opm-simulators/ebos/eclproblem.hh
Tor Harald Sandve 3185e8662b Merge pull request #408 from andlaus/aquifer_api_v2
extend the aquifer model so that it can initialize itself
2018-10-31 12:47:54 +01:00

2154 lines
80 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Ewoms::EclProblem
*/
#ifndef EWOMS_ECL_PROBLEM_HH
#define EWOMS_ECL_PROBLEM_HH
//#define DISABLE_ALUGRID_SFC_ORDERING 1
//#define EBOS_USE_ALUGRID 1
// make sure that the EBOS_USE_ALUGRID macro. using the preprocessor for this is slightly
// hacky...
#if EBOS_USE_ALUGRID
//#define DISABLE_ALUGRID_SFC_ORDERING 1
#if !HAVE_DUNE_ALUGRID
#warning "ALUGrid was indicated to be used for the ECL black oil simulator, but this "
#warning "requires the presence of dune-alugrid >= 2.4. Falling back to Dune::CpGrid"
#undef EBOS_USE_ALUGRID
#define EBOS_USE_ALUGRID 0
#endif
#else
#define EBOS_USE_ALUGRID 0
#endif
#if EBOS_USE_ALUGRID
#include "eclalugridvanguard.hh"
#else
//#include "eclpolyhedralgridvanguard.hh"
#include "eclcpgridvanguard.hh"
#endif
#include "eclwellmanager.hh"
#include "eclequilinitializer.hh"
#include "eclwriter.hh"
#include "ecloutputblackoilmodule.hh"
#include "ecltransmissibility.hh"
#include "eclthresholdpressure.hh"
#include "ecldummygradientcalculator.hh"
#include "eclfluxmodule.hh"
#include "eclbaseaquifermodel.hh"
#include <ewoms/common/pffgridvector.hh>
#include <ewoms/models/blackoil/blackoilmodel.hh>
#include <ewoms/disc/ecfv/ecfvdiscretization.hh>
#include <opm/material/fluidmatrixinteractions/EclMaterialLawManager.hpp>
#include <opm/material/thermal/EclThermalLawManager.hpp>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/material/fluidsystems/blackoilpvt/DryGasPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/WetGasPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/LiveOilPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/DeadOilPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/ConstantCompressibilityOilPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/ConstantCompressibilityWaterPvt.hpp>
#include <opm/material/common/Valgrind.hpp>
#include <opm/parser/eclipse/Deck/Deck.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <opm/parser/eclipse/EclipseState/Tables/Eqldims.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <opm/parser/eclipse/EclipseState/SummaryConfig/SummaryConfig.hpp>
#include <opm/material/common/Exceptions.hpp>
#include <opm/material/common/ConditionalStorage.hpp>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <opm/output/eclipse/EclipseIO.hpp>
#include <boost/date_time.hpp>
#include <set>
#include <vector>
#include <string>
#include <algorithm>
namespace Ewoms {
template <class TypeTag>
class EclProblem;
}
BEGIN_PROPERTIES
#if EBOS_USE_ALUGRID
NEW_TYPE_TAG(EclBaseProblem, INHERITS_FROM(EclAluGridVanguard, EclOutputBlackOil));
#else
NEW_TYPE_TAG(EclBaseProblem, INHERITS_FROM(EclCpGridVanguard, EclOutputBlackOil));
//NEW_TYPE_TAG(EclBaseProblem, INHERITS_FROM(EclPolyhedralGridVanguard, EclOutputBlackOil));
#endif
// The class which deals with ECL wells
NEW_PROP_TAG(EclWellModel);
// Write all solutions for visualization, not just the ones for the
// report steps...
NEW_PROP_TAG(EnableWriteAllSolutions);
// The number of time steps skipped between writing two consequtive restart files
NEW_PROP_TAG(RestartWritingInterval);
// Disable well treatment (for users which do this externally)
NEW_PROP_TAG(DisableWells);
// Enable the additional checks even if compiled in debug mode (i.e., with the NDEBUG
// macro undefined). Next to a slightly better performance, this also eliminates some
// print statements in debug mode.
NEW_PROP_TAG(EnableDebuggingChecks);
// if thermal flux boundaries are enabled an effort is made to preserve the initial
// thermal gradient specified via the TEMPVD keyword
NEW_PROP_TAG(EnableThermalFluxBoundaries);
// The class which deals with ECL aquifers
NEW_PROP_TAG(EclAquiferModel);
// Set the problem property
SET_TYPE_PROP(EclBaseProblem, Problem, Ewoms::EclProblem<TypeTag>);
// Select the element centered finite volume method as spatial discretization
SET_TAG_PROP(EclBaseProblem, SpatialDiscretizationSplice, EcfvDiscretization);
//! for ebos, use automatic differentiation to linearize the system of PDEs
SET_TAG_PROP(EclBaseProblem, LocalLinearizerSplice, AutoDiffLocalLinearizer);
// Set the material law for fluid fluxes
SET_PROP(EclBaseProblem, MaterialLaw)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef Opm::ThreePhaseMaterialTraits<Scalar,
/*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::oilPhaseIdx,
/*gasPhaseIdx=*/FluidSystem::gasPhaseIdx> Traits;
public:
typedef Opm::EclMaterialLawManager<Traits> EclMaterialLawManager;
typedef typename EclMaterialLawManager::MaterialLaw type;
};
// Set the material law for energy storage in rock
SET_PROP(EclBaseProblem, SolidEnergyLaw)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
public:
typedef Opm::EclThermalLawManager<Scalar, FluidSystem> EclThermalLawManager;
typedef typename EclThermalLawManager::SolidEnergyLaw type;
};
// Set the material law for thermal conduction
SET_PROP(EclBaseProblem, ThermalConductionLaw)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
public:
typedef Opm::EclThermalLawManager<Scalar, FluidSystem> EclThermalLawManager;
typedef typename EclThermalLawManager::ThermalConductionLaw type;
};
// ebos can use a slightly faster stencil class because it does not need the normals and
// the integration points of intersections
SET_PROP(EclBaseProblem, Stencil)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
public:
typedef Ewoms::EcfvStencil<Scalar,
GridView,
/*needIntegrationPos=*/false,
/*needNormal=*/false> type;
};
// by default use the dummy aquifer "model"
SET_TYPE_PROP(EclBaseProblem, EclAquiferModel, Ewoms::EclBaseAquiferModel<TypeTag>);
// use the built-in proof of concept well model by default
SET_TYPE_PROP(EclBaseProblem, EclWellModel, EclWellManager<TypeTag>);
// Enable gravity
SET_BOOL_PROP(EclBaseProblem, EnableGravity, true);
// only write the solutions for the report steps to disk
SET_BOOL_PROP(EclBaseProblem, EnableWriteAllSolutions, false);
// The default for the end time of the simulation [s]
//
// By default, stop it after the universe will probably have stopped
// to exist. (the ECL problem will finish the simulation explicitly
// after it simulated the last episode specified in the deck.)
SET_SCALAR_PROP(EclBaseProblem, EndTime, 1e100);
// The default for the initial time step size of the simulation [s].
//
// The chosen value means that the size of the first time step is the
// one of the initial episode (if the length of the initial episode is
// not millions of trillions of years, that is...)
SET_SCALAR_PROP(EclBaseProblem, InitialTimeStepSize, 1e100);
// increase the default raw tolerance for the newton solver to 10^-4 because this is what
// everone else seems to be doing...
SET_SCALAR_PROP(EclBaseProblem, NewtonRawTolerance, 1e-4);
// reduce the maximum allowed Newton error to 0.1 kg/(m^3 s). The rationale is that if
// the error is above that limit, the time step is unlikely to succeed anyway and we can
// thus abort the futile attempt early.
SET_SCALAR_PROP(EclBaseProblem, NewtonMaxError, 0.1);
// set the maximum number of Newton iterations to 14 because the likelyhood that a time
// step succeeds at more than 14 Newton iteration is rather small
SET_INT_PROP(EclBaseProblem, NewtonMaxIterations, 14);
// also, reduce the target for the "optimum" number of Newton iterations to 6. Note that
// this is only relevant if the time step is reduced from the report step size for some
// reason. (because ebos first tries to do a report step using a single time step.)
SET_INT_PROP(EclBaseProblem, NewtonTargetIterations, 6);
// Disable the VTK output by default for this problem ...
SET_BOOL_PROP(EclBaseProblem, EnableVtkOutput, false);
// ... but enable the ECL output by default
SET_BOOL_PROP(EclBaseProblem, EnableEclOutput, true);
// If available, write the ECL output in a non-blocking manner
SET_BOOL_PROP(EclBaseProblem, EnableAsyncEclOutput, true);
// By default, use single precision for the ECL formated results
SET_BOOL_PROP(EclBaseProblem, EclOutputDoublePrecision, false);
// The default location for the ECL output files
SET_STRING_PROP(EclBaseProblem, OutputDir, ".");
// the cache for intensive quantities can be used for ECL problems and also yields a
// decent speedup...
