opm-simulators/examples/tutorialproblem_coupled.hh

219 lines
8.8 KiB
C++

// $Id$
/*****************************************************************************
* Copyright (C) 2008-2009 by Melanie Darcis *
* Copyright (C) 2009 by Andreas Lauser *
* Institute of Hydraulic Engineering *
* University of Stuttgart, Germany *
* email: <givenname>.<name>@iws.uni-stuttgart.de *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version, as long as this copyright notice *
* is included in its original form. *
* *
* This program is distributed WITHOUT ANY WARRANTY. *
*****************************************************************************/
#ifndef DUNE_TUTORIALPROBLEM_COUPLED_HH
#define DUNE_TUTORIALPROBLEM_COUPLED_HH
// fluid properties
#include <dumux/material/fluids/water.hh>
#include <dumux/material/fluids/lowviscosityoil.hh>
// the numerical model
#include <dumux/boxmodels/2p/2pboxmodel.hh>
// the grid used
#include <dune/grid/yaspgrid.hh>
#include <dune/grid/io/file/dgfparser/dgfs.hh>
// the soil to be used
#include "tutorialsoil_coupled.hh"
namespace Dune
{
// forward declaration of the problem class
template <class TypeTag>
class TutorialProblemCoupled;
namespace Properties
{
// create a new type tag for the problem
NEW_TYPE_TAG(TutorialProblemCoupled, INHERITS_FROM(BoxTwoP)); /*@\label{tutorial-coupled:create-type-tag}@*/
// Set the "Problem" property
SET_PROP(TutorialProblemCoupled, Problem) /*@\label{tutorial-coupled:set-problem}@*/
{
typedef Dune::TutorialProblemCoupled<TTAG(TutorialProblemCoupled)> type;
};
// Set the grid
SET_PROP(TutorialProblemCoupled, Grid) /*@\label{tutorial-coupled:set-grid}@*/
{
typedef Dune::SGrid<2,2> type;
static type *create() /*@\label{tutorial-coupled:create-grid-method}@*/
{
typedef typename SGrid<2,2>::ctype ctype;
Dune::FieldVector<int, 2> cellRes;
Dune::FieldVector<ctype, 2> lowerLeft(0.0);
Dune::FieldVector<ctype, 2> upperRight;
cellRes[0] = 30;
cellRes[1] = 10;
upperRight[0] = 300;
upperRight[1] = 60;
return new Dune::SGrid<2,2>(cellRes,
lowerLeft,
upperRight);
}
};
// Set the wetting and non-wetting phases
SET_TYPE_PROP(TutorialProblemCoupled, WettingPhase, Dune::Water); /*@\label{tutorial-coupled:set-wetting}@*/
SET_TYPE_PROP(TutorialProblemCoupled, NonwettingPhase, Dune::LowViscosityOil);/*@\label{tutorial-coupled:set-nonwetting}@*/
// Set the soil properties
SET_PROP(TutorialProblemCoupled, Soil) /*@\label{tutorial-coupled:set-soil}@*/
{
private:
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Grid)) Grid;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
public:
typedef Dune::TutorialSoil<Grid, Scalar> type;
};
// Disable gravity
SET_BOOL_PROP(TutorialProblemCoupled, EnableGravity, false); /*@\label{tutorial-coupled:gravity}@*/
}
// Definition of the actual problem
template <class TypeTag = TTAG(TutorialProblemCoupled) >
class TutorialProblemCoupled : public TwoPBoxProblem<TypeTag, /*@\label{tutorial-coupled:def-problem}@*/
TutorialProblemCoupled<TypeTag> >
{
typedef TutorialProblemCoupled<TypeTag> ThisType;
typedef TwoPBoxProblem<TypeTag, ThisType> ParentType;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(GridView)) GridView;
// Grid and world dimension
enum {
dim = GridView::dimension,
dimWorld = GridView::dimensionworld,
};
typedef typename GridView::Grid::ctype CoordScalar;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(TwoPIndices)) Indices;
typedef typename GridView::template Codim<0>::Entity Element;
typedef typename GridView::template Codim<dim>::Entity Vertex;
typedef typename GridView::IntersectionIterator IntersectionIterator;
typedef Dune::FieldVector<CoordScalar, dim> LocalPosition;
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
typedef typename GET_PROP(TypeTag, PTAG(SolutionTypes)) SolutionTypes;
typedef typename SolutionTypes::PrimaryVarVector PrimaryVarVector;
typedef typename SolutionTypes::BoundaryTypeVector BoundaryTypeVector;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(FVElementGeometry)) FVElementGeometry;
public:
TutorialProblemCoupled(const GridView &gridView)
: ParentType(gridView)
{}
// Return the temperature within the domain. We use 10 degrees Celsius.
