opm-simulators/examples/sim_simple.cpp
Andreas Lauser d76bf11902 adapt to the removal of the unit system of opm-core
the one which is in opm-parser is now a drop-in replacement.
2016-10-10 17:00:09 +02:00

312 lines
11 KiB
C++

/*
Copyright 2013 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/autodiff/AutoDiffBlock.hpp>
#include <opm/autodiff/AutoDiffHelpers.hpp>
#include <opm/core/grid.h>
#include <opm/core/grid/GridManager.hpp>
#include <opm/core/props/IncompPropertiesBasic.hpp>
#include <opm/parser/eclipse/Units/Units.hpp>
#include <opm/core/utility/StopWatch.hpp>
#include <opm/core/pressure/tpfa/trans_tpfa.h>
#include <opm/common/utility/platform_dependent/disable_warnings.h>
#if HAVE_SUITESPARSE_UMFPACK_H
#include <Eigen/UmfPackSupport>
#else
#include <Eigen/IterativeLinearSolvers>
#endif
#include <opm/common/utility/platform_dependent/reenable_warnings.h>
#include <iostream>
#include <cstdlib>
/*
Equations for incompressible two-phase flow.
Using s and p as variables:
PV (s_i - s0_i) / dt + sum_{j \in U(i)} f(s_j) v_{ij} + sum_{j in D(i) f(s_i) v_{ij} = qw_i
where
v_{ij} = totmob_ij T_ij (p_i - p_j)
Pressure equation:
sum_{j \in N(i)} totmob_ij T_ij (p_i - p_j) = q_i
*/
template <class ADB>
std::vector<ADB>
phaseMobility(const Opm::IncompPropertiesInterface& props,
const std::vector<int>& cells,
const typename ADB::V& sw)
{
typedef Eigen::Array<double, Eigen::Dynamic, 2, Eigen::RowMajor> TwoCol;
typedef Eigen::Array<double, Eigen::Dynamic, 4, Eigen::RowMajor> FourCol;
typedef Eigen::SparseMatrix<double> S;
typedef typename ADB::V V;
typedef typename ADB::M M;
const int nc = props.numCells();
TwoCol s(nc, 2);
s.leftCols<1>() = sw;
s.rightCols<1>() = 1.0 - s.leftCols<1>();
TwoCol kr(nc, 2);
FourCol dkr(nc, 4);
props.relperm(nc, s.data(), cells.data(), kr.data(), dkr.data());
V krw = kr.leftCols<1>();
V kro = kr.rightCols<1>();
V dkrw = dkr.leftCols<1>(); // Left column is top-left of dkr/ds 2x2 matrix.
V dkro = -dkr.rightCols<1>(); // Right column is bottom-right of dkr/ds 2x2 matrix.
S krwjac(nc,nc);
S krojac(nc,nc);
auto sizes = Eigen::ArrayXi::Ones(nc);
krwjac.reserve(sizes);
krojac.reserve(sizes);
for (int c = 0; c < nc; ++c) {
krwjac.insert(c,c) = dkrw(c);
krojac.insert(c,c) = dkro(c);
}
const double* mu = props.viscosity();
std::vector<M> dmw = { M(krwjac)/mu[0] };
std::vector<M> dmo = { M(krojac)/mu[1] };
std::vector<ADB> pmobc = { ADB::function(krw / mu[0], std::move(dmw)) ,
ADB::function(kro / mu[1], std::move(dmo)) };
return pmobc;
}
/// Returns fw(sw).