SET_BOOL_PROP(EclBaseProblem, EnableIntensiveQuantityCache, true);
// the cache for the storage term can also be used and also yields a decent speedup
SET_BOOL_PROP(EclBaseProblem, EnableStorageCache, true);
// Use the "velocity module" which uses the Eclipse "NEWTRAN" transmissibilities
SET_TYPE_PROP(EclBaseProblem, FluxModule, Ewoms::EclTransFluxModule<TypeTag>);
// Use the dummy gradient calculator in order not to do unnecessary work.
SET_TYPE_PROP(EclBaseProblem, GradientCalculator, Ewoms::EclDummyGradientCalculator<TypeTag>);
// The frequency of writing restart (*.ers) files. This is the number of time steps
// between writing restart files
SET_INT_PROP(EclBaseProblem, RestartWritingInterval, 0xffffff); // disable
// By default, ebos should handle the wells internally, so we don't disable the well
// treatment
SET_BOOL_PROP(EclBaseProblem, DisableWells, false);
// By default, we enable the debugging checks if we're compiled in debug mode
SET_BOOL_PROP(EclBaseProblem, EnableDebuggingChecks, true);
// store temperature (but do not conserve energy, as long as EnableEnergy is false)
SET_BOOL_PROP(EclBaseProblem, EnableTemperature, true);
// disable all extensions supported by black oil model. this should not really be
// necessary but it makes things a bit more explicit
SET_BOOL_PROP(EclBaseProblem, EnablePolymer, false);
SET_BOOL_PROP(EclBaseProblem, EnableSolvent, false);
SET_BOOL_PROP(EclBaseProblem, EnableEnergy, false);
// disable thermal flux boundaries by default
SET_BOOL_PROP(EclBaseProblem, EnableThermalFluxBoundaries, false);
END_PROPERTIES
namespace Ewoms {
/*!
* \ingroup EclBlackOilSimulator
*
* \brief This problem simulates an input file given in the data format used by the
* commercial ECLiPSE simulator.
*/
template <class TypeTag>
class EclProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
{
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, Problem) Implementation;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Stencil) Stencil;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
// Grid and world dimension
enum { dim = GridView::dimension };
enum { dimWorld = GridView::dimensionworld };
// copy some indices for convenience
enum { numEq = GET_PROP_VALUE(TypeTag, NumEq) };
enum { numPhases = FluidSystem::numPhases };
enum { numComponents = FluidSystem::numComponents };
enum { enableSolvent = GET_PROP_VALUE(TypeTag, EnableSolvent) };
enum { enablePolymer = GET_PROP_VALUE(TypeTag, EnablePolymer) };
enum { enableTemperature = GET_PROP_VALUE(TypeTag, EnableTemperature) };
enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) };
enum { enableThermalFluxBoundaries = GET_PROP_VALUE(TypeTag, EnableThermalFluxBoundaries) };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
enum { gasCompIdx = FluidSystem::gasCompIdx };
enum { oilCompIdx = FluidSystem::oilCompIdx };
enum { waterCompIdx = FluidSystem::waterCompIdx };
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GridView::template Codim<0>::Entity Element;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP(TypeTag, MaterialLaw)::EclMaterialLawManager EclMaterialLawManager;
typedef typename GET_PROP(TypeTag, SolidEnergyLaw)::EclThermalLawManager EclThermalLawManager;
typedef typename EclMaterialLawManager::MaterialLawParams MaterialLawParams;
typedef typename EclThermalLawManager::SolidEnergyLawParams SolidEnergyLawParams;
typedef typename EclThermalLawManager::ThermalConductionLawParams ThermalConductionLawParams;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, DofMapper) DofMapper;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, EclWellModel) EclWellModel;
typedef typename GET_PROP_TYPE(TypeTag, EclAquiferModel) EclAquiferModel;
typedef BlackOilSolventModule<TypeTag> SolventModule;
typedef BlackOilPolymerModule<TypeTag> PolymerModule;
typedef typename EclEquilInitializer<TypeTag>::ScalarFluidState InitialFluidState;
typedef Opm::MathToolbox<Evaluation> Toolbox;
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
typedef EclWriter<TypeTag> EclWriterType;
typedef typename GridView::template Codim<0>::Iterator ElementIterator;
struct RockParams {
Scalar referencePressure;
Scalar compressibility;
};
public:
/*!
* \copydoc FvBaseProblem::registerParameters
*/
static void registerParameters()
{
ParentType::registerParameters();
EclWriterType::registerParameters();
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableWriteAllSolutions,
"Write all solutions to disk instead of only the ones for the "
"report steps");
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableEclOutput,
"Write binary output which is compatible with the commercial "
"Eclipse simulator");
EWOMS_REGISTER_PARAM(TypeTag, bool, EclOutputDoublePrecision,
"Tell the output writer to use double precision. Useful for 'perfect' restarts");
EWOMS_REGISTER_PARAM(TypeTag, unsigned, RestartWritingInterval,
"The frequencies of which time steps are serialized to disk");
}
/*!
* \copydoc FvBaseProblem::prepareOutputDir
*/
std::string prepareOutputDir() const
{ return this->simulator().vanguard().eclState().getIOConfig().getOutputDir(); }
/*!
* \copydoc FvBaseProblem::handlePositionalParameter
*/
static int handlePositionalParameter(std::set<std::string>& seenParams,
std::string& errorMsg,
int argc OPM_UNUSED,
const char** argv,
int paramIdx,
int posParamIdx OPM_UNUSED)
{
typedef typename GET_PROP(TypeTag, ParameterMetaData) ParamsMeta;
Dune::ParameterTree& tree = ParamsMeta::tree();
std::string param = argv[paramIdx];
size_t i = param.find('=');
if (i != std::string::npos) {
std::string oldParamName = param.substr(0, i);
std::string oldParamValue = param.substr(i+1);
std::string newParamName = "--" + oldParamName;
for (size_t j = 0; j < newParamName.size(); ++j)
if (newParamName[j] == '_')
newParamName[j] = '-';
errorMsg =
"The old syntax to specify parameters on the command line is no longer supported: "
"Try replacing '"+oldParamName+"="+oldParamValue+"' with "+
"'"+newParamName+"="+oldParamValue+"'!";
return 0;
}
if (seenParams.count("EclDeckFileName") > 0) {
errorMsg =
"Parameter 'EclDeckFileName' specified multiple times"
" as a command line parameter";
return 0;
}
tree["EclDeckFileName"] = argv[paramIdx];
seenParams.insert("EclDeckFileName");
return 1;
}
/*!
* \copydoc FvBaseProblem::helpPreamble
*/
static std::string helpPreamble(int argc OPM_UNUSED,
const char **argv)
{
std::string desc = Implementation::briefDescription();
if (!desc.empty())
desc = desc + "\n";
return
"Usage: "+std::string(argv[0]) + " [OPTIONS] [ECL_DECK_FILENAME]\n"
+ desc;
}
/*!
* \copydoc FvBaseProblem::briefDescription
*/
static std::string briefDescription()
{
if (briefDescription_.empty())
return
"The Ecl-deck Black-Oil reservoir Simulator (ebos); a hydrocarbon "
"reservoir simulation program that processes ECL-formatted input "
"files which is provided by the Open Porous Media project "
"(https://opm-project.org).";
else
return briefDescription_;
}
/*!
* \brief Specifies the string returned by briefDescription()
*
* This string appears in the usage message.
*/
static void setBriefDescription(const std::string& msg)
{ briefDescription_ = msg; }
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
EclProblem(Simulator& simulator)
: ParentType(simulator)
, transmissibilities_(simulator.vanguard())
, thresholdPressures_(simulator)
, wellModel_(simulator)
, aquiferModel_(simulator)
, pffDofData_(simulator.gridView(), this->elementMapper())
{
// Tell the black-oil extensions to initialize their internal data structures
const auto& vanguard = simulator.vanguard();
SolventModule::initFromDeck(vanguard.deck(), vanguard.eclState());
PolymerModule::initFromDeck(vanguard.deck(), vanguard.eclState());
if (EWOMS_GET_PARAM(TypeTag, bool, EnableEclOutput))
// create the ECL writer
eclWriter_.reset(new EclWriterType(simulator));
}
/*!
