opm-simulators/opm/simulators/flow/FlowGenericProblem.hpp
2024-03-08 12:39:48 +01:00

406 lines
13 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::FlowProblem
*/
#ifndef OPM_FLOW_GENERIC_PROBLEM_HPP
#define OPM_FLOW_GENERIC_PROBLEM_HPP
#include <opm/material/common/UniformXTabulated2DFunction.hpp>
#include <opm/material/common/Tabulated1DFunction.hpp>
#include <opm/simulators/flow/MixingRateControls.hpp>
#include <opm/simulators/flow/SolutionContainers.hpp>
#include <array>
#include <cstddef>
#include <functional>
#include <set>
#include <string>
#include <vector>
namespace Dune {
class ParameterTree;
}
namespace Opm {
class Deck;
class EclipseState;
class Schedule;
template<typename Grid, typename GridView> class LookUpData;
int eclPositionalParameter(Dune::ParameterTree& tree,
std::set<std::string>& seenParams,
std::string& errorMsg,
const char** argv,
int paramIdx);
/*!
* \ingroup BlackOilSimulator
*
* \brief This problem simulates an input file given in the data format used by the
* commercial ECLiPSE simulator.
*/
template<class GridView, class FluidSystem, class Scalar>
class FlowGenericProblem
{
public:
using TabulatedTwoDFunction = UniformXTabulated2DFunction<Scalar>;
using TabulatedFunction = Tabulated1DFunction<Scalar>;
struct RockParams {
Scalar referencePressure;
Scalar compressibility;
};
FlowGenericProblem(const EclipseState& eclState,
const Schedule& schedule,
const GridView& gridView);
static FlowGenericProblem serializationTestObject(const EclipseState& eclState,
const Schedule& schedule,
const GridView& gridView);
/*!
* \copydoc FvBaseProblem::helpPreamble
*/
static std::string helpPreamble(int,
const char **argv);
/*!
* \copydoc FvBaseProblem::briefDescription
*/
static std::string briefDescription();
/*!
* \brief Specifies the string returned by briefDescription()
*
* This string appears in the usage message.
*/
static void setBriefDescription(const std::string& msg)
{ briefDescription_ = msg; }
/*!
* \brief Returns an element's historic maximum water phase saturation that was
* observed during the simulation.
*
* In this context, "historic" means the the time before the current timestep began.
*
* This is used for output of the maximum water saturation used as input
* for water induced rock compation ROCK2D/ROCK2DTR.
*/
Scalar maxWaterSaturation(unsigned globalDofIdx) const;
/*!
* \brief Returns an element's historic minimum pressure of the oil phase that was
* observed during the simulation.
*
* In this context, "historic" means the the time before the current timestep began.
*
* This is used for output of the minimum pressure used as input
* for the irreversible rock compation option.
*/
Scalar minOilPressure(unsigned globalDofIdx) const;
/*!
* \brief Get the pressure of the overburden.
*
* This method is mainly for output.
*/
Scalar overburdenPressure(unsigned elementIdx) const;
/*!
* \brief Returns the porosity of an element
*
* The reference porosity of an element is the porosity of the medium before modified
* by the current solution. Note that this method is *not* part of the generic eWoms
* problem API because it would bake the assumption that only the elements are the
* degrees of freedom into the interface.
*/
Scalar referencePorosity(unsigned elementIdx, unsigned timeIdx) const
{ return referencePorosity_[timeIdx][elementIdx]; }
/*!
* \brief Returns the rockFraction of an element
*
* Usually 1 - porosity, but if pvmult is used to modify porosity
* we will apply the same multiplier to the rock fraction
* i.e. pvmult*(1 - porosity) and thus interpret multpv as a volume
* multiplier. This is to avoid negative rock volume for pvmult*porosity > 1
*/
Scalar rockFraction(unsigned elementIdx, unsigned timeIdx) const;
/*!