Scalar temperature() const
{ return 283.15; };
// Specifies which kind of boundary condition should be used for
// which equation on a given boundary segment.
void boundaryTypes(BoundaryTypeVector &values,
const Element &element,
const FVElementGeometry &fvElemGeom,
const IntersectionIterator &isIt,
int scvIdx,
int boundaryFaceIdx) const
{
const GlobalPosition &pos = element.geometry().corner(scvIdx);
if (pos[0] < eps_) // dirichlet conditions on left boundary
values = BoundaryConditions::dirichlet;
else // neuman for the remaining boundaries
values = BoundaryConditions::neumann;
}
// Evaluate the boundary conditions for a dirichlet boundary
// segment. For this method, the 'values' parameter stores
// primary variables.
void dirichlet(PrimaryVarVector &values,
const Element &element,
const FVElementGeometry &fvElemGeom,
const IntersectionIterator &isIt,
int scvIdx,
int boundaryFaceIdx) const
{
values[Indices::pW] = 200.0e3; // 200 kPa = 2 bar
values[Indices::sN] = 0.0; // 0 % oil saturation on left boundary
}
// Evaluate the boundary conditions for a neumann boundary
// segment. For this method, the 'values' parameter stores the
// mass flux in normal direction of each phase. Negative values
// mean influx.
void neumann(PrimaryVarVector &values,
const Element &element,
const FVElementGeometry &fvElemGeom,
const IntersectionIterator &isIt,
int scvIdx,
int boundaryFaceIdx) const
{
const GlobalPosition &pos =
fvElemGeom.boundaryFace[boundaryFaceIdx].ipGlobal;
Scalar right = this->bboxMax()[0];
if (pos[0] > right - eps_) {
// oil outflux of 0.3 g/(m * s) on the right boundary of
// the domain.
values[Indices::phase2Mass(Indices::wPhase)] = 0;
values[Indices::phase2Mass(Indices::nPhase)] = 0.3e-3;
} else {
// no-flow on the remaining neumann-boundaries
values[Indices::phase2Mass(Indices::wPhase)] = 0;
values[Indices::phase2Mass(Indices::nPhase)] = 0;
}
}
// Evaluate the initial value for a control volume. For this
// method, the 'values' parameter stores primary variables.
void initial(PrimaryVarVector &values,
const Element &element,
const FVElementGeometry &fvElemGeom,
int scvIdx) const
{
values[Indices::pW] = 200.0e3; // 200 kPa = 2 bar
values[Indices::sN] = 1.0;
}
// Evaluate the source term for all phases within a given
// sub-control-volume. For this method, the \a values parameter
// stores the rate mass generated or annihilate per volume
// unit. Positive values mean that mass is created, negative ones
// mean that it vanishes.
void source(PrimaryVarVector &values,
const Element &element,
const FVElementGeometry &fvElemGeom,
int scvIdx) const
{
values[Indices::phase2Mass(Indices::wPhase)] = 0.0;
values[Indices::phase2Mass(Indices::nPhase)] = 0.0;
}
private:
static const Scalar eps_ = 3e-6;
};
}
#endif