* \copydoc FvBaseProblem::finishInit
*/
void finishInit()
{
ParentType::finishInit();
auto& simulator = this->simulator();
// set the value of the gravity constant to the one used by the FLOW simulator
this->gravity_ = 0.0;
// the "NOGRAV" keyword from Frontsim disables gravity...
const auto& deck = simulator.vanguard().deck();
if (!deck.hasKeyword("NOGRAV") && EWOMS_GET_PARAM(TypeTag, bool, EnableGravity))
this->gravity_[dim - 1] = 9.80665;
// this is actually not fully correct: the latest occurence of VAPPARS and DRSDT
// or DRVDT up to the current time step in the schedule section counts, presence
// of VAPPARS alone is not sufficient to disable DR[SV]DT. TODO: implment support
// for this in opm-parser's Schedule object"
drsdtActive_ = false;
drvdtActive_ = false;
vapparsActive_ = false;
if (deck.hasKeyword("VAPPARS")) {
vapparsActive_ = true;
size_t numDof = this->model().numGridDof();
maxOilSaturation_.resize(numDof, 0.0);
// TODO: update the PVT objects. this is only required if VAPPARS becomes a
// fully dynamic keyword.
}
// deal with DRSDT
maxDRsDt_ = 0.0;
maxDRs_ = -1.0;
if (!vapparsActive_ && deck.hasKeyword("DRSDT")) {
drsdtActive_ = !vapparsActive_;
const auto& drsdtKeyword = deck.getKeyword("DRSDT");
maxDRsDt_ = drsdtKeyword.getRecord(0).getItem("DRSDT_MAX").getSIDouble(0);
size_t numDof = this->model().numGridDof();
lastRs_.resize(numDof, 0.0);
std::string drsdtFlag =
drsdtKeyword.getRecord(0).getItem("Option").getTrimmedString(0);
std::transform(drsdtFlag.begin(), drsdtFlag.end(), drsdtFlag.begin(), ::toupper);
dRsDtOnlyFreeGas_ = (drsdtFlag == "FREE");
}
// deal with DRVDT
maxDRvDt_ = 0.0;
maxDRv_ = -1.0;
if (!vapparsActive_ && deck.hasKeyword("DRVDT")) {
const auto& drvdtKeyword = deck.getKeyword("DVSDT");
maxDRvDt_ = drvdtKeyword.getRecord(0).getItem("DRVDT_MAX").getSIDouble(0);
size_t numDof = this->model().numGridDof();
lastRv_.resize(numDof, 0.0);
}
initFluidSystem_();
updateElementDepths_();
readRockParameters_();
readMaterialParameters_();
readThermalParameters_();
transmissibilities_.finishInit();
const auto& eclState = simulator.vanguard().eclState();
const auto& initconfig = eclState.getInitConfig();
const auto& timeMap = simulator.vanguard().schedule().getTimeMap();
if(initconfig.restartRequested()) {
// Set the start time of the simulation
simulator.setStartTime( timeMap.getStartTime(/*timeStepIdx=*/initconfig.getRestartStep()) );
simulator.setEpisodeIndex(initconfig.getRestartStep());
simulator.setEpisodeLength(0.0);
simulator.setTimeStepSize(0.0);
readEclRestartSolution_();
} else {
readInitialCondition_();
// Set the start time of the simulation
simulator.setStartTime( timeMap.getStartTime(/*timeStepIdx=*/0) );
// We want the episode index to be the same as the report step index to make
// things simpler, so we have to set the episode index to -1 because it is
// incremented inside beginEpisode(). The size of the initial time step and
// length of the initial episode is set to zero for the same reason.
simulator.setEpisodeIndex(-1);
simulator.setEpisodeLength(0.0);
simulator.setTimeStepSize(0.0);
}
updatePffDofData_();
if (GET_PROP_VALUE(TypeTag, EnablePolymer)) {
const auto& vanguard = this->simulator().vanguard();
const auto& gridView = vanguard.gridView();
int numElements = gridView.size(/*codim=*/0);
maxPolymerAdsorption_.resize(numElements, 0.0);
}
if (eclWriter_) {
eclWriter_->writeInit();
this->simulator().vanguard().releaseGlobalTransmissibilities();
}
}
void prefetch(const Element& elem) const
{ pffDofData_.prefetch(elem); }
/*!
* \brief This method restores the complete state of the problem and its sub-objects
* from disk.
*
* The serialization format used by this method is ad-hoc. It is the inverse of the
* serialize() method.
*
* \tparam Restarter The deserializer type
*
* \param res The deserializer object
*/
template <class Restarter>
void deserialize(Restarter& res)
{
// reload the current episode/report step from the deck
beginEpisode(/*isOnRestart=*/true);
// deserialize the wells
wellModel_.deserialize(res);
// deserialize the aquifer
aquiferModel_.deserialize(res);
}
/*!
* \brief This method writes the complete state of the problem and its subobjects to
* disk.
*
* The file format used here is ad-hoc.
*/
template <class Restarter>
void serialize(Restarter& res)
{
wellModel_.serialize(res);
aquiferModel_.serialize(res);
}
/*!
* \brief Called by the simulator before an episode begins.
*/
void beginEpisode(bool isOnRestart = false)
{
// Proceed to the next report step
Simulator& simulator = this->simulator();
auto& eclState = this->simulator().vanguard().eclState();
const auto& schedule = this->simulator().vanguard().schedule();
const auto& events = schedule.getEvents();
const auto& timeMap = schedule.getTimeMap();
// The first thing to do in the morning of an episode is update update the
// eclState and the deck if they need to be changed.
int nextEpisodeIdx = simulator.episodeIndex();
if (nextEpisodeIdx > 0 &&
events.hasEvent(Opm::ScheduleEvents::GEO_MODIFIER, nextEpisodeIdx))
{
// bring the contents of the keywords to the current state of the SCHEDULE
// section
//
// TODO (?): make grid topology changes possible (depending on what exactly
// has changed, the grid may need be re-created which has some serious
// implications on e.g., the solution of the simulation.)
const auto& miniDeck = schedule.getModifierDeck(nextEpisodeIdx);
eclState.applyModifierDeck(miniDeck);
// re-compute all quantities which may possibly be affected.
transmissibilities_.update();
updatePorosity_();
updatePffDofData_();
}
// Opm::TimeMap deals with points in time, so the number of time intervals (i.e.,
// report steps) is one less!
int numReportSteps = timeMap.size() - 1;
// start the next episode if there are additional report steps, else finish the
// simulation
while (nextEpisodeIdx < numReportSteps &&
simulator.time() >= timeMap.getTimePassedUntil(nextEpisodeIdx + 1)*(1 - 1e-10))
{
++ nextEpisodeIdx;
}
Scalar episodeLength = timeMap.getTimeStepLength(nextEpisodeIdx);
Scalar dt = episodeLength;
if (nextEpisodeIdx == 0) {
// allow the size of the initial time step to be set via an external parameter
Scalar initialDt = EWOMS_GET_PARAM(TypeTag, Scalar, InitialTimeStepSize);
dt = std::min(dt, initialDt);
}
if (nextEpisodeIdx < numReportSteps) {
simulator.startNextEpisode(episodeLength);
simulator.setTimeStepSize(dt);
}
const bool invalidateFromHyst = updateHysteresis_();
const bool invalidateFromMaxOilSat = updateMaxOilSaturation_();
const bool doInvalidate = invalidateFromHyst || invalidateFromMaxOilSat;
if (GET_PROP_VALUE(TypeTag, EnablePolymer))
updateMaxPolymerAdsorption_();
if (!GET_PROP_VALUE(TypeTag, DisableWells))
// set up the wells for the next episode.
//
// TODO: the first two arguments seem to be unnecessary
wellModel_.beginEpisode(this->simulator().vanguard().eclState(),
this->simulator().vanguard().schedule(),
isOnRestart);
aquiferModel_.beginEpisode();
if (doInvalidate)
this->model().invalidateIntensiveQuantitiesCache(/*timeIdx=*/0);
}
/*!
* \brief Called by the simulator before each time integration.
*/
void beginTimeStep()
{
if (drsdtActive_)
// DRSDT is enabled
maxDRs_ = maxDRsDt_*this->simulator().timeStepSize();
if (drvdtActive_)
// DRVDT is enabled
maxDRv_ = maxDRvDt_*this->simulator().timeStepSize();
if (!GET_PROP_VALUE(TypeTag, DisableWells))
wellModel_.beginTimeStep();
aquiferModel_.beginTimeStep();
}
/*!
* \brief Called by the simulator before each Newton-Raphson iteration.
*/
void beginIteration()
{
if (!GET_PROP_VALUE(TypeTag, DisableWells))
wellModel_.beginIteration();
aquiferModel_.beginIteration();
}
/*!
* \brief Called by the simulator after each Newton-Raphson iteration.
*/
void endIteration()
{
if (!GET_PROP_VALUE(TypeTag, DisableWells))
wellModel_.endIteration();
aquiferModel_.endIteration();
}
/*!
* \brief Called by the simulator after each time integration.