template <class ADB>
ADB
fluxFunc(const std::vector<ADB>& m)
{
assert (m.size() == 2);
ADB f = m[0] / (m[0] + m[1]);
return f;
}
int main()
try
{
typedef Opm::AutoDiffBlock<double> ADB;
typedef ADB::V V;
typedef Eigen::SparseMatrix<double> S;
Opm::time::StopWatch clock;
clock.start();
const Opm::GridManager gm(3,3);//(50, 50, 10);
const UnstructuredGrid& grid = *gm.c_grid();
using namespace Opm::unit;
using namespace Opm::prefix;
// const Opm::IncompPropertiesBasic props(2, Opm::SaturationPropsBasic::Linear,
// { 1000.0, 800.0 },
// { 1.0*centi*Poise, 5.0*centi*Poise },
// 0.2, 100*milli*darcy,
// grid.dimensions, grid.number_of_cells);
// const Opm::IncompPropertiesBasic props(2, Opm::SaturationPropsBasic::Linear,
// { 1000.0, 1000.0 },
// { 1.0, 1.0 },
// 1.0, 1.0,
// grid.dimensions, grid.number_of_cells);
const Opm::IncompPropertiesBasic props(2, Opm::SaturationPropsBasic::Linear,
{ 1000.0, 1000.0 },
{ 1.0, 30.0 },
1.0, 1.0,
grid.dimensions, grid.number_of_cells);
V htrans(grid.cell_facepos[grid.number_of_cells]);
tpfa_htrans_compute(const_cast<UnstructuredGrid*>(&grid), props.permeability(), htrans.data());
V trans_all(grid.number_of_faces);
// tpfa_trans_compute(const_cast<UnstructuredGrid*>(&grid), htrans.data(), trans_all.data());
const int nc = grid.number_of_cells;
std::vector<int> allcells(nc);
for (int i = 0; i < nc; ++i) {
allcells[i] = i;
}
std::cerr << "Opm core " << clock.secsSinceLast() << std::endl;
// Define neighbourhood-derived operator matrices.
const Opm::HelperOps ops(grid);
const int num_internal = ops.internal_faces.size();
std::cerr << "Topology matrices " << clock.secsSinceLast() << std::endl;
typedef Opm::AutoDiffBlock<double> ADB;
typedef ADB::V V;
// q
V q(nc);
q.setZero();
q[0] = 1.0;
q[nc-1] = -1.0;
// s0 - this is explicit now
typedef Eigen::Array<double, Eigen::Dynamic, 2, Eigen::RowMajor> TwoCol;
TwoCol s0(nc, 2);
s0.leftCols<1>().setZero();
s0.rightCols<1>().setOnes();
// totmob - explicit as well
TwoCol kr(nc, 2);
props.relperm(nc, s0.data(), allcells.data(), kr.data(), 0);
const V krw = kr.leftCols<1>();
const V kro = kr.rightCols<1>();
const double* mu = props.viscosity();
const V totmob = krw/mu[0] + kro/mu[1];
// Moved down here because we need total mobility.
tpfa_eff_trans_compute(const_cast<UnstructuredGrid*>(&grid), totmob.data(),
htrans.data(), trans_all.data());
// Still explicit, and no upwinding!
V mobtransf(num_internal);
for (int fi = 0; fi < num_internal; ++fi) {
mobtransf[fi] = trans_all[ops.internal_faces[fi]];
}
std::cerr << "Property arrays " << clock.secsSinceLast() << std::endl;
// Initial pressure.
V p0(nc,1);
p0.fill(200*Opm::unit::barsa);
// First actual AD usage: defining pressure variable.
const std::vector<int> bpat = { nc };
// Could actually write { nc } instead of bpat below,
// but we prefer a named variable since we will repeat it.
const ADB p = ADB::variable(0, p0, bpat);
const ADB ngradp = ops.ngrad*p;
// We want flux = totmob*trans*(p_i - p_j) for the ij-face.
const ADB flux = mobtransf*ngradp;
const ADB residual = ops.div*flux - q;
std::cerr << "Construct AD residual " << clock.secsSinceLast() << std::endl;
// It's the residual we want to be zero. We know it's linear in p,
// so we just need a single linear solve. Since we have formulated
// ourselves with a residual and jacobian we do this with a single
// Newton step (hopefully easy to extend later):
// p = p0 - J(p0) \ R(p0)
// Where R(p0) and J(p0) are contained in residual.value() and
// residual.derived()[0].
