn[i][j][k][l][1].dflo = nn[i][j][k][l][0].dflo;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
double t1, t2; //interpolation variables, so that t1 = (1-t) and t2 = t.
|
|
|
|
// Remove dimensions one by one
|
|
// Example: going from 3D to 2D to 1D, we start by interpolating along
|
|
// the z axis first, leaving a 2D problem. Then interpolating along the y
|
|
// axis, leaving a 1D, problem, etc.
|
|
t2 = flo_i.factor_;
|
|
t1 = (1.0-t2);
|
|
for (int t=0; t<=1; ++t) {
|
|
for (int w=0; w<=1; ++w) {
|
|
for (int g=0; g<=1; ++g) {
|
|
for (int a=0; a<=1; ++a) {
|
|
nn[t][w][g][a][0] = t1*nn[t][w][g][a][0] + t2*nn[t][w][g][a][1];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
t2 = alq_i.factor_;
|
|
t1 = (1.0-t2);
|
|
for (int t=0; t<=1; ++t) {
|
|
for (int w=0; w<=1; ++w) {
|
|
for (int g=0; g<=1; ++g) {
|
|
nn[t][w][g][0][0] = t1*nn[t][w][g][0][0] + t2*nn[t][w][g][1][0];
|
|
}
|
|
}
|
|
}
|
|
|
|
t2 = gfr_i.factor_;
|
|
t1 = (1.0-t2);
|
|
for (int t=0; t<=1; ++t) {
|
|
for (int w=0; w<=1; ++w) {
|
|
nn[t][w][0][0][0] = t1*nn[t][w][0][0][0] + t2*nn[t][w][1][0][0];
|
|
}
|
|
}
|
|
|
|
t2 = wfr_i.factor_;
|
|
t1 = (1.0-t2);
|
|
for (int t=0; t<=1; ++t) {
|
|
nn[t][0][0][0][0] = t1*nn[t][0][0][0][0] + t2*nn[t][1][0][0][0];
|
|
}
|
|
|
|
t2 = thp_i.factor_;
|
|
t1 = (1.0-t2);
|
|
nn[0][0][0][0][0] = t1*nn[0][0][0][0][0] + t2*nn[1][0][0][0][0];
|
|
|
|
return nn[0][0][0][0][0];
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
* This basically models interpolate(VFPProdTable::array_type, ...)
|
|
* which performs 5D interpolation, but here for the 2D case only
|
|
*/
|
|
inline VFPEvaluation interpolate(
|
|
const VFPInjTable& table,
|
|
const InterpData& flo_i,
|
|
const InterpData& thp_i) {
|
|
|
|
//Values and derivatives in a 2D plane
|
|
VFPEvaluation nn[2][2];
|
|
|
|
|
|
//Pick out nearest neighbors (nn) to our evaluation point
|
|
//The following ladder of for loops will presumably be unrolled by a reasonable compiler.
|
|
for (int t=0; t<=1; ++t) {
|
|
for (int f=0; f<=1; ++f) {
|
|
//Shorthands for indexing
|
|
const int ti = thp_i.ind_[t];
|
|
const int fi = flo_i.ind_[f];
|
|
|
|
//Copy element
|
|
nn[t][f].value = table(ti,fi);
|
|
}
|
|
}
|
|
|
|
//Calculate derivatives
|
|
//Note that the derivative of the two end points of a line aligned with the
|
|
//"axis of the derivative" are equal
|
|
for (int i=0; i<=1; ++i) {
|
|
nn[0][i].dthp = (nn[1][i].value - nn[0][i].value) * thp_i.inv_dist_;
|
|
nn[i][0].dwfr = -1e100;
|
|
nn[i][0].dgfr = -1e100;
|
|
nn[i][0].dalq = -1e100;
|
|
nn[i][0].dflo = (nn[i][1].value - nn[i][0].value) * flo_i.inv_dist_;
|
|
|
|
nn[1][i].dthp = nn[0][i].dthp;
|
|
nn[i][1].dwfr = nn[i][0].dwfr;
|
|
nn[i][1].dgfr = nn[i][0].dgfr;
|
|
nn[i][1].dalq = nn[i][0].dalq;
|
|
nn[i][1].dflo = nn[i][0].dflo;
|
|
}
|
|
|
|
double t1, t2; //interpolation variables, so that t1 = (1-t) and t2 = t.
