opm-simulators/opm/models/blackoil/blackoilintensivequantities.hh
2023-05-15 09:00:15 +02:00

607 lines
27 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::BlackOilIntensiveQuantities
*/
#ifndef EWOMS_BLACK_OIL_INTENSIVE_QUANTITIES_HH
#define EWOMS_BLACK_OIL_INTENSIVE_QUANTITIES_HH
#include "blackoilproperties.hh"
#include "blackoilsolventmodules.hh"
#include "blackoilextbomodules.hh"
#include "blackoilpolymermodules.hh"
#include "blackoilfoammodules.hh"
#include "blackoilbrinemodules.hh"
#include "blackoilenergymodules.hh"
#include "blackoildiffusionmodule.hh"
#include "blackoilmicpmodules.hh"
#include <opm/common/TimingMacros.hpp>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/input/eclipse/EclipseState/Grid/FaceDir.hpp>
#include <opm/material/fluidstates/BlackOilFluidState.hpp>
#include <opm/material/common/Valgrind.hpp>
#include <opm/models/common/directionalmobility.hh>
#include <opm/utility/CopyablePtr.hpp>
#include <dune/common/fmatrix.hh>
#include <cstring>
#include <utility>
#include <fmt/format.h>
namespace Opm {
/*!
* \ingroup BlackOilModel
* \ingroup IntensiveQuantities
*
* \brief Contains the quantities which are are constant within a
* finite volume in the black-oil model.
*/
template <class TypeTag>
class BlackOilIntensiveQuantities
: public GetPropType<TypeTag, Properties::DiscIntensiveQuantities>
, public GetPropType<TypeTag, Properties::FluxModule>::FluxIntensiveQuantities
, public BlackOilDiffusionIntensiveQuantities<TypeTag, getPropValue<TypeTag, Properties::EnableDiffusion>() >
, public BlackOilSolventIntensiveQuantities<TypeTag>
, public BlackOilExtboIntensiveQuantities<TypeTag>
, public BlackOilPolymerIntensiveQuantities<TypeTag>
, public BlackOilFoamIntensiveQuantities<TypeTag>
, public BlackOilBrineIntensiveQuantities<TypeTag>
, public BlackOilEnergyIntensiveQuantities<TypeTag>
, public BlackOilMICPIntensiveQuantities<TypeTag>
{
using ParentType = GetPropType<TypeTag, Properties::DiscIntensiveQuantities>;
using Implementation = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using FluxModule = GetPropType<TypeTag, Properties::FluxModule>;
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
enum { enableSolvent = getPropValue<TypeTag, Properties::EnableSolvent>() };
enum { enableExtbo = getPropValue<TypeTag, Properties::EnableExtbo>() };
enum { enablePolymer = getPropValue<TypeTag, Properties::EnablePolymer>() };
enum { enableFoam = getPropValue<TypeTag, Properties::EnableFoam>() };
enum { enableBrine = getPropValue<TypeTag, Properties::EnableBrine>() };
enum { enableEvaporation = getPropValue<TypeTag, Properties::EnableEvaporation>() };
enum { has_disgas_in_water = getPropValue<TypeTag, Properties::EnableDisgasInWater>() };
enum { enableSaltPrecipitation = getPropValue<TypeTag, Properties::EnableSaltPrecipitation>() };
enum { enableTemperature = getPropValue<TypeTag, Properties::EnableTemperature>() };
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
enum { enableDiffusion = getPropValue<TypeTag, Properties::EnableDiffusion>() };
enum { enableMICP = getPropValue<TypeTag, Properties::EnableMICP>() };
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
enum { numComponents = getPropValue<TypeTag, Properties::NumComponents>() };
enum { waterCompIdx = FluidSystem::waterCompIdx };
enum { oilCompIdx = FluidSystem::oilCompIdx };
enum { gasCompIdx = FluidSystem::gasCompIdx };
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
enum { dimWorld = GridView::dimensionworld };
