opm-simulators/ebos/eclcpgridvanguard.hh
hnil 13308ed2af tpfa linearizer for thermal used for co2store and blackoil
-- add new function need for tpfa linearizer in thermal
-- set tpfa linearizer for blackoil with energy
-- set tpfa linearizer for gasoil and energy which include co2store
-- NB diffusion is disabled for this simulators
2023-08-29 16:03:44 +02:00

293 lines
9.4 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \copydoc Opm::EclCpGridVanguard
*/
#ifndef EWOMS_ECL_CP_GRID_VANGUARD_HH
#define EWOMS_ECL_CP_GRID_VANGUARD_HH
#include <ebos/eclbasevanguard.hh>
#include <ebos/eclgenericcpgridvanguard.hh>
#include <ebos/ecltransmissibility.hh>
#include <ebos/femcpgridcompat.hh>
#include <opm/common/TimingMacros.hpp>
#include <opm/models/common/multiphasebaseproperties.hh>
#include <opm/models/blackoil/blackoilproperties.hh>
#include <array>
#include <functional>
#include <memory>
#include <tuple>
#include <vector>
namespace Opm {
template <class TypeTag>
class EclCpGridVanguard;
}
namespace Opm::Properties {
namespace TTag {
struct EclCpGridVanguard {
using InheritsFrom = std::tuple<EclBaseVanguard>;
};
}
// declare the properties
template<class TypeTag>
struct Vanguard<TypeTag, TTag::EclCpGridVanguard> {
using type = EclCpGridVanguard<TypeTag>;
};
template<class TypeTag>
struct Grid<TypeTag, TTag::EclCpGridVanguard> {
using type = Dune::CpGrid;
};
template<class TypeTag>
struct EquilGrid<TypeTag, TTag::EclCpGridVanguard> {
using type = GetPropType<TypeTag, Properties::Grid>;
};
} // namespace Opm::Properties
namespace Opm {
/*!
* \ingroup EclBlackOilSimulator
*
* \brief Helper class for grid instantiation of ECL file-format using problems.
*
* This class uses Dune::CpGrid as the simulation grid.
*/
template <class TypeTag>
class EclCpGridVanguard : public EclBaseVanguard<TypeTag>
, public EclGenericCpGridVanguard<GetPropType<TypeTag, Properties::ElementMapper>,
GetPropType<TypeTag, Properties::GridView>,
GetPropType<TypeTag, Properties::Scalar>>
{
friend class EclBaseVanguard<TypeTag>;
using ParentType = EclBaseVanguard<TypeTag>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using ElementMapper = GetPropType<TypeTag, Properties::ElementMapper>;
public:
using Grid = GetPropType<TypeTag, Properties::Grid>;
using CartesianIndexMapper = Dune::CartesianIndexMapper<Grid>;
using EquilGrid = GetPropType<TypeTag, Properties::EquilGrid>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using TransmissibilityType = EclTransmissibility<Grid, GridView, ElementMapper, CartesianIndexMapper, Scalar>;
static constexpr int dimensionworld = Grid::dimensionworld;
private:
using Element = typename GridView::template Codim<0>::Entity;
public:
EclCpGridVanguard(Simulator& simulator)
: EclBaseVanguard<TypeTag>(simulator)
{
this->checkConsistency();
this->callImplementationInit();
}
/*!
* Checking consistency of simulator
*/
void checkConsistency()
{
const auto& runspec = this->eclState().runspec();
const auto& config = this->eclState().getSimulationConfig();
const auto& phases = runspec.phases();
// check for correct module setup
if (config.isThermal()) {
if (getPropValue<TypeTag, Properties::EnableEnergy>() == false) {
throw std::runtime_error("Input specifies energy while simulator has disabled it, try xxx_energy");
}
} else {
if (getPropValue<TypeTag, Properties::EnableEnergy>() == true) {
throw std::runtime_error("Input specifies no energy while simulator has energy, try run without _energy");
}
}
if (config.isDiffusive()) {
if (getPropValue<TypeTag, Properties::EnableDiffusion>() == false) {
throw std::runtime_error("Input specifies diffusion while simulator has disabled it, try xxx_diffusion");
}
}
if (runspec.micp()) {
if (getPropValue<TypeTag, Properties::EnableMICP>() == false) {
throw std::runtime_error("Input specifies MICP while simulator has it disabled");
}
}
if (phases.active(Phase::BRINE)) {
if (getPropValue<TypeTag, Properties::EnableBrine>() == false) {
throw std::runtime_error("Input specifies Brine while simulator has it disabled");
}
}
if (phases.active(Phase::POLYMER)) {
if (getPropValue<TypeTag, Properties::EnablePolymer>() == false) {
throw std::runtime_error("Input specifies Polymer while simulator has it disabled");
}
}
// checking for correct phases is more difficult TODO!