* \brief Sets the porosity of an element
*
*/
void setPorosity(Scalar poro, unsigned elementIdx, unsigned timeIdx = 0)
{ referencePorosity_[timeIdx][elementIdx] = poro; }
/*!
* \brief Returns the initial solvent saturation for a given a cell index
*/
Scalar solventSaturation(unsigned elemIdx) const;
/*!
* \brief Returns the initial solvent dissolved in water for a given a cell index
*/
Scalar solventRsw(unsigned elemIdx) const;
/*!
* \brief Returns the dynamic drsdt convective mixing value
*/
Scalar drsdtcon(unsigned elemIdx, int episodeIdx) const;
/*!
* \brief Returns the initial polymer concentration for a given a cell index
*/
Scalar polymerConcentration(unsigned elemIdx) const;
/*!
* \brief Returns the polymer molecule weight for a given cell index
*/
// TODO: remove this function if not called
Scalar polymerMolecularWeight(const unsigned elemIdx) const;
/*!
* \brief Returns the initial microbial concentration for a given a cell index
*/
Scalar microbialConcentration(unsigned elemIdx) const;
/*!
* \brief Returns the initial oxygen concentration for a given a cell index
*/
Scalar oxygenConcentration(unsigned elemIdx) const;
/*!
* \brief Returns the initial urea concentration for a given a cell index
*/
Scalar ureaConcentration(unsigned elemIdx) const;
/*!
* \brief Returns the initial biofilm concentration for a given a cell index
*/
Scalar biofilmConcentration(unsigned elemIdx) const;
/*!
* \brief Returns the initial calcite concentration for a given a cell index
*/
Scalar calciteConcentration(unsigned elemIdx) const;
/*!
* \brief Returns the index the relevant PVT region given a cell index
*/
unsigned pvtRegionIndex(unsigned elemIdx) const;
// const std::vector<int>& pvtRegionArray() const
// { return pvtnum_; }
/*!
* \brief Returns the index the relevant saturation function region given a cell index
*/
unsigned satnumRegionIndex(unsigned elemIdx) const;
/*!
* \brief Returns the index the relevant MISC region given a cell index
*/
unsigned miscnumRegionIndex(unsigned elemIdx) const;
/*!
* \brief Returns the index the relevant PLMIXNUM (for polymer module) region given a cell index
*/
unsigned plmixnumRegionIndex(unsigned elemIdx) const;
/*!
* \brief Returns the max polymer adsorption value
*/
Scalar maxPolymerAdsorption(unsigned elemIdx) const;
/*!
* Direct access to rock compressibility.
*
* While the above overload could be implemented in terms of this method,
* that would require always looking up the global space index, which
* is not always needed.
*/
Scalar rockCompressibility(unsigned globalSpaceIdx) const;
/*!
* Direct access to rock reference pressure.
*
* While the above overload could be implemented in terms of this method,
* that would require always looking up the global space index, which
* is not always needed.
*/
Scalar rockReferencePressure(unsigned globalSpaceIdx) const;
/*!
* \brief Direct indexed access to the porosity.
*
* For the FlowProblem, this method is identical to referencePorosity(). The intensive
* quantities object may apply various multipliers (e.g. ones which model rock
* compressibility and water induced rock compaction) to it which depend on the
* current physical conditions.
*/
Scalar porosity(unsigned globalSpaceIdx, unsigned timeIdx) const;
bool vapparsActive(int episodeIdx) const;
int numPressurePointsEquil() const
{ return numPressurePointsEquil_; }
bool operator==(const FlowGenericProblem& rhs) const;
template<class Serializer>
void serializeOp(Serializer& serializer)
{
serializer(maxOilSaturation_);
serializer(polymer_);
serializer(maxWaterSaturation_);
serializer(minRefPressure_);
serializer(overburdenPressure_);
serializer(solventSaturation_);
serializer(solventRsw_);
serializer(micp_);
serializer(mixControls_);
}
protected:
void initFluidSystem_();
/*!