|
|
|
|
// Go from 2D to 1D
|
|
t2 = flo_i.factor_;
|
|
t1 = (1.0-t2);
|
|
nn[0][0] = t1*nn[0][0] + t2*nn[0][1];
|
|
nn[1][0] = t1*nn[1][0] + t2*nn[1][1];
|
|
|
|
// Go from line to point on line
|
|
t2 = thp_i.factor_;
|
|
t1 = (1.0-t2);
|
|
nn[0][0] = t1*nn[0][0] + t2*nn[1][0];
|
|
|
|
return nn[0][0];
|
|
}
|
|
|
|
inline VFPEvaluation bhp(const VFPProdTable* table,
|
|
const double& aqua,
|
|
const double& liquid,
|
|
const double& vapour,
|
|
const double& thp,
|
|
const double& alq) {
|
|
//Find interpolation variables
|
|
double flo = detail::getFlo(aqua, liquid, vapour, table->getFloType());
|
|
double wfr = detail::getWFR(aqua, liquid, vapour, table->getWFRType());
|
|
double gfr = detail::getGFR(aqua, liquid, vapour, table->getGFRType());
|
|
|
|
//First, find the values to interpolate between
|
|
//Recall that flo is negative in Opm, so switch sign.
|
|
auto flo_i = detail::findInterpData(-flo, table->getFloAxis());
|
|
auto thp_i = detail::findInterpData( thp, table->getTHPAxis());
|
|
auto wfr_i = detail::findInterpData( wfr, table->getWFRAxis());
|
|
auto gfr_i = detail::findInterpData( gfr, table->getGFRAxis());
|
|
auto alq_i = detail::findInterpData( alq, table->getALQAxis());
|
|
|
|
detail::VFPEvaluation retval = detail::interpolate(*table, flo_i, thp_i, wfr_i, gfr_i, alq_i);
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline VFPEvaluation bhp(const VFPInjTable* table,
|
|
const double& aqua,
|
|
const double& liquid,
|
|
const double& vapour,
|
|
const double& thp) {
|
|
//Find interpolation variables
|
|
double flo = detail::getFlo(aqua, liquid, vapour, table->getFloType());
|
|
|
|
//First, find the values to interpolate between
|
|
auto flo_i = detail::findInterpData(flo, table->getFloAxis());
|
|
auto thp_i = detail::findInterpData(thp, table->getTHPAxis());
|
|
|
|
//Then perform the interpolation itself
|
|
detail::VFPEvaluation retval = detail::interpolate(*table, flo_i, thp_i);
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
* Returns the table from the map if found, or throws an exception
|
|
*/
|
|
template <typename T>
|
|
const T* getTable(const std::map<int, T*> tables, int table_id) {
|
|
auto entry = tables.find(table_id);
|
|
if (entry == tables.end()) {
|
|
OPM_THROW(std::invalid_argument, "Nonexistent VFP table " << table_id << " referenced.");
|
|
}
|
|
else {
|
|
return entry->second;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Check whether we have a table with the table number
|
|
*/
|
|
template <typename T>
|
|
bool hasTable(const std::map<int, T*> tables, int table_id) {
|
|
const auto entry = tables.find(table_id);
|
|
return (entry != tables.end() );
|
|
}
|
|
|
|
|
|
/**
|
|
* Returns the type variable for FLO/GFR/WFR for production tables
|
|
*/
|
|
template <typename TYPE, typename TABLE>
|
|
TYPE getType(const TABLE* table);
|
|
|
|
template <>
|
|
inline
|
|
VFPProdTable::FLO_TYPE getType(const VFPProdTable* table) {
|
|
return table->getFloType();
|
|
}
|
|
|
|
template <>
|
|
inline
|
|
VFPProdTable::WFR_TYPE getType(const VFPProdTable* table) {
|
|
return table->getWFRType();
|
|
}
|
|
|
|
template <>
|
|
inline
|
|
VFPProdTable::GFR_TYPE getType(const VFPProdTable* table) {
|
|
return table->getGFRType();
|
|
}
|
|
|
|
|
|
/**
|
|
* Returns the type variable for FLO for injection tables
|
|
*/
|
|
template <>
|
|
inline
|
|
VFPInjTable::FLO_TYPE getType(const VFPInjTable* table) {
|
|
return table->getFloType();
|
|
}
|
|
|
|
|
|
/**
|
|
* Helper function that finds x for a given value of y for a line
|
|
* *NOTE ORDER OF ARGUMENTS*
|
|
*/
|
|
inline double findX(const double& x0,
|
|
const double& x1,
|
|
const double& y0,
|
|
const double& y1,
|
|
const double& y) {
|
|
const double dx = x1 - x0;
|
|
const double dy = y1 - y0;
|
|
|
|
/**
|
|
* y = y0 + (dy / dx) * (x - x0)
|
|
* => x = x0 + (y - y0) * (dx / dy)
|
|
*
|
|
* If dy is zero, use x1 as the value.
|
|
*/
|
|
|
|
double x = 0.0;
|
|
|
|
if (dy != 0.0) {
|
|
x = x0 + (y-y0) * (dx/dy);
|
|
}
|
|
else {
|
|
x = x1;
|
|
}
|
|
|
|
return x;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
* This function finds the value of THP given a specific BHP.