*/
void endTimeStep()
{
#ifndef NDEBUG
if (GET_PROP_VALUE(TypeTag, EnableDebuggingChecks)) {
// in debug mode, we don't care about performance, so we check if the model does
// the right thing (i.e., the mass change inside the whole reservoir must be
// equivalent to the fluxes over the grid's boundaries plus the source rates
// specified by the problem)
this->model().checkConservativeness(/*tolerance=*/-1, /*verbose=*/true);
}
#endif // NDEBUG
if (!GET_PROP_VALUE(TypeTag, DisableWells))
wellModel_.endTimeStep();
aquiferModel_.endTimeStep();
// we no longer need the initial soluiton
if (this->simulator().episodeIndex() == 0 && !initialFluidStates_.empty()) {
// we always need to provide a temperature and if energy is not conserved, we
// use the initial one. This means we have to "salvage" the temperature from
// the initial fluid states before deleting the array.
if (!enableEnergy) {
initialTemperature_.resize(initialFluidStates_.size());
for (unsigned i = 0; i < initialFluidStates_.size(); ++i) {
const auto& fs = initialFluidStates_[i];
initialTemperature_[i] = fs.temperature(/*phaseIdx=*/0);
}
}
initialFluidStates_.clear();
}
updateCompositionChangeLimits_();
}
/*!
* \brief Called by the simulator after the end of an episode.
*/
void endEpisode()
{
auto& simulator = this->simulator();
const auto& schedule = simulator.vanguard().schedule();
int episodeIdx = simulator.episodeIndex();
const auto& timeMap = schedule.getTimeMap();
int numReportSteps = timeMap.size() - 1;
if (episodeIdx + 1 >= numReportSteps) {
simulator.setFinished(true);
return;
}
if (!GET_PROP_VALUE(TypeTag, DisableWells))
wellModel_.endEpisode();
aquiferModel_.endEpisode();
}
/*!
* \brief Returns true if the current solution should be written
* to disk for visualization.
*
* For the ECL simulator we only write at the end of
* episodes/report steps...
*/
bool shouldWriteOutput() const
{
if (this->simulator().timeStepIndex() < 0)
// always write the initial solution
return true;
if (EWOMS_GET_PARAM(TypeTag, bool, EnableWriteAllSolutions))
return true;
return this->simulator().episodeWillBeOver();
}
/*!
* \brief Returns true if an eWoms restart file should be written to disk.
*/
bool shouldWriteRestartFile() const
{
unsigned n = EWOMS_GET_PARAM(TypeTag, unsigned, RestartWritingInterval);
unsigned i = this->simulator().timeStepIndex();
if (i > 0 && (i%n) == 0)
return true; // we don't write a restart file for the initial condition
return false;
}
/*!
* \brief Write the requested quantities of the current solution into the output
* files.
*/
void writeOutput(bool isSubStep, bool verbose = true)
{
// use the generic code to prepare the output fields and to
// write the desired VTK files.
ParentType::writeOutput(isSubStep, verbose);
if (!eclWriter_)
return;
eclWriter_->writeOutput(isSubStep);
}
// this method is DEPRECATED!!!
void writeOutput(Opm::data::Wells& dw, Scalar t, bool substep, Scalar totalSolverTime, Scalar nextstep, bool verbose = true)
{
// use the generic code to prepare the output fields and to
// write the desired VTK files.
ParentType::writeOutput(verbose);
// output using eclWriter if enabled
if (eclWriter_)
eclWriter_->writeOutput(dw, t, substep, totalSolverTime, nextstep);
}
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*/
template <class Context>
const DimMatrix& intrinsicPermeability(const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return transmissibilities_.permeability(globalSpaceIdx);
}
/*!
* \brief This method returns the intrinsic permeability tensor
* given a global element index.
*
* Its main (only?) usage is the ECL transmissibility calculation code...
*/
const DimMatrix& intrinsicPermeability(unsigned globalElemIdx) const
{ return transmissibilities_.permeability(globalElemIdx); }
/*!
* \copydoc EclTransmissiblity::transmissibility
*/
template <class Context>
Scalar transmissibility(const Context& context,
unsigned OPM_OPTIM_UNUSED fromDofLocalIdx,
unsigned toDofLocalIdx) const
{
assert(fromDofLocalIdx == 0);
return pffDofData_.get(context.element(), toDofLocalIdx).transmissibility;
}
/*!
* \copydoc EclTransmissiblity::transmissibilityBoundary
*/
template <class Context>
Scalar transmissibilityBoundary(const Context& elemCtx,
unsigned boundaryFaceIdx) const
{
unsigned elemIdx = elemCtx.globalSpaceIndex(/*dofIdx=*/0, /*timeIdx=*/0);
return transmissibilities_.transmissibilityBoundary(elemIdx, boundaryFaceIdx);
}
/*!
* \copydoc EclTransmissiblity::thermalHalfTransmissibility
*/
template <class Context>
Scalar thermalHalfTransmissibility(const Context& context,
unsigned faceIdx,
unsigned timeIdx) const
{
const auto& face = context.stencil(timeIdx).interiorFace(faceIdx);
unsigned toDofLocalIdx = face.exteriorIndex();
return *pffDofData_.get(context.element(), toDofLocalIdx).thermalHalfTrans;
}
/*!
* \copydoc EclTransmissiblity::thermalHalfTransmissibility
*/
template <class Context>
Scalar thermalHalfTransmissibilityBoundary(const Context& elemCtx,
unsigned boundaryFaceIdx) const
{
unsigned elemIdx = elemCtx.globalSpaceIndex(/*dofIdx=*/0, /*timeIdx=*/0);
return transmissibilities_.thermalHalfTransBoundary(elemIdx, boundaryFaceIdx);
}
/*!
* \brief Return a reference to the object that handles the "raw" transmissibilities.
*/
const EclTransmissibility<TypeTag>& eclTransmissibilities() const
{ return transmissibilities_; }
/*!
* \copydoc BlackOilBaseProblem::thresholdPressure
*/
Scalar thresholdPressure(unsigned elem1Idx, unsigned elem2Idx) const
{ return thresholdPressures_.thresholdPressure(elem1Idx, elem2Idx); }
const EclThresholdPressure<TypeTag>& thresholdPressure() const
{ return thresholdPressures_; }
EclThresholdPressure<TypeTag>& thresholdPressure()
{ return thresholdPressures_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*/
template <class Context>
Scalar porosity(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return porosity_[globalSpaceIdx];
}
/*!
* \brief Returns the porosity of an element
*
* Note that this method is *not* part of the generic eWoms problem API because it
* would bake the assumption that only the elements are the degrees of freedom into
* the interface.
*/
Scalar porosity(unsigned elementIdx) const
{ return porosity_[elementIdx]; }
/*!
* \brief Returns the depth of an degree of freedom [m]
*
* For ECL problems this is defined as the average of the depth of an element and is
* thus slightly different from the depth of an element's centroid.
*/
template <class Context>
Scalar dofCenterDepth(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return elementCenterDepth_[globalSpaceIdx];
}
/*!
* \copydoc BlackoilProblem::rockCompressibility
*/
template <class Context>
Scalar rockCompressibility(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
if (rockParams_.empty())
return 0.0;
unsigned tableIdx = 0;
if (!rockTableIdx_.empty()) {
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
tableIdx = rockTableIdx_[globalSpaceIdx];
}
return rockParams_[tableIdx].compressibility;
}
/*!
* \copydoc BlackoilProblem::rockReferencePressure
*/
template <class Context>
Scalar rockReferencePressure(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
if (rockParams_.empty())
return 1e5;
unsigned tableIdx = 0;
if (!rockTableIdx_.empty()) {
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
tableIdx = rockTableIdx_[globalSpaceIdx];
}
return rockParams_[tableIdx].referencePressure;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template <class Context>
const MaterialLawParams& materialLawParams(const Context& context,
unsigned spaceIdx, unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return materialLawParams(globalSpaceIdx);
}
const MaterialLawParams& materialLawParams(unsigned globalDofIdx) const
{ return materialLawManager_->materialLawParams(globalDofIdx); }
/*!
* \brief Return the parameters for the energy storage law of the rock
*/
template <class Context>
const SolidEnergyLawParams&
solidEnergyLawParams(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return thermalLawManager_->solidEnergyLawParams(globalSpaceIdx);
}
/*!
* \copydoc FvBaseMultiPhaseProblem::thermalConductionParams
*/
template <class Context>
const ThermalConductionLawParams &
thermalConductionLawParams(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return thermalLawManager_->thermalConductionLawParams(globalSpaceIdx);
}
/*!
* \brief Returns the ECL material law manager
*
* Note that this method is *not* part of the generic eWoms problem API because it
* would force all problens use the ECL material laws.
*/
std::shared_ptr<const EclMaterialLawManager> materialLawManager() const
{ return materialLawManager_; }
/*!
* \copydoc materialLawManager()
*/
std::shared_ptr<EclMaterialLawManager> materialLawManager()
{ return materialLawManager_; }
/*!
* \brief Returns the initial solvent saturation for a given a cell index
*/
Scalar solventSaturation(unsigned elemIdx) const
{
if (solventSaturation_.empty())
return 0;
return solventSaturation_[elemIdx];
}
/*!
