opm-simulators/tests/test_ecl_output.cc
Andreas Lauser 3288548c7e disable asynchronous output for the ECL output test
this leads to crashes deeply inside libecl. My cursory hypotheses are
that this test makes the assumption that the output is written
synchronously (it tries to read back the results from disk
immediately) and/or that libecl is not threadsafe.
2018-03-21 10:31:15 +01:00

258 lines
8.5 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
#include "config.h"
#include <ebos/equil/equilibrationhelpers.hh>
#include <ebos/eclproblem.hh>
#include <ewoms/common/start.hh>
#include <opm/grid/UnstructuredGrid.h>
#include <opm/grid/GridManager.hpp>
#include <opm/parser/eclipse/Units/Units.hpp>
#include <opm/output/eclipse/Summary.hpp>
#include <ebos/collecttoiorank.hh>
#include <ebos/ecloutputblackoilmodule.hh>
#include <ebos/eclwriter.hh>
#if HAVE_DUNE_FEM
#include <dune/fem/misc/mpimanager.hh>
#else
#include <dune/common/parallel/mpihelper.hh>
#endif
#include <array>
#include <iostream>
#include <limits>
#include <memory>
#include <numeric>
#include <sstream>
#include <string>
#include <vector>
#include <string.h>
#define CHECK(value, expected) \
{ \
if ((value) != (expected)) \
std::abort(); \
}
#define CHECK_CLOSE(value, expected, reltol) \
{ \
if (std::fabs((expected) - (value)) > 1e-14 && \
std::fabs(((expected) - (value))/((expected) + (value))) > reltol) \
{ \
std::cout << "Test failure: "; \
std::cout << "expected value " << expected << " is not close to value " << value << std::endl; \
std::abort(); \
} \
} \
#define REQUIRE(cond) \
{ \
if (!(cond)) \
std::abort(); \
}
namespace Ewoms {
namespace Properties {
NEW_TYPE_TAG(TestEclOutputTypeTag, INHERITS_FROM(BlackOilModel, EclBaseProblem));
SET_BOOL_PROP(TestEclOutputTypeTag, EnableGravity, false);
SET_BOOL_PROP(TestEclOutputTypeTag, EnableAsyncEclOutput, false);
}}
static const int day = 24 * 60 * 60;
template <class TypeTag>
std::unique_ptr<typename GET_PROP_TYPE(TypeTag, Simulator)>
initSimulator(const char *filename)
{
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
std::string filenameArg = "--ecl-deck-file-name=";
filenameArg += filename;
const char* argv[] = {
"test_equil",
filenameArg.c_str()
};
Ewoms::setupParameters_<TypeTag>(/*argc=*/sizeof(argv)/sizeof(argv[0]), argv, /*registerParams=*/false);
return std::unique_ptr<Simulator>(new Simulator);
}
ERT::ert_unique_ptr< ecl_sum_type, ecl_sum_free > readsum( const std::string& base ) {
return ERT::ert_unique_ptr< ecl_sum_type, ecl_sum_free >(
ecl_sum_fread_alloc_case( base.c_str(), ":" )
);
}
void test_summary()
{
typedef typename TTAG(TestEclOutputTypeTag) TypeTag;
const std::string filename = "data/SUMMARY_DECK_NON_CONSTANT_POROSITY.DATA";
const std::string casename = "SUMMARY_DECK_NON_CONSTANT_POROSITY";
auto simulator = initSimulator<TypeTag>(filename.data());
typedef typename GET_PROP_TYPE(TypeTag, Vanguard) Vanguard;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef Ewoms::CollectDataToIORank< Vanguard > CollectDataToIORankType;
CollectDataToIORankType collectToIORank(simulator->vanguard());
Ewoms::EclOutputBlackOilModule<TypeTag> eclOutputModule(*simulator, collectToIORank);
typedef Ewoms::EclWriter<TypeTag> EclWriterType;
// create the actual ECL writer
std::unique_ptr<EclWriterType> eclWriter = std::unique_ptr<EclWriterType>(new EclWriterType(*simulator));
simulator->model().applyInitialSolution();
Opm::data::Wells dw;
bool substep = false;
Scalar totalSolverTime = 0;
Scalar nextstep = 0;
simulator->setEpisodeIndex(0);
eclWriter->writeOutput(dw, 0 * day, substep, totalSolverTime, nextstep);