enum { compositionSwitchIdx = Indices::compositionSwitchIdx };
static constexpr bool compositionSwitchEnabled = Indices::compositionSwitchIdx >= 0;
static constexpr bool waterEnabled = Indices::waterEnabled;
static constexpr bool gasEnabled = Indices::gasEnabled;
static constexpr bool oilEnabled = Indices::oilEnabled;
using Toolbox = MathToolbox<Evaluation>;
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
using FluxIntensiveQuantities = typename FluxModule::FluxIntensiveQuantities;
using DiffusionIntensiveQuantities = BlackOilDiffusionIntensiveQuantities<TypeTag, enableDiffusion>;
using DirectionalMobilityPtr = Opm::Utility::CopyablePtr<DirectionalMobility<TypeTag, Evaluation>>;
public:
using FluidState = BlackOilFluidState<Evaluation,
FluidSystem,
enableTemperature,
enableEnergy,
compositionSwitchEnabled,
enableEvaporation,
enableBrine,
enableSaltPrecipitation,
has_disgas_in_water,
Indices::numPhases>;
using ScalarFluidState = BlackOilFluidState<Scalar,
FluidSystem,
enableTemperature,
enableEnergy,
compositionSwitchEnabled,
enableEvaporation,
enableBrine,
enableSaltPrecipitation,
has_disgas_in_water,
Indices::numPhases>;
using Problem = GetPropType<TypeTag, Properties::Problem>;
BlackOilIntensiveQuantities()
{
if (compositionSwitchEnabled) {
fluidState_.setRs(0.0);
fluidState_.setRv(0.0);
}
if (enableEvaporation) {
fluidState_.setRvw(0.0);
}
if (has_disgas_in_water) {
fluidState_.setRsw(0.0);
}
}
BlackOilIntensiveQuantities(const BlackOilIntensiveQuantities& other) = default;
BlackOilIntensiveQuantities& operator=(const BlackOilIntensiveQuantities& other) = default;
/*!
* \copydoc IntensiveQuantities::update
*/
void update(const ElementContext& elemCtx, unsigned dofIdx, unsigned timeIdx)
{
ParentType::update(elemCtx, dofIdx, timeIdx);
OPM_TIMEBLOCK_LOCAL(blackoilIntensiveQuanititiesUpdate);
const auto& problem = elemCtx.problem();
const auto& priVars = elemCtx.primaryVars(dofIdx, timeIdx);
const auto& linearizationType = problem.model().linearizer().getLinearizationType();
unsigned globalSpaceIdx = elemCtx.globalSpaceIndex(dofIdx, timeIdx);
Scalar RvMax = FluidSystem::enableVaporizedOil()
? problem.maxOilVaporizationFactor(timeIdx, globalSpaceIdx)
: 0.0;
Scalar RsMax = FluidSystem::enableDissolvedGas()
? problem.maxGasDissolutionFactor(timeIdx, globalSpaceIdx)
: 0.0;
asImp_().updateTemperature_(elemCtx, dofIdx, timeIdx);
unsigned pvtRegionIdx = priVars.pvtRegionIndex();
fluidState_.setPvtRegionIndex(pvtRegionIdx);
asImp_().updateSaltConcentration_(elemCtx, dofIdx, timeIdx);
// extract the water and the gas saturations for convenience
Evaluation Sw = 0.0;
if constexpr (waterEnabled) {
if (priVars.primaryVarsMeaningWater() == PrimaryVariables::WaterMeaning::Sw) {
Sw = priVars.makeEvaluation(Indices::waterSwitchIdx, timeIdx);
} else if(priVars.primaryVarsMeaningWater() == PrimaryVariables::WaterMeaning::Rsw ||
priVars.primaryVarsMeaningWater() == PrimaryVariables::WaterMeaning::Disabled) {
// water is enabled but is not a primary variable i.e. one component/phase case
// or two-phase water + gas with only water present
Sw = 1.0;
} // else i.e. for MeaningWater() = Rvw, Sw is still 0.0;
}
Evaluation Sg = 0.0;
if constexpr (gasEnabled) {
if (priVars.primaryVarsMeaningGas() == PrimaryVariables::GasMeaning::Sg) {
Sg = priVars.makeEvaluation(Indices::compositionSwitchIdx, timeIdx);
} else if (priVars.primaryVarsMeaningGas() == PrimaryVariables::GasMeaning::Rv) {
Sg = 1.0 - Sw;