* \brief Always returns true. The ecl output writer takes care of the rest
*/
bool shouldWriteOutput() const
{ return true; }
/*!
* \brief Returns true if an eWoms restart file should be written to disk.
*
* The FlowProblem does not write any restart files using the ad-hoc format, only ones
* using the ECL format.
*/
bool shouldWriteRestartFile() const
{ return false; }
bool beginEpisode_(bool enableExperiments,
int episodeIdx);
void beginTimeStep_(bool enableExperiments,
int episodeIdx,
int timeStepIndex,
Scalar startTime,
Scalar time,
Scalar timeStepSize,
Scalar endTime);
void readRockParameters_(const std::vector<Scalar>& cellCenterDepths,
std::function<std::array<int,3>(const unsigned)> ijkIndex);
void readRockCompactionParameters_();
void readBlackoilExtentionsInitialConditions_(std::size_t numDof,
bool enableSolvent,
bool enablePolymer,
bool enablePolymerMolarWeight,
bool enableMICP);
void updatePvtnum_();
void updateSatnum_();
void updateMiscnum_();
void updatePlmixnum_();
void updateKrnum_();
void updateImbnum_();
const EclipseState& eclState_;
const Schedule& schedule_;
const GridView& gridView_;
static inline std::string briefDescription_;
std::array<std::vector<Scalar>, 2> referencePorosity_;
std::vector<int> pvtnum_;
std::vector<unsigned short> satnum_;
std::vector<unsigned short> miscnum_;
std::vector<unsigned short> plmixnum_;
std::vector<unsigned short> krnumx_;
std::vector<unsigned short> krnumy_;
std::vector<unsigned short> krnumz_;
std::vector<unsigned short> imbnumx_;
std::vector<unsigned short> imbnumy_;
std::vector<unsigned short> imbnumz_;
std::vector<RockParams> rockParams_;
std::vector<unsigned short> rockTableIdx_;
std::vector<TabulatedTwoDFunction> rockCompPoroMultWc_;
std::vector<TabulatedTwoDFunction> rockCompTransMultWc_;
std::vector<TabulatedFunction> rockCompPoroMult_;
std::vector<TabulatedFunction> rockCompTransMult_;
std::vector<Scalar> rockCompTransMultVal_;
PolymerSolutionContainer<Scalar> polymer_;
std::vector<Scalar> maxOilSaturation_;
std::vector<Scalar> maxWaterSaturation_;
std::vector<Scalar> minRefPressure_;
std::vector<Scalar> overburdenPressure_;
std::vector<Scalar> solventSaturation_;
std::vector<Scalar> solventRsw_;
MICPSolutionContainer<Scalar> micp_;
MixingRateControls<FluidSystem, Scalar> mixControls_;
// time stepping parameters
bool enableTuning_;
Scalar initialTimeStepSize_;
Scalar maxTimeStepAfterWellEvent_;
// equilibration parameters
int numPressurePointsEquil_;
// To lookup origin cell indices
using Grid = std::remove_cv_t< typename std::remove_reference<decltype(gridView_.grid())>::type>;
using LookUpData = Opm::LookUpData<Grid,GridView>;
const LookUpData lookUpData_;
// \brief Function to assign the origin cell index on level zero, for a cell on the leaf grid view.
//
// For CpGrid with local grid refinement, the field property of a cell on the leaf
// is inherited from its parent or equivalent (when has no parent) cell on level zero.
std::function<unsigned(unsigned)> lookupIdxOnLevelZeroAssigner_()
{
return [this](unsigned elemIdx) { return lookUpData_.template getFieldPropIdx<Grid>(elemIdx);};
}
private:
template<class T>
void updateNum(const std::string& name, std::vector<T>& numbers, std::size_t num_regions);
};
} // namespace Opm
#endif // OPM_FLOW_GENERIC_PROBLEM_HPP