|
|
* Essentially:
|
|
* Given the function f(thp_array(x)) = bhp_array(x), which is piecewise linear,
|
|
* find thp so that f(thp) = bhp.
|
|
*/
|
|
inline double findTHP(
|
|
const std::vector<double>& bhp_array,
|
|
const std::vector<double>& thp_array,
|
|
double bhp) {
|
|
int nthp = thp_array.size();
|
|
|
|
double thp = -1e100;
|
|
|
|
//Check that our thp axis is sorted
|
|
assert(std::is_sorted(thp_array.begin(), thp_array.end()));
|
|
|
|
/**
|
|
* Our *interpolated* bhp_array will be montonic increasing for increasing
|
|
* THP if our input BHP values are monotonic increasing for increasing
|
|
* THP values. However, if we have to *extrapolate* along any of the other
|
|
* axes, this guarantee holds no more, and bhp_array may be "random"
|
|
*/
|
|
if (std::is_sorted(bhp_array.begin(), bhp_array.end())) {
|
|
//Target bhp less than all values in array, extrapolate
|
|
if (bhp <= bhp_array[0]) {
|
|
//TODO: LOG extrapolation
|
|
const double& x0 = thp_array[0];
|
|
const double& x1 = thp_array[1];
|
|
const double& y0 = bhp_array[0];
|
|
const double& y1 = bhp_array[1];
|
|
thp = detail::findX(x0, x1, y0, y1, bhp);
|
|
}
|
|
//Target bhp greater than all values in array, extrapolate
|
|
else if (bhp > bhp_array[nthp-1]) {
|
|
//TODO: LOG extrapolation
|
|
const double& x0 = thp_array[nthp-2];
|
|
const double& x1 = thp_array[nthp-1];
|
|
const double& y0 = bhp_array[nthp-2];
|
|
const double& y1 = bhp_array[nthp-1];
|
|
thp = detail::findX(x0, x1, y0, y1, bhp);
|
|
}
|
|
//Target bhp within table ranges, interpolate
|
|
else {
|
|
//Loop over the values and find min(bhp_array(thp)) == bhp
|
|
//so that we maximize the rate.
|
|
|
|
//Find i so that bhp_array[i-1] <= bhp <= bhp_array[i];
|
|
//Assuming a small number of values in bhp_array, this should be quite
|
|
//efficient. Other strategies might be bisection, etc.
|
|
int i=0;
|
|
bool found = false;
|
|
for (; i<nthp-1; ++i) {
|
|
const double& y0 = bhp_array[i ];
|
|
const double& y1 = bhp_array[i+1];
|
|
|
|
if (y0 < bhp && bhp <= y1) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
//Canary in a coal mine: shouldn't really be required
|
|
assert(found == true);
|
|
static_cast<void>(found); //Silence compiler warning
|
|
|
|
const double& x0 = thp_array[i ];
|
|
const double& x1 = thp_array[i+1];
|
|
const double& y0 = bhp_array[i ];
|
|
const double& y1 = bhp_array[i+1];
|
|
thp = detail::findX(x0, x1, y0, y1, bhp);
|
|
}
|
|
}
|
|
//bhp_array not sorted, raw search.
|
|
else {
|
|
//Find i so that bhp_array[i-1] <= bhp <= bhp_array[i];
|
|
//Since the BHP values might not be sorted, first search within
|
|
//our interpolation values, and then try to extrapolate.