* \brief Returns the initial polymer concentration for a given a cell index
*/
Scalar polymerConcentration(unsigned elemIdx) const
{
if (polymerConcentration_.empty())
return 0;
return polymerConcentration_[elemIdx];
}
/*!
* \brief Returns the index of the relevant region for thermodynmic properties
*/
template <class Context>
unsigned pvtRegionIndex(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{ return pvtRegionIndex(context.globalSpaceIndex(spaceIdx, timeIdx)); }
/*!
* \brief Returns the index the relevant PVT region given a cell index
*/
unsigned pvtRegionIndex(unsigned elemIdx) const
{
if (pvtnum_.empty())
return 0;
return pvtnum_[elemIdx];
}
const std::vector<int>& pvtRegionArray() const
{ return pvtnum_; }
/*!
* \brief Returns the index of the relevant region for thermodynmic properties
*/
template <class Context>
unsigned satnumRegionIndex(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{ return satnumRegionIndex(context.globalSpaceIndex(spaceIdx, timeIdx)); }
/*!
* \brief Returns the index the relevant saturation function region given a cell index
*/
unsigned satnumRegionIndex(unsigned elemIdx) const
{
if (satnum_.empty())
return 0;
return satnum_[elemIdx];
}
/*!
* \brief Returns the index of the relevant region for thermodynmic properties
*/
template <class Context>
unsigned miscnumRegionIndex(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{ return miscnumRegionIndex(context.globalSpaceIndex(spaceIdx, timeIdx)); }
/*!
* \brief Returns the index the relevant MISC region given a cell index
*/
unsigned miscnumRegionIndex(unsigned elemIdx) const
{
if (miscnum_.empty())
return 0;
return miscnum_[elemIdx];
}
/*!
* \brief Returns the index of the relevant region for thermodynmic properties
*/
template <class Context>
unsigned plmixnumRegionIndex(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{ return plmixnumRegionIndex(context.globalSpaceIndex(spaceIdx, timeIdx)); }
/*!
* \brief Returns the index the relevant PLMIXNUM ( for polymer module) region given a cell index
*/
unsigned plmixnumRegionIndex(unsigned elemIdx) const
{
if (plmixnum_.empty())
return 0;
return plmixnum_[elemIdx];
}
/*!
* \brief Returns the max polymer adsorption value
*/
template <class Context>
Scalar maxPolymerAdsorption(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{ return maxPolymerAdsorption(context.globalSpaceIndex(spaceIdx, timeIdx)); }
/*!
* \brief Returns the max polymer adsorption value
*/
Scalar maxPolymerAdsorption(unsigned elemIdx) const
{
if (maxPolymerAdsorption_.empty())
return 0;
return maxPolymerAdsorption_[elemIdx];
}
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{ return this->simulator().vanguard().caseName(); }
/*!
* \copydoc FvBaseMultiPhaseProblem::temperature
*/
template <class Context>
Scalar temperature(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
// use the temporally constant temperature, i.e. use the initial temperature of
// the DOF
unsigned globalDofIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
if (!initialFluidStates_.empty())
return initialFluidStates_[globalDofIdx].temperature(/*phaseIdx=*/0);
return initialTemperature_[globalDofIdx];
}
/*!
* \copydoc FvBaseProblem::boundary
*
* ECLiPSE uses no-flow conditions for all boundaries. \todo really?
*/
template <class Context>
void boundary(BoundaryRateVector& values,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
if (!enableEnergy || !enableThermalFluxBoundaries)
values.setNoFlow();
else {
// in the energy case we need to specify a non-trivial boundary condition
// because the geothermal gradient needs to be maintained. for this, we
// simply assume the initial temperature at the boundary and specify the
// thermal flow accordingly. in this context, "thermal flow" means energy
// flow due to a temerature gradient while assuming no-flow for mass
unsigned interiorDofIdx = context.interiorScvIndex(spaceIdx, timeIdx);
unsigned globalDofIdx = context.globalSpaceIndex(interiorDofIdx, timeIdx);
values.setThermalFlow(context, spaceIdx, timeIdx, initialFluidStates_[globalDofIdx]);
}
}
/*!
* \copydoc FvBaseProblem::initial
*
* The reservoir problem uses a constant boundary condition for
* the whole domain.
*/
template <class Context>
void initial(PrimaryVariables& values, const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
unsigned globalDofIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
values.setPvtRegionIndex(pvtRegionIndex(context, spaceIdx, timeIdx));
if (useMassConservativeInitialCondition_) {
const auto& matParams = materialLawParams(context, spaceIdx, timeIdx);
values.assignMassConservative(initialFluidStates_[globalDofIdx], matParams);
}
else
values.assignNaive(initialFluidStates_[globalDofIdx]);
if (enableSolvent)
values[Indices::solventSaturationIdx] = solventSaturation_[globalDofIdx];
if (enablePolymer)
values[Indices::polymerConcentrationIdx] = polymerConcentration_[globalDofIdx];
values.checkDefined();
}
/*!
* \copydoc FvBaseProblem::initialSolutionApplied()
*/
void initialSolutionApplied()
{
if (!GET_PROP_VALUE(TypeTag, DisableWells)) {
// initialize the wells. Note that this needs to be done after initializing the
// intrinsic permeabilities and the after applying the initial solution because
// the well model uses these...
wellModel_.init(this->simulator().vanguard().eclState(), this->simulator().vanguard().schedule());
}
// let the object for threshold pressures initialize itself. this is done only at
// this point, because determining the threshold pressures may require to access
// the initial solution.
thresholdPressures_.finishInit();
// release the memory of the EQUIL grid since it's no longer needed after this point
this->simulator().vanguard().releaseEquilGrid();
updateCompositionChangeLimits_();
aquiferModel_.initialSolutionApplied();
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all components is 0 everywhere.
*/
template <class Context>
void source(RateVector& rate,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
rate = 0.0;
if (!GET_PROP_VALUE(TypeTag, DisableWells)) {
wellModel_.computeTotalRatesForDof(rate, context, spaceIdx, timeIdx);
// convert the source term from the total mass rate of the
// cell to the one per unit of volume as used by the model.
unsigned globalDofIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
for (unsigned eqIdx = 0; eqIdx < numEq; ++ eqIdx) {
rate[eqIdx] /= this->model().dofTotalVolume(globalDofIdx);
Opm::Valgrind::CheckDefined(rate[eqIdx]);
assert(Opm::isfinite(rate[eqIdx]));
}
}
aquiferModel_.addToSource(rate, context, spaceIdx, timeIdx);
}
/*!
* \brief Returns the maximum value of the gas dissolution factor at the current time
* for a given degree of freedom.
*/
Scalar maxGasDissolutionFactor(unsigned globalDofIdx) const
{
if (!drsdtActive_ || maxDRs_ < 0.0)
return std::numeric_limits<Scalar>::max()/2;
return lastRs_[globalDofIdx] + maxDRs_;
}
/*!
* \brief Returns the maximum value of the oil vaporization factor at the current
* time for a given degree of freedom.
*/
Scalar maxOilVaporizationFactor(unsigned globalDofIdx) const
{
if (!drvdtActive_ || maxDRv_ < 0.0)
return std::numeric_limits<Scalar>::max()/2;
return lastRv_[globalDofIdx] + maxDRv_;
}
/*!
* \brief Returns an element's maximum oil phase saturation observed during the
* simulation.
*
* This is a bit of a hack from the conceptional point of view, but it is required to
* match the results of the 'flow' and ECLIPSE 100 simulators.
*/
Scalar maxOilSaturation(unsigned globalDofIdx) const
{
if (!vapparsActive_)
return 0.0;
return maxOilSaturation_[globalDofIdx];
}
/*!
* \brief Sets an element's maximum oil phase saturation observed during the
* simulation.
*
* This a hack on top of the maxOilSaturation() hack but it is currently required to
* do restart externally. i.e. from the flow code.
*/
void setMaxOilSaturation(unsigned globalDofIdx, Scalar value)
{
if (!vapparsActive_)
return;
maxOilSaturation_[globalDofIdx] = value;
}
/*!
* \brief Returns a reference to the ECL well manager used by the problem.
*
* This can be used for inspecting wells outside of the problem.