if (phases.active(Phase::ZFRACTION)) {
if (getPropValue<TypeTag, Properties::EnableExtbo>() == false) {
throw std::runtime_error("Input specifies ExBo while simulator has it disabled");
}
}
if (phases.active(Phase::FOAM)) {
if (getPropValue<TypeTag, Properties::EnableFoam>() == false) {
throw std::runtime_error("Input specifies Foam while simulator has it disabled");
}
}
if (phases.active(Phase::SOLVENT)) {
if (getPropValue<TypeTag, Properties::EnableSolvent>() == false) {
throw std::runtime_error("Input specifies Solvent while simulator has it disabled");
}
}
}
/*!
* \brief Free the memory occupied by the global transmissibility object.
*
* After writing the initial solution, this array should not be necessary anymore.
*/
void releaseGlobalTransmissibilities()
{
globalTrans_.reset();
}
const TransmissibilityType& globalTransmissibility() const
{
assert( globalTrans_ != nullptr );
return *globalTrans_;
}
void releaseGlobalTransmissibility()
{
globalTrans_.reset();
}
/*!
* \brief Distribute the simulation grid over multiple processes
*
* (For parallel simulation runs.)
*/
void loadBalance()
{
#if HAVE_MPI
this->doLoadBalance_(this->edgeWeightsMethod(), this->ownersFirst(),
this->serialPartitioning(), this->enableDistributedWells(),
this->zoltanImbalanceTol(), this->gridView(),
this->schedule(), this->centroids_,
this->eclState(), this->parallelWells_, this->numJacobiBlocks());
#endif
this->updateGridView_();
this->updateCartesianToCompressedMapping_();
this->updateCellDepths_();
this->updateCellThickness_();
#if HAVE_MPI
this->distributeFieldProps_(this->eclState());
#endif
}
unsigned int gridEquilIdxToGridIdx(unsigned int elemIndex) const {
return elemIndex;
}
unsigned int gridIdxToEquilGridIdx(unsigned int elemIndex) const {
return elemIndex;
}
/*!
* \brief Get function to query cell centroids for a distributed grid.
*
* Currently this only non-empty for a loadbalanced CpGrid.
* It is a function return the centroid for the given element
* index.
*/
std::function<std::array<double,dimensionworld>(int)>
cellCentroids() const
{
return this->cellCentroids_(this->cartesianIndexMapper());
}
const std::vector<int>& globalCell()
{
return this->grid().globalCell();
}
protected:
void createGrids_()
{
this->doCreateGrids_(this->eclState());
}
void allocTrans() override
{
OPM_TIMEBLOCK(allocateTrans);
globalTrans_.reset(new TransmissibilityType(this->eclState(),
this->gridView(),
this->cartesianIndexMapper(),
this->grid(),
this->cellCentroids(),
getPropValue<TypeTag, Properties::EnableEnergy>(),
getPropValue<TypeTag, Properties::EnableDiffusion>()));
globalTrans_->update(false);
}
double getTransmissibility(unsigned I, unsigned J) const override
{
return globalTrans_->transmissibility(I,J);
}
#if HAVE_MPI
const std::string& zoltanParams() const override
{
return this->zoltanParams_;
}
#endif
// removing some connection located in inactive grid cells
void filterConnections_()
{
this->doFilterConnections_(this->schedule());
}
std::unique_ptr<TransmissibilityType> globalTrans_;
};
} // namespace Opm
#endif