|
|
int i=0;
|
|
bool found = false;
|
|
for (; i<nthp-1; ++i) {
|
|
const double& y0 = bhp_array[i ];
|
|
const double& y1 = bhp_array[i+1];
|
|
|
|
if (y0 < bhp && bhp <= y1) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (found) {
|
|
const double& x0 = thp_array[i ];
|
|
const double& x1 = thp_array[i+1];
|
|
const double& y0 = bhp_array[i ];
|
|
const double& y1 = bhp_array[i+1];
|
|
thp = detail::findX(x0, x1, y0, y1, bhp);
|
|
}
|
|
else if (bhp <= bhp_array[0]) {
|
|
//TODO: LOG extrapolation
|
|
const double& x0 = thp_array[0];
|
|
const double& x1 = thp_array[1];
|
|
const double& y0 = bhp_array[0];
|
|
const double& y1 = bhp_array[1];
|
|
thp = detail::findX(x0, x1, y0, y1, bhp);
|
|
}
|
|
//Target bhp greater than all values in array, extrapolate
|
|
else if (bhp > bhp_array[nthp-1]) {
|
|
//TODO: LOG extrapolation
|
|
const double& x0 = thp_array[nthp-2];
|
|
const double& x1 = thp_array[nthp-1];
|
|
const double& y0 = bhp_array[nthp-2];
|
|
const double& y1 = bhp_array[nthp-1];
|
|
thp = detail::findX(x0, x1, y0, y1, bhp);
|
|
}
|
|
else {
|
|
OPM_THROW(std::logic_error, "Programmer error: Unable to find THP in THP array");
|
|
}
|
|
}
|
|
|
|
return thp;
|
|
}
|
|
|
|
|
|
|
|
// a data type use to do the intersection calculation to get the intial bhp under THP control
|
|
struct RateBhpPair {
|
|
double rate;
|
|
double bhp;
|
|
};
|
|
|
|
|
|
// looking for a intersection point a line segment and a line, they are both defined with two points
|
|
// it is copied from #include <opm/polymer/Point2D.hpp>, which should be removed since it is only required by the lagacy polymer
|
|
inline bool findIntersection(const std::array<RateBhpPair, 2>& line_segment, const std::array<RateBhpPair, 2>& line, double& bhp) {
|
|
const double x1 = line_segment[0].rate;
|
|
const double y1 = line_segment[0].bhp;
|
|
const double x2 = line_segment[1].rate;
|
|
const double y2 = line_segment[1].bhp;
|
|
|
|
const double x3 = line[0].rate;
|
|
const double y3 = line[0].bhp;
|
|
const double x4 = line[1].rate;
|
|
const double y4 = line[1].bhp;
|
|
|
|
const double d = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4);
|
|
|
|
if (d == 0.) {
|
|
return false;
|
|
}
|
|
|
|
const double x = ((x3 - x4) * (x1 * y2 - y1 * x2) - (x1 - x2) * (x3 * y4 - y3 * x4)) / d;
|
|
const double y = ((y3 - y4) * (x1 * y2 - y1 * x2) - (y1 - y2) * (x3 * y4 - y3 * x4)) / d;
|
|
|
|
if (x >= std::min(x1,x2) && x <= std::max(x1,x2)) {
|
|
bhp = y;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// calculating the BHP from thp through the intersection of VFP curves and inflow performance relationship
|
|
inline bool findIntersectionForBhp(const std::vector<RateBhpPair>& ratebhp_samples,
|
|
const std::array<RateBhpPair, 2>& ratebhp_twopoints_ipr,
|
|
double& obtained_bhp)
|
|
{
|
|
// there possibly two intersection point, then we choose the one corresponding with the bigger rate
|
|
|
|
const double bhp1 = ratebhp_twopoints_ipr[0].bhp;
|
|
const double rate1 = ratebhp_twopoints_ipr[0].rate;
|
|
|
|
const double bhp2 = ratebhp_twopoints_ipr[1].bhp;
|
|
const double rate2 = ratebhp_twopoints_ipr[1].rate;
|
|
|
|
assert(rate1 != rate2);
|
|
|
|
const double line_slope = (bhp2 - bhp1) / (rate2 - rate1);
|
|
|
|
// line equation will be
|
|
// bhp - bhp1 - line_slope * (flo_rate - flo_rate1) = 0
|
|
auto flambda = [&](const double flo_rate, const double bhp) {
|
|
return bhp - bhp1 - line_slope * (flo_rate - rate1);
|
|
};
|
|
|
|
int number_intersection_found = 0;
|
|
int index_segment = 0; // the intersection segment that intersection happens
|
|
const size_t num_samples = ratebhp_samples.size();
|
|
for (size_t i = 0; i < num_samples - 1; ++i) {
|
|
const double temp1 = flambda(ratebhp_samples[i].rate, ratebhp_samples[i].bhp);
|
|
const double temp2 = flambda(ratebhp_samples[i+1].rate, ratebhp_samples[i+1].bhp);
|
|
if (temp1 * temp2 <= 0.) { // intersection happens
|
|
// in theory there should be maximum two intersection points
|
|
// while considering the situation == 0. here, we might find more
|
|
// we always use the last one, which is the one corresponds to the biggest rate,
|
|
// which we assume is the more stable one
|
|
++number_intersection_found;
|
|
index_segment = i;
|
|
}
|
|
}
|
|
|
|
if (number_intersection_found == 0) { // there is not intersection point
|
|
return false;
|
|
}
|
|
|
|
// then we pick the segment from the VFP curve to do the line intersection calculation
|
|
const std::array<RateBhpPair, 2> line_segment{ ratebhp_samples[index_segment], ratebhp_samples[index_segment + 1] };
|
|
|
|
const bool intersection_found = findIntersection(line_segment, ratebhp_twopoints_ipr, obtained_bhp);
|
|
|
|
return intersection_found;
|
|
}
|
|
|
|
|
|
} // namespace detail
|
|
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
|
|
#endif /* OPM_AUTODIFF_VFPHELPERS_HPP_ */
|