simulator->setEpisodeIndex(1);
eclWriter->writeOutput(dw, 1 * day, substep, totalSolverTime, nextstep);
simulator->setEpisodeIndex(2);
eclWriter->writeOutput(dw, 2 * day, substep, totalSolverTime, nextstep);
auto res = readsum( casename );
const auto* resp = res.get();
// fpr = sum_ (p * hcpv ) / hcpv, hcpv = pv * (1 - sw)
const double fpr = ( (3 * 0.1 + 8 * 0.2) * 500 * (1 - 0.2) ) / ( (500*0.1 + 500*0.2) * (1 - 0.2));
CHECK_CLOSE( fpr, ecl_sum_get_field_var( resp, 1, "FPR" ) , 1e-5 );
// foip = sum_ (b * s * pv), rs == 0;
const double foip = ( (0.3 * 0.1 + 0.8 * 0.2) * 500 * (1 - 0.2) );
CHECK_CLOSE(foip, ecl_sum_get_field_var( resp, 1, "FOIP" ), 1e-3 );
// fgip = sum_ (b * pv * s), sg == 0;
const double fgip = 0.0;
CHECK_CLOSE(fgip, ecl_sum_get_field_var( resp, 1, "FGIP" ), 1e-3 );
// fgip = sum_ (b * pv * s),
const double fwip = 1.0/1000 * ( 0.1 + 0.2) * 500 * 0.2;
CHECK_CLOSE(fwip, ecl_sum_get_field_var( resp, 1, "FWIP" ), 1e-3 );
// region 1
// rpr = sum_ (p * hcpv ) / hcpv, hcpv = pv * (1 - sw)
const double rpr1 = ( 2.5 * 0.1 * 400 * (1 - 0.2) ) / (400*0.1 * (1 - 0.2));
CHECK_CLOSE( rpr1, ecl_sum_get_general_var( resp, 1, "RPR:1" ) , 1e-5 );
// roip = sum_ (b * s * pv) // rs == 0;
const double roip1 = ( 0.25 * 0.1 * 400 * (1 - 0.2) );
CHECK_CLOSE(roip1, ecl_sum_get_general_var( resp, 1, "ROIP:1" ), 1e-3 );
// region 2
// rpr = sum_ (p * hcpv ) / hcpv, hcpv = pv * (1 - sw)
const double rpr2 = ( (5 * 0.1 * 100 + 6 * 0.2 * 100) * (1 - 0.2) ) / ( (100*0.1 + 100*0.2) * (1 - 0.2));
CHECK_CLOSE( rpr2, ecl_sum_get_general_var( resp, 1, "RPR:2" ) , 1e-5 );
// roip = sum_ (b * s * pv) // rs == 0;
const double roip2 = ( (0.5 * 0.1 * 100 + 0.6 * 0.2 * 100) * (1 - 0.2) );
CHECK_CLOSE(roip2, ecl_sum_get_general_var( resp, 1, "ROIP:2" ), 1e-3 );
}
void test_readWriteWells() {
using opt = Opm::data::Rates::opt;
Opm::data::Rates r1, r2, rc1, rc2, rc3;
r1.set( opt::wat, 5.67 );
r1.set( opt::oil, 6.78 );
r1.set( opt::gas, 7.89 );
r2.set( opt::wat, 8.90 );
r2.set( opt::oil, 9.01 );
r2.set( opt::gas, 10.12 );
rc1.set( opt::wat, 20.41 );
rc1.set( opt::oil, 21.19 );
rc1.set( opt::gas, 22.41 );
rc2.set( opt::wat, 23.19 );
rc2.set( opt::oil, 24.41 );
rc2.set( opt::gas, 25.19 );
rc3.set( opt::wat, 26.41 );
rc3.set( opt::oil, 27.19 );
rc3.set( opt::gas, 28.41 );
Opm::data::Well w1, w2;
w1.rates = r1;
w1.bhp = 1.23;
w1.temperature = 3.45;
w1.control = 1;
/*
* the completion keys (active indices) and well names correspond to the
* input deck. All other entries in the well structures are arbitrary.
*/
w1.completions.push_back( { 88, rc1, 30.45, 123.45 } );
w1.completions.push_back( { 288, rc2, 33.19, 67.89 } );
w2.rates = r2;
w2.bhp = 2.34;
w2.temperature = 4.56;
w2.control = 2;
w2.completions.push_back( { 188, rc3, 36.22, 19.28 } );
Opm::data::Wells wellRates;
wellRates["OP_1"] = w1;
wellRates["OP_2"] = w2;
typedef Dune :: Point2PointCommunicator< Dune :: SimpleMessageBuffer > P2PCommunicatorType;
typedef typename P2PCommunicatorType :: MessageBufferType MessageBufferType;
MessageBufferType buffer;
wellRates.write(buffer);
Opm::data::Wells wellRatesCopy;
wellRatesCopy.read(buffer);
CHECK( wellRatesCopy.get( "OP_1" , opt::wat) , wellRates.get( "OP_1" , opt::wat));
CHECK( wellRatesCopy.get( "OP_2" , 188 , opt::wat) , wellRates.get( "OP_2" , 188 , opt::wat));
}
int main(int argc, char** argv)
{
#if HAVE_DUNE_FEM
Dune::Fem::MPIManager::initialize(argc, argv);
#else
Dune::MPIHelper::instance(argc, argv);
#endif
typedef TTAG(TestEclOutputTypeTag) TypeTag;
Ewoms::registerAllParameters_<TypeTag>();
test_summary();
test_readWriteWells();
return 0;
}