*/
const EclWellModel& wellModel() const
{ return wellModel_; }
EclWellModel& wellModel()
{ return wellModel_; }
// temporary solution to facilitate output of initial state from flow
const InitialFluidState& initialFluidState(unsigned globalDofIdx ) const
{ return initialFluidStates_[globalDofIdx]; }
const Opm::EclipseIO& eclIO() const
{ return eclWriter_->eclIO(); }
bool vapparsActive() const
{
return vapparsActive_;
}
private:
Scalar cellCenterDepth( const Element& element ) const
{
typedef typename Element :: Geometry Geometry;
static constexpr int zCoord = Element :: dimension - 1;
Scalar zz = 0.0;
const Geometry geometry = element.geometry();
const int corners = geometry.corners();
for (int i=0; i<corners; ++i)
{
zz += geometry.corner( i )[ zCoord ];
}
return zz/Scalar(corners);
}
void updateElementDepths_()
{
const auto& vanguard = this->simulator().vanguard();
const auto& gridView = vanguard.gridView();
const auto& elemMapper = this->elementMapper();;
int numElements = gridView.size(/*codim=*/0);
elementCenterDepth_.resize(numElements);
auto elemIt = gridView.template begin</*codim=*/0>();
const auto& elemEndIt = gridView.template end</*codim=*/0>();
for (; elemIt != elemEndIt; ++elemIt) {
const Element& element = *elemIt;
const unsigned int elemIdx = elemMapper.index(element);
elementCenterDepth_[elemIdx] = cellCenterDepth( element );
}
}
// update the parameters needed for DRSDT and DRVDT
void updateCompositionChangeLimits_()
{
// update the "last Rs" values for all elements, including the ones in the ghost
// and overlap regions
if (drsdtActive_) {
ElementContext elemCtx(this->simulator());
const auto& vanguard = this->simulator().vanguard();
auto elemIt = vanguard.gridView().template begin</*codim=*/0>();
const auto& elemEndIt = vanguard.gridView().template end</*codim=*/0>();
for (; elemIt != elemEndIt; ++elemIt) {
const Element& elem = *elemIt;
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
unsigned compressedDofIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& iq = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = iq.fluidState();
typedef typename std::decay<decltype(fs) >::type FluidState;
if (!dRsDtOnlyFreeGas_ || fs.saturation(gasPhaseIdx) > freeGasMinSaturation_)
lastRs_[compressedDofIdx] =
Opm::BlackOil::template getRs_<FluidSystem,
FluidState,
Scalar>(fs, iq.pvtRegionIndex());
else
lastRs_[compressedDofIdx] = std::numeric_limits<Scalar>::infinity();
}
}
// update the "last Rv" values for all elements, including the ones in the ghost
// and overlap regions
if (drvdtActive_) {
ElementContext elemCtx(this->simulator());
const auto& vanguard = this->simulator().vanguard();
auto elemIt = vanguard.gridView().template begin</*codim=*/0>();
const auto& elemEndIt = vanguard.gridView().template end</*codim=*/0>();
for (; elemIt != elemEndIt; ++elemIt) {
const Element& elem = *elemIt;
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
unsigned compressedDofIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& iq = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = iq.fluidState();
typedef typename std::decay<decltype(fs) >::type FluidState;
lastRv_[compressedDofIdx] =
Opm::BlackOil::template getRv_<FluidSystem,
FluidState,
Scalar>(fs, iq.pvtRegionIndex());
}
}
}
bool updateMaxOilSaturation_()
{
// we use VAPPARS
if (vapparsActive_) {
ElementContext elemCtx(this->simulator());
const auto& vanguard = this->simulator().vanguard();
auto elemIt = vanguard.gridView().template begin</*codim=*/0>();
const auto& elemEndIt = vanguard.gridView().template end</*codim=*/0>();
for (; elemIt != elemEndIt; ++elemIt) {
const Element& elem = *elemIt;
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
unsigned compressedDofIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& iq = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = iq.fluidState();
Scalar So = Opm::decay<Scalar>(fs.saturation(oilPhaseIdx));
maxOilSaturation_[compressedDofIdx] = std::max(maxOilSaturation_[compressedDofIdx], So);
}
// we need to invalidate the intensive quantities cache here because the
// derivatives of Rs and Rv will most likely have changed
return true;
}
return false;
}
void readRockParameters_()
{
const auto& deck = this->simulator().vanguard().deck();
const auto& eclState = this->simulator().vanguard().eclState();
const auto& vanguard = this->simulator().vanguard();
// the ROCK keyword has not been specified, so we don't need
// to read rock parameters
if (!deck.hasKeyword("ROCK"))
return;
const auto& rockKeyword = deck.getKeyword("ROCK");
rockParams_.resize(rockKeyword.size());
for (size_t rockRecordIdx = 0; rockRecordIdx < rockKeyword.size(); ++ rockRecordIdx) {
const auto& rockRecord = rockKeyword.getRecord(rockRecordIdx);
rockParams_[rockRecordIdx].referencePressure =
rockRecord.getItem("PREF").getSIDouble(0);
rockParams_[rockRecordIdx].compressibility =
rockRecord.getItem("COMPRESSIBILITY").getSIDouble(0);
}
// check the kind of region which is supposed to be used by checking the ROCKOPTS
// keyword. note that for some funny reason, the ROCK keyword uses PVTNUM by
// default, *not* ROCKNUM!
std::string propName = "PVTNUM";
if (deck.hasKeyword("ROCKOPTS")) {
const auto& rockoptsKeyword = deck.getKeyword("ROCKOPTS");
std::string rockTableType =
rockoptsKeyword.getRecord(0).getItem("TABLE_TYPE").getTrimmedString(0);
if (rockTableType == "PVTNUM")
propName = "PVTNUM";
else if (rockTableType == "SATNUM")
propName = "SATNUM";
else if (rockTableType == "ROCKNUM")
propName = "ROCKNUM";
else {
throw std::runtime_error("Unknown table type '"+rockTableType
+" for the ROCKOPTS keyword given");
}
}
// the deck does not specify the selected keyword, so everything uses the first
// record of ROCK.
if (!eclState.get3DProperties().hasDeckIntGridProperty(propName))
return;
const std::vector<int>& tablenumData =
eclState.get3DProperties().getIntGridProperty(propName).getData();
unsigned numElem = vanguard.gridView().size(0);
rockTableIdx_.resize(numElem);
for (size_t elemIdx = 0; elemIdx < numElem; ++ elemIdx) {
unsigned cartElemIdx = vanguard.cartesianIndex(elemIdx);
// reminder: Eclipse uses FORTRAN-style indices
rockTableIdx_[elemIdx] = tablenumData[cartElemIdx] - 1;
}
}
void readMaterialParameters_()
{
const auto& vanguard = this->simulator().vanguard();
const auto& deck = vanguard.deck();
const auto& eclState = vanguard.eclState();
// the PVT and saturation region numbers
updatePvtnum_();
updateSatnum_();
// the MISC region numbers (solvent model)
updateMiscnum_();
// the PLMIX region numbers (polymer model)
updatePlmixnum_();
////////////////////////////////
// porosity
updatePorosity_();
////////////////////////////////
////////////////////////////////
// fluid-matrix interactions (saturation functions; relperm/capillary pressure)
size_t numDof = this->model().numGridDof();
std::vector<int> compressedToCartesianElemIdx(numDof);
for (unsigned elemIdx = 0; elemIdx < numDof; ++elemIdx)
compressedToCartesianElemIdx[elemIdx] = vanguard.cartesianIndex(elemIdx);
materialLawManager_ = std::make_shared<EclMaterialLawManager>();
materialLawManager_->initFromDeck(deck, eclState, compressedToCartesianElemIdx);
////////////////////////////////
}
void readThermalParameters_()
{
if (!enableEnergy)
return;
const auto& vanguard = this->simulator().vanguard();
const auto& deck = vanguard.deck();
const auto& eclState = vanguard.eclState();
// fluid-matrix interactions (saturation functions; relperm/capillary pressure)
size_t numDof = this->model().numGridDof();
std::vector<int> compressedToCartesianElemIdx(numDof);
for (unsigned elemIdx = 0; elemIdx < numDof; ++elemIdx)
compressedToCartesianElemIdx[elemIdx] = vanguard.cartesianIndex(elemIdx);
thermalLawManager_ = std::make_shared<EclThermalLawManager>();
thermalLawManager_->initFromDeck(deck, eclState, compressedToCartesianElemIdx);
}
void updatePorosity_()
{
const auto& vanguard = this->simulator().vanguard();
const auto& eclState = vanguard.eclState();
const auto& eclGrid = eclState.getInputGrid();
const auto& props = eclState.get3DProperties();
size_t numDof = this->model().numGridDof();
porosity_.resize(numDof);
const std::vector<double>& porvData =
props.getDoubleGridProperty("PORV").getData();
const std::vector<int>& actnumData =
props.getIntGridProperty("ACTNUM").getData();
int nx = eclGrid.getNX();
int ny = eclGrid.getNY();
for (size_t dofIdx = 0; dofIdx < numDof; ++ dofIdx) {
unsigned cartElemIdx = vanguard.cartesianIndex(dofIdx);
Scalar poreVolume = porvData[cartElemIdx];
// sum up the pore volume of the active cell and all inactive ones above it
// which were disabled due to their pore volume being too small. If energy is
// conserved, cells are not disabled due to a too small pore volume because
// such cells still store and conduct energy.
if (!enableEnergy && eclGrid.getMinpvMode() == Opm::MinpvMode::ModeEnum::OpmFIL) {
const std::vector<Scalar>& minPvVector = eclGrid.getMinpvVector();
for (int aboveElemCartIdx = static_cast<int>(cartElemIdx) - nx*ny;
aboveElemCartIdx >= 0;
aboveElemCartIdx -= nx*ny)
{
if (porvData[aboveElemCartIdx] >= minPvVector[aboveElemCartIdx])
// the cartesian element above exhibits a pore volume which larger or
// equal to the minimum one
break;
Scalar aboveElemVolume = eclGrid.getCellVolume(aboveElemCartIdx);
if (actnumData[aboveElemCartIdx] == 0 && aboveElemVolume > 1e-3)
// stop at explicitly disabled elements, but only if their volume is
// greater than 10^-3 m^3
break;
poreVolume += porvData[aboveElemCartIdx];
}
}
// we define the porosity as the accumulated pore volume divided by the
// geometric volume of the element. Note that -- in pathetic cases -- it can
// be larger than 1.0!