} else if (priVars.primaryVarsMeaningGas() == PrimaryVariables::GasMeaning::Disabled) {
if constexpr (waterEnabled) {
Sg = 1.0 - Sw; // two phase water + gas
} else {
// one phase case
Sg = 1.0;
}
}
}
Valgrind::CheckDefined(Sg);
Valgrind::CheckDefined(Sw);
Evaluation So = 1.0 - Sw - Sg;
// deal with solvent
if constexpr (enableSolvent) {
if (FluidSystem::phaseIsActive(oilPhaseIdx)) {
So -= priVars.makeEvaluation(Indices::solventSaturationIdx, timeIdx);
} else if (FluidSystem::phaseIsActive(gasPhaseIdx)) {
Sg -= priVars.makeEvaluation(Indices::solventSaturationIdx, timeIdx);
}
}
if (FluidSystem::phaseIsActive(waterPhaseIdx))
fluidState_.setSaturation(waterPhaseIdx, Sw);
if (FluidSystem::phaseIsActive(gasPhaseIdx))
fluidState_.setSaturation(gasPhaseIdx, Sg);
if (FluidSystem::phaseIsActive(oilPhaseIdx))
fluidState_.setSaturation(oilPhaseIdx, So);
asImp_().solventPreSatFuncUpdate_(elemCtx, dofIdx, timeIdx);
// now we compute all phase pressures
std::array<Evaluation, numPhases> pC;
const auto& materialParams = problem.materialLawParams(globalSpaceIdx);
MaterialLaw::capillaryPressures(pC, materialParams, fluidState_);
problem.updateRelperms(mobility_, dirMob_, fluidState_, globalSpaceIdx);
// oil is the reference phase for pressure
if (priVars.primaryVarsMeaningPressure() == PrimaryVariables::PressureMeaning::Pg) {
const Evaluation& pg = priVars.makeEvaluation(Indices::pressureSwitchIdx, timeIdx);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
if (FluidSystem::phaseIsActive(phaseIdx))
fluidState_.setPressure(phaseIdx, pg + (pC[phaseIdx] - pC[gasPhaseIdx]));
} else if (priVars.primaryVarsMeaningPressure() == PrimaryVariables::PressureMeaning::Pw) {
const Evaluation& pw = priVars.makeEvaluation(Indices::pressureSwitchIdx, timeIdx);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
if (FluidSystem::phaseIsActive(phaseIdx))
fluidState_.setPressure(phaseIdx, pw + (pC[phaseIdx] - pC[waterPhaseIdx]));
} else {
assert(FluidSystem::phaseIsActive(oilPhaseIdx));
const Evaluation& po = priVars.makeEvaluation(Indices::pressureSwitchIdx, timeIdx);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
if (FluidSystem::phaseIsActive(phaseIdx))
fluidState_.setPressure(phaseIdx, po + (pC[phaseIdx] - pC[oilPhaseIdx]));
}
// update the Saturation functions for the blackoil solvent module.
asImp_().solventPostSatFuncUpdate_(elemCtx, dofIdx, timeIdx);
// update extBO parameters
asImp_().zFractionUpdate_(elemCtx, dofIdx, timeIdx);
Evaluation SoMax = 0.0;
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
SoMax = max(fluidState_.saturation(oilPhaseIdx),
problem.maxOilSaturation(globalSpaceIdx));
}
// take the meaning of the switching primary variable into account for the gas
// and oil phase compositions
if (priVars.primaryVarsMeaningGas() == PrimaryVariables::GasMeaning::Rs) {
const auto& Rs = priVars.makeEvaluation(Indices::compositionSwitchIdx, timeIdx);
fluidState_.setRs(Rs);
} else {
if (FluidSystem::enableDissolvedGas()) { // Add So > 0? i.e. if only water set rs = 0)
const Evaluation& RsSat = enableExtbo ? asImp_().rs() :
FluidSystem::saturatedDissolutionFactor(fluidState_,
oilPhaseIdx,
pvtRegionIdx,
SoMax);
fluidState_.setRs(min(RsMax, RsSat));
}
else if constexpr (compositionSwitchEnabled)
fluidState_.setRs(0.0);
}
if (priVars.primaryVarsMeaningGas() == PrimaryVariables::GasMeaning::Rv) {
const auto& Rv = priVars.makeEvaluation(Indices::compositionSwitchIdx, timeIdx);
fluidState_.setRv(Rv);
} else {
