opm-simulators/ebos/alucartesianindexmapper.hh
2018-03-12 14:31:37 +01:00

257 lines
9.2 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
#ifndef EWOMS_ALU_CARTESIANINDEXMAPPER_HH
#define EWOMS_ALU_CARTESIANINDEXMAPPER_HH
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <opm/material/common/Exceptions.hpp>
#include <array>
#include <vector>
#include <cassert>
#include <memory>
#include <dune/common/exceptions.hh>
#include <dune/grid/common/datahandleif.hh>
#include <dune/grid/utility/persistentcontainer.hh>
namespace Ewoms
{
/** \brief Interface class to access the logical Cartesian grid as used in industry
standard simulator decks.
*/
template< class Grid >
class AluCartesianIndexMapper
{
public:
// data handle for communicating global ids during load balance and communication
template <class GridView>
class GlobalIndexDataHandle : public Dune::CommDataHandleIF< GlobalIndexDataHandle<GridView>, int >
{
// global id
class GlobalCellIndex
{
int idx_;
public:
GlobalCellIndex() : idx_(-1) {}
GlobalCellIndex& operator= ( const int index ) { idx_ = index; return *this; }
int index() const { return idx_; }
};
typedef typename Dune::PersistentContainer< Grid, GlobalCellIndex > GlobalIndexContainer;
GridView gridView_;
GlobalIndexContainer globalIndex_;
std::vector<int>& cartesianIndex_;
public:
// constructor copying cartesian index to persistent container
GlobalIndexDataHandle( const GridView& gridView,
std::vector<int>& cartesianIndex )
: gridView_( gridView ),
globalIndex_( gridView.grid(), 0 ),
cartesianIndex_( cartesianIndex )
{
globalIndex_.resize();
initialize();
}
// constructor copying cartesian index to persistent container
GlobalIndexDataHandle( const GlobalIndexDataHandle& other ) = delete ;
// destrcutor writing load balanced cartesian index back to vector
~GlobalIndexDataHandle()
{
finalize();
//std::cout << "CartesianIndex " << cartesianIndex_.size() << std::endl;
//for( size_t i=0; i<cartesianIndex_.size(); ++i )
// std::cout << "cart[ " << i << " ] = " << cartesianIndex_[ i ] << std::endl;
}
bool contains ( int dim, int codim ) const { return codim == 0; }
bool fixedsize( int dim, int codim ) const { return true; }
//! \brief loop over all internal data handlers and call gather for
//! given entity
template<class MessageBufferImp, class EntityType>
void gather (MessageBufferImp& buff, const EntityType& element ) const
{
int globalIdx = globalIndex_[ element ].index();
buff.write( globalIdx );
}
//! \brief loop over all internal data handlers and call scatter for
//! given entity
template<class MessageBufferImp, class EntityType>
void scatter (MessageBufferImp& buff, const EntityType& element, size_t n)
{
int globalIdx = -1;
buff.read( globalIdx );
if( globalIdx >= 0 )
{
globalIndex_.resize();
globalIndex_[ element ] = globalIdx;
}
}
//! \brief loop over all internal data handlers and return sum of data
//! size of given entity
template<class EntityType>
size_t size (const EntityType& en) const
{
return 1;
}
protected:
// initialize persistent container from given vector
void initialize()
{
auto idx = cartesianIndex_.begin();
for(auto it = gridView_.template begin<0>(),
end = gridView_.template end<0>(); it != end; ++it, ++idx )
{
globalIndex_[ *it ] = *idx;
}
}
// update vector from given persistent container
void finalize()
{
std::vector< int > newIndex ;
newIndex.reserve( gridView_.indexSet().size( 0 ) );
for(auto it = gridView_.template begin<0>(),
end = gridView_.template end<0>(); it != end; ++it)
{
newIndex.push_back( globalIndex_[ *it ].index() ) ;
}
cartesianIndex_.swap( newIndex );
}
};
public:
/** \brief dimension of the grid */
static const int dimension = Grid :: dimension ;
/** \brief constructor taking grid */
AluCartesianIndexMapper( const Grid& grid,
const std::array<int, dimension>& cartDims,
const std::vector<int>& cartesianIndex )
: grid_( grid ),
cartesianDimensions_( cartDims ),
cartesianIndex_( cartesianIndex ),
cartesianSize_( computeCartesianSize() )
{
}
/** \brief return Cartesian dimensions, i.e. number of cells in each direction */
const std::array<int, dimension>& cartesianDimensions() const
{
return cartesianDimensions_;
}
/** \brief return total number of cells in the logical Cartesian grid */
int cartesianSize() const
{
return cartesianSize_;
}
/** \brief return number of cells in the active grid */
int compressedSize() const
{
return cartesianIndex_.size();
}
/** \brief return index of the cells in the logical Cartesian grid */
int cartesianIndex( const int compressedElementIndex ) const
{
assert( compressedElementIndex < compressedSize() );
return cartesianIndex_[ compressedElementIndex ];
}
/** \brief return index of the cells in the logical Cartesian grid */
int cartesianIndex( const std::array<int,dimension>& coords ) const
{
int cartIndex = coords[ 0 ];
int factor = cartesianDimensions()[ 0 ];
for( int i=1; i<dimension; ++i )
{
cartIndex += coords[ i ] * factor;
factor *= cartesianDimensions()[ i ];
}
return cartIndex;
}
/** \brief return Cartesian coordinate, i.e. IJK, for a given cell */
void cartesianCoordinate(const int compressedElementIndex, std::array<int,dimension>& coords) const
{
int gc = cartesianIndex( compressedElementIndex );
if( dimension == 3 )
{
coords[0] = gc % cartesianDimensions()[0];
gc /= cartesianDimensions()[0];
coords[1] = gc % cartesianDimensions()[1];
coords[2] = gc / cartesianDimensions()[1];
}
else if( dimension == 2 )
{
coords[0] = gc % cartesianDimensions()[0];
coords[1] = gc / cartesianDimensions()[0];
}
else if( dimension == 1 )
{
coords[ 0 ] = gc ;
}
else
throw std::invalid_argument("cartesianCoordinate not implemented for dimension " + std::to_string(dimension) );
}
template <class GridView>
std::unique_ptr< GlobalIndexDataHandle< GridView > > dataHandle( const GridView& gridView )
{
typedef GlobalIndexDataHandle< GridView > DataHandle ;
assert( &grid_ == &gridView.grid() );
return std::unique_ptr< DataHandle > (new DataHandle( gridView, cartesianIndex_ ));
}
protected:
int computeCartesianSize() const
{
int size = cartesianDimensions()[ 0 ];
for( int d=1; d<dimension; ++d )
size *= cartesianDimensions()[ d ];
return size ;
}
protected:
const Grid& grid_;
const std::array<int, dimension> cartesianDimensions_;
std::vector<int> cartesianIndex_;
const int cartesianSize_ ;
};
} // end namespace Opm
#endif