Scalar dofVolume = this->simulator().model().dofTotalVolume(dofIdx);
assert(dofVolume > 0.0);
porosity_[dofIdx] = poreVolume/dofVolume;
}
}
void initFluidSystem_()
{
const auto& deck = this->simulator().vanguard().deck();
const auto& eclState = this->simulator().vanguard().eclState();
FluidSystem::initFromDeck(deck, eclState);
}
void readInitialCondition_()
{
const auto& vanguard = this->simulator().vanguard();
const auto& deck = vanguard.deck();
if (!deck.hasKeyword("EQUIL"))
readExplicitInitialCondition_();
else
readEquilInitialCondition_();
readBlackoilExtentionsInitialConditions_();
}
void readEquilInitialCondition_()
{
// initial condition corresponds to hydrostatic conditions.
typedef Ewoms::EclEquilInitializer<TypeTag> EquilInitializer;
EquilInitializer equilInitializer(this->simulator(), *materialLawManager_);
// since the EquilInitializer provides fluid states that are consistent with the
// black-oil model, we can use naive instead of mass conservative determination
// of the primary variables.
useMassConservativeInitialCondition_ = false;
size_t numElems = this->model().numGridDof();
initialFluidStates_.resize(numElems);
for (size_t elemIdx = 0; elemIdx < numElems; ++elemIdx) {
auto& elemFluidState = initialFluidStates_[elemIdx];
elemFluidState.assign(equilInitializer.initialFluidState(elemIdx));
}
}
void readEclRestartSolution_()
{
// since the EquilInitializer provides fluid states that are consistent with the
// black-oil model, we can use naive instead of mass conservative determination
// of the primary variables.
useMassConservativeInitialCondition_ = false;
eclWriter_->restartBegin();
size_t numElems = this->model().numGridDof();
initialFluidStates_.resize(numElems);
if (enableSolvent)
solventSaturation_.resize(numElems,0.0);
if (enablePolymer)
polymerConcentration_.resize(numElems,0.0);
for (size_t elemIdx = 0; elemIdx < numElems; ++elemIdx) {
auto& elemFluidState = initialFluidStates_[elemIdx];
elemFluidState.setPvtRegionIndex(pvtRegionIndex(elemIdx));
eclWriter_->eclOutputModule().initHysteresisParams(this->simulator(), elemIdx);
eclWriter_->eclOutputModule().assignToFluidState(elemFluidState, elemIdx);
if (enableSolvent)
solventSaturation_[elemIdx] = eclWriter_->eclOutputModule().getSolventSaturation(elemIdx);
if (enablePolymer)
polymerConcentration_[elemIdx] = eclWriter_->eclOutputModule().getPolymerConcentration(elemIdx);
}
}
void readExplicitInitialCondition_()
{
const auto& vanguard = this->simulator().vanguard();
const auto& eclState = vanguard.eclState();
const auto& eclProps = eclState.get3DProperties();
// the values specified in the deck do not need to be consistent,
// we still don't try to make the consistent.
useMassConservativeInitialCondition_ = false;
// make sure all required quantities are enables
if (FluidSystem::phaseIsActive(waterPhaseIdx) && !eclProps.hasDeckDoubleGridProperty("SWAT"))
throw std::runtime_error("The ECL input file requires the presence of the SWAT keyword if "
"the water phase is active");
if (FluidSystem::phaseIsActive(gasPhaseIdx) && !eclProps.hasDeckDoubleGridProperty("SGAS"))
throw std::runtime_error("The ECL input file requires the presence of the SGAS keyword if "
"the gas phase is active");
if (!eclProps.hasDeckDoubleGridProperty("PRESSURE"))
throw std::runtime_error("The ECL input file requires the presence of the PRESSURE "
"keyword if the model is initialized explicitly");
if (FluidSystem::enableDissolvedGas() && !eclProps.hasDeckDoubleGridProperty("RS"))
throw std::runtime_error("The ECL input file requires the RS keyword to be present if"
" dissolved gas is enabled");
if (FluidSystem::enableVaporizedOil() && !eclProps.hasDeckDoubleGridProperty("RV"))
throw std::runtime_error("The ECL input file requires the RV keyword to be present if"
" vaporized oil is enabled");
size_t numDof = this->model().numGridDof();
initialFluidStates_.resize(numDof);
const auto& cartSize = this->simulator().vanguard().cartesianDimensions();
size_t numCartesianCells = cartSize[0] * cartSize[1] * cartSize[2];
std::vector<double> waterSaturationData;
if (FluidSystem::phaseIsActive(waterPhaseIdx))
waterSaturationData = eclProps.getDoubleGridProperty("SWAT").getData();
else
waterSaturationData.resize(numCartesianCells, 0.0);
std::vector<double> gasSaturationData;
if (FluidSystem::phaseIsActive(gasPhaseIdx))
gasSaturationData = eclProps.getDoubleGridProperty("SGAS").getData();
else
gasSaturationData.resize(numCartesianCells, 0.0);
const std::vector<double>& pressureData =
eclProps.getDoubleGridProperty("PRESSURE").getData();
std::vector<double> rsData;
if (FluidSystem::enableDissolvedGas())
rsData = eclProps.getDoubleGridProperty("RS").getData();
std::vector<double> rvData;
if (FluidSystem::enableVaporizedOil())
rvData = eclProps.getDoubleGridProperty("RV").getData();
// initial reservoir temperature
const std::vector<double>& tempiData =
eclState.get3DProperties().getDoubleGridProperty("TEMPI").getData();
// make sure that the size of the data arrays is correct
#ifndef NDEBUG
assert(waterSaturationData.size() == numCartesianCells);
assert(gasSaturationData.size() == numCartesianCells);
assert(pressureData.size() == numCartesianCells);
if (FluidSystem::enableDissolvedGas())
assert(rsData.size() == numCartesianCells);
if (FluidSystem::enableVaporizedOil())
assert(rvData.size() == numCartesianCells);
#endif
// calculate the initial fluid states
for (size_t dofIdx = 0; dofIdx < numDof; ++dofIdx) {
auto& dofFluidState = initialFluidStates_[dofIdx];
dofFluidState.setPvtRegionIndex(pvtRegionIndex(dofIdx));
size_t cartesianDofIdx = vanguard.cartesianIndex(dofIdx);
assert(0 <= cartesianDofIdx);
assert(cartesianDofIdx <= numCartesianCells);
//////
// set temperature
//////
Scalar temperature = tempiData[cartesianDofIdx];
if (!std::isfinite(temperature) || temperature <= 0)
temperature = FluidSystem::surfaceTemperature;
dofFluidState.setTemperature(temperature);
//////
// set saturations
//////
dofFluidState.setSaturation(FluidSystem::waterPhaseIdx,
waterSaturationData[cartesianDofIdx]);
dofFluidState.setSaturation(FluidSystem::gasPhaseIdx,
gasSaturationData[cartesianDofIdx]);
dofFluidState.setSaturation(FluidSystem::oilPhaseIdx,
1.0
- waterSaturationData[cartesianDofIdx]
- gasSaturationData[cartesianDofIdx]);
//////
// set phase pressures
//////
Scalar oilPressure = pressureData[cartesianDofIdx];
// this assumes that capillary pressures only depend on the phase saturations
// and possibly on temperature. (this is always the case for ECL problems.)