#if HAVE_SUITESPARSE_UMFPACK_H
typedef Eigen::UmfPackLU<S> LinSolver;
#else
typedef Eigen::BiCGSTAB<S> LinSolver;
#endif // HAVE_SUITESPARSE_UMFPACK_H
LinSolver solver;
S pmatr;
residual.derivative()[0].toSparse(pmatr);
pmatr.coeffRef(0,0) *= 2.0;
pmatr.makeCompressed();
solver.compute(pmatr);
if (solver.info() != Eigen::Success) {
std::cerr << "Pressure/flow Jacobian decomposition error\n";
return EXIT_FAILURE;
}
// const Eigen::VectorXd dp = solver.solve(residual.value().matrix());
ADB::V residual_v = residual.value();
const V dp = solver.solve(residual_v.matrix()).array();
if (solver.info() != Eigen::Success) {
std::cerr << "Pressure/flow solve failure\n";
return EXIT_FAILURE;
}
const V p1 = p0 - dp;
std::cerr << "Solve " << clock.secsSinceLast() << std::endl;
// std::cout << p1 << std::endl;
// ------ Transport solve ------
// Now we'll try to do a transport step as well.
// Residual formula is
// R_w = s_w - s_w^0 + dt/pv * (div v_w)
// where
// v_w = f_w v
// and f_w is (for now) based on averaged mobilities, not upwind.
double res_norm = 1e100;
const V sw0 = s0.leftCols<1>();
// V sw1 = sw0;
V sw1 = 0.5*V::Ones(nc,1);
const V ndp = (ops.ngrad * p1.matrix()).array();
const V dflux = mobtransf * ndp;
const Opm::UpwindSelector<double> upwind(grid, ops, dflux);
const V pv = Eigen::Map<const V>(props.porosity(), nc, 1)
* Eigen::Map<const V>(grid.cell_volumes, nc, 1);
const double dt = 0.0005;
const V dtpv = dt/pv;
const V qneg = q.min(V::Zero(nc,1));
const V qpos = q.max(V::Zero(nc,1));
std::cout.setf(std::ios::scientific);
std::cout.precision(16);
int it = 0;
do {
const ADB sw = ADB::variable(0, sw1, bpat);
const std::vector<ADB> pmobc = phaseMobility<ADB>(props, allcells, sw.value());
const std::vector<ADB> pmobf = upwind.select(pmobc);
const ADB fw_cell = fluxFunc(pmobc);
const ADB fw_face = fluxFunc(pmobf);
const ADB flux1 = fw_face * dflux;
const ADB qtr_ad = qpos + fw_cell*qneg;
const ADB transport_residual = sw - sw0 + dtpv*(ops.div*flux1 - qtr_ad);
res_norm = transport_residual.value().matrix().norm();
std::cout << "res_norm[" << it << "] = "
<< res_norm << std::endl;
S smatr;
transport_residual.derivative()[0].toSparse(smatr);
smatr.makeCompressed();
solver.compute(smatr);
if (solver.info() != Eigen::Success) {
std::cerr << "Transport Jacobian decomposition error\n";
return EXIT_FAILURE;
}
ADB::V transport_residual_v = transport_residual.value();
const V ds = solver.solve(transport_residual_v.matrix()).array();
if (solver.info() != Eigen::Success) {
std::cerr << "Transport solve failure\n";
return EXIT_FAILURE;
}
sw1 = sw.value() - ds;
std::cerr << "Solve for s[" << it << "]: "
<< clock.secsSinceLast() << '\n';
sw1 = sw1.min(V::Ones(nc,1)).max(V::Zero(nc,1));
it += 1;
} while (res_norm > 1e-7);
std::cout << "Saturation solution:\n"
<< "function s1 = solution\n"
<< "s1 = [\n" << sw1 << "\n];\n";
}
catch (const std::exception &e) {
std::cerr << "Program threw an exception: " << e.what() << "\n";
throw;
}