Dune::FieldVector< Scalar, numPhases > pc( 0 );
const auto& matParams = materialLawParams(dofIdx);
MaterialLaw::capillaryPressures(pc, matParams, dofFluidState);
Opm::Valgrind::CheckDefined(oilPressure);
Opm::Valgrind::CheckDefined(pc);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
dofFluidState.setPressure(phaseIdx, oilPressure + (pc[phaseIdx] - pc[oilPhaseIdx]));
if (FluidSystem::enableDissolvedGas())
dofFluidState.setRs(rsData[cartesianDofIdx]);
else
dofFluidState.setRs(0.0);
if (FluidSystem::enableVaporizedOil())
dofFluidState.setRv(rvData[cartesianDofIdx]);
else
dofFluidState.setRv(0.0);
}
}
void readBlackoilExtentionsInitialConditions_()
{
const auto& vanguard = this->simulator().vanguard();
const auto& eclState = vanguard.eclState();
size_t numDof = this->model().numGridDof();
if (enableSolvent) {
const std::vector<double>& solventSaturationData = eclState.get3DProperties().getDoubleGridProperty("SSOL").getData();
solventSaturation_.resize(numDof,0.0);
for (size_t dofIdx = 0; dofIdx < numDof; ++dofIdx) {
size_t cartesianDofIdx = vanguard.cartesianIndex(dofIdx);
assert(0 <= cartesianDofIdx);
assert(cartesianDofIdx <= solventSaturationData.size());
solventSaturation_[dofIdx] = solventSaturationData[cartesianDofIdx];
}
}
if (enablePolymer) {
const std::vector<double>& polyConcentrationData = eclState.get3DProperties().getDoubleGridProperty("SPOLY").getData();
polymerConcentration_.resize(numDof,0.0);
for (size_t dofIdx = 0; dofIdx < numDof; ++dofIdx) {
size_t cartesianDofIdx = vanguard.cartesianIndex(dofIdx);
assert(0 <= cartesianDofIdx);
assert(cartesianDofIdx <= polyConcentrationData.size());
polymerConcentration_[dofIdx] = polyConcentrationData[cartesianDofIdx];
}
}
}
// update the hysteresis parameters of the material laws for the whole grid
bool updateHysteresis_()
{
if (!materialLawManager_->enableHysteresis())
return false;
// we need to update the hysteresis data for _all_ elements (i.e., not just the
// interior ones) to avoid desynchronization of the processes in the parallel case!
ElementContext elemCtx(this->simulator());
const auto& vanguard = this->simulator().vanguard();
auto elemIt = vanguard.gridView().template begin</*codim=*/0>();
const auto& elemEndIt = vanguard.gridView().template end</*codim=*/0>();
for (; elemIt != elemEndIt; ++elemIt) {
const Element& elem = *elemIt;
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
unsigned compressedDofIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
materialLawManager_->updateHysteresis(intQuants.fluidState(), compressedDofIdx);
}
return true;
}
void updateMaxPolymerAdsorption_()
{
// we need to update the max polymer adsoption data for all elements
ElementContext elemCtx(this->simulator());
const auto& vanguard = this->simulator().vanguard();
auto elemIt = vanguard.gridView().template begin</*codim=*/0>();
const auto& elemEndIt = vanguard.gridView().template end</*codim=*/0>();
for (; elemIt != elemEndIt; ++elemIt) {
const Element& elem = *elemIt;
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
unsigned compressedDofIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
maxPolymerAdsorption_[compressedDofIdx] = std::max(maxPolymerAdsorption_[compressedDofIdx] , Opm::scalarValue(intQuants.polymerAdsorption()));
}
}
void updatePvtnum_()
{
const auto& eclState = this->simulator().vanguard().eclState();
const auto& eclProps = eclState.get3DProperties();
if (!eclProps.hasDeckIntGridProperty("PVTNUM"))
return;
const auto& pvtnumData = eclProps.getIntGridProperty("PVTNUM").getData();
const auto& vanguard = this->simulator().vanguard();
unsigned numElems = vanguard.gridView().size(/*codim=*/0);
pvtnum_.resize(numElems);
for (unsigned elemIdx = 0; elemIdx < numElems; ++elemIdx) {
unsigned cartElemIdx = vanguard.cartesianIndex(elemIdx);
pvtnum_[elemIdx] = pvtnumData[cartElemIdx] - 1;
}
}
void updateSatnum_()
{
const auto& eclState = this->simulator().vanguard().eclState();
const auto& eclProps = eclState.get3DProperties();
if (!eclProps.hasDeckIntGridProperty("SATNUM"))
return;
const auto& satnumData = eclProps.getIntGridProperty("SATNUM").getData();
const auto& vanguard = this->simulator().vanguard();
unsigned numElems = vanguard.gridView().size(/*codim=*/0);
satnum_.resize(numElems);
for (unsigned elemIdx = 0; elemIdx < numElems; ++elemIdx) {
unsigned cartElemIdx = vanguard.cartesianIndex(elemIdx);
satnum_[elemIdx] = satnumData[cartElemIdx] - 1;
}
}
void updateMiscnum_()
{
const auto& eclState = this->simulator().vanguard().eclState();
const auto& eclProps = eclState.get3DProperties();
if (!eclProps.hasDeckIntGridProperty("MISCNUM"))
return;
const auto& miscnumData = eclProps.getIntGridProperty("MISCNUM").getData();
const auto& vanguard = this->simulator().vanguard();
unsigned numElems = vanguard.gridView().size(/*codim=*/0);
miscnum_.resize(numElems);
for (unsigned elemIdx = 0; elemIdx < numElems; ++elemIdx) {
unsigned cartElemIdx = vanguard.cartesianIndex(elemIdx);
miscnum_[elemIdx] = miscnumData[cartElemIdx] - 1;
}
}
void updatePlmixnum_()
{
const auto& eclState = this->simulator().vanguard().eclState();
const auto& eclProps = eclState.get3DProperties();
if (!eclProps.hasDeckIntGridProperty("PLMIXNUM"))
return;
const auto& plmixnumData = eclProps.getIntGridProperty("PLMIXNUM").getData();
const auto& vanguard = this->simulator().vanguard();
unsigned numElems = vanguard.gridView().size(/*codim=*/0);
plmixnum_.resize(numElems);
for (unsigned elemIdx = 0; elemIdx < numElems; ++elemIdx) {
unsigned cartElemIdx = vanguard.cartesianIndex(elemIdx);
plmixnum_[elemIdx] = plmixnumData[cartElemIdx] - 1;
}
}
struct PffDofData_
{
Opm::ConditionalStorage<enableEnergy, Scalar> thermalHalfTrans;
Scalar transmissibility;
};
// update the prefetch friendly data object
void updatePffDofData_()
{
const auto& distFn =
[this](PffDofData_& dofData,
const Stencil& stencil,
unsigned localDofIdx)
-> void
{
const auto& elementMapper = this->model().elementMapper();
unsigned globalElemIdx = elementMapper.index(stencil.entity(localDofIdx));
if (localDofIdx != 0) {
unsigned globalCenterElemIdx = elementMapper.index(stencil.entity(/*dofIdx=*/0));
dofData.transmissibility = transmissibilities_.transmissibility(globalCenterElemIdx, globalElemIdx);
if (enableEnergy)
*dofData.thermalHalfTrans = transmissibilities_.thermalHalfTrans(globalCenterElemIdx, globalElemIdx);
}
};
pffDofData_.update(distFn);
}
static std::string briefDescription_;
std::vector<Scalar> porosity_;
std::vector<Scalar> elementCenterDepth_;
EclTransmissibility<TypeTag> transmissibilities_;
std::shared_ptr<EclMaterialLawManager> materialLawManager_;
std::shared_ptr<EclThermalLawManager> thermalLawManager_;
EclThresholdPressure<TypeTag> thresholdPressures_;
std::vector<int> pvtnum_;
std::vector<unsigned short> satnum_;
std::vector<unsigned short> miscnum_;
std::vector<unsigned short> plmixnum_;
std::vector<unsigned short> rockTableIdx_;
std::vector<RockParams> rockParams_;
std::vector<Scalar> maxPolymerAdsorption_;
bool useMassConservativeInitialCondition_;
std::vector<InitialFluidState> initialFluidStates_;
std::vector<Scalar> initialTemperature_;
std::vector<Scalar> polymerConcentration_;
std::vector<Scalar> solventSaturation_;
bool drsdtActive_; // if no, VAPPARS *might* be active
bool dRsDtOnlyFreeGas_; // apply the DRSDT rate limit only to cells that exhibit free gas
std::vector<Scalar> lastRs_;
Scalar maxDRsDt_;
Scalar maxDRs_;
bool drvdtActive_; // if no, VAPPARS *might* be active
std::vector<Scalar> lastRv_;
Scalar maxDRvDt_;
Scalar maxDRv_;
constexpr static Scalar freeGasMinSaturation_ = 1e-7;
bool vapparsActive_; // if no, DRSDT and/or DRVDT *might* be active
std::vector<Scalar> maxOilSaturation_;
EclWellModel wellModel_;
EclAquiferModel aquiferModel_;
std::unique_ptr<EclWriterType> eclWriter_;
PffGridVector<GridView, Stencil, PffDofData_, DofMapper> pffDofData_;
};
template <class TypeTag>
std::string EclProblem<TypeTag>::briefDescription_;
} // namespace Ewoms
#endif