if (FluidSystem::enableVaporizedOil() ) { // Add Sg > 0? i.e. if only water set rv = 0)
const Evaluation& RvSat = enableExtbo ? asImp_().rv() :
FluidSystem::saturatedDissolutionFactor(fluidState_,
gasPhaseIdx,
pvtRegionIdx,
SoMax);
fluidState_.setRv(min(RvMax, RvSat));
}
else if constexpr (compositionSwitchEnabled)
fluidState_.setRv(0.0);
}
if (priVars.primaryVarsMeaningWater() == PrimaryVariables::WaterMeaning::Rvw) {
const auto& Rvw = priVars.makeEvaluation(Indices::waterSwitchIdx, timeIdx);
fluidState_.setRvw(Rvw);
} else {
if (FluidSystem::enableVaporizedWater()) { // Add Sg > 0? i.e. if only water set rv = 0)
const Evaluation& RvwSat = FluidSystem::saturatedVaporizationFactor(fluidState_,
gasPhaseIdx,
pvtRegionIdx);
fluidState_.setRvw(RvwSat);
}
}
if (priVars.primaryVarsMeaningWater() == PrimaryVariables::WaterMeaning::Rsw) {
const auto& Rsw = priVars.makeEvaluation(Indices::waterSwitchIdx, timeIdx);
fluidState_.setRsw(Rsw);
} else {
if (FluidSystem::enableDissolvedGasInWater()) {
const Evaluation& RswSat = FluidSystem::saturatedDissolutionFactor(fluidState_,
waterPhaseIdx,
pvtRegionIdx);
fluidState_.setRsw(RswSat);
}
}
typename FluidSystem::template ParameterCache<Evaluation> paramCache;
paramCache.setRegionIndex(pvtRegionIdx);
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
paramCache.setMaxOilSat(SoMax);
}
paramCache.updateAll(fluidState_);
// compute the phase densities and transform the phase permeabilities into mobilities
int nmobilities = 1;
std::vector<std::array<Evaluation,numPhases>*> mobilities = {&mobility_};
if (dirMob_) {
for (int i=0; i<3; i++) {
nmobilities += 1;
mobilities.push_back(&(dirMob_->getArray(i)));
}
}
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
const auto& b = FluidSystem::inverseFormationVolumeFactor(fluidState_, phaseIdx, pvtRegionIdx);
fluidState_.setInvB(phaseIdx, b);
const auto& mu = FluidSystem::viscosity(fluidState_, paramCache, phaseIdx);
for (int i = 0; i<nmobilities; i++) {
if (enableExtbo && phaseIdx == oilPhaseIdx) {
(*mobilities[i])[phaseIdx] /= asImp_().oilViscosity();
}
else if (enableExtbo && phaseIdx == gasPhaseIdx) {
(*mobilities[i])[phaseIdx] /= asImp_().gasViscosity();
}
else {
(*mobilities[i])[phaseIdx] /= mu;
}
}
}
Valgrind::CheckDefined(mobility_);
// calculate the phase densities
Evaluation rho;
if (FluidSystem::phaseIsActive(waterPhaseIdx)) {
rho = fluidState_.invB(waterPhaseIdx);
rho *= FluidSystem::referenceDensity(waterPhaseIdx, pvtRegionIdx);
if (FluidSystem::enableDissolvedGasInWater()) {
rho +=
fluidState_.invB(waterPhaseIdx) *
fluidState_.Rsw() *
FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
}
fluidState_.setDensity(waterPhaseIdx, rho);
}
if (FluidSystem::phaseIsActive(gasPhaseIdx)) {
rho = fluidState_.invB(gasPhaseIdx);
rho *= FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
if (FluidSystem::enableVaporizedOil()) {
rho +=
fluidState_.invB(gasPhaseIdx) *
fluidState_.Rv() *
FluidSystem::referenceDensity(oilPhaseIdx, pvtRegionIdx);
}
if (FluidSystem::enableVaporizedWater()) {
rho +=
fluidState_.invB(gasPhaseIdx) *
fluidState_.Rvw() *
FluidSystem::referenceDensity(waterPhaseIdx, pvtRegionIdx);
}
fluidState_.setDensity(gasPhaseIdx, rho);
}
if (FluidSystem::phaseIsActive(oilPhaseIdx)) {
rho = fluidState_.invB(oilPhaseIdx);
rho *= FluidSystem::referenceDensity(oilPhaseIdx, pvtRegionIdx);
if (FluidSystem::enableDissolvedGas()) {
rho +=
fluidState_.invB(oilPhaseIdx) *
fluidState_.Rs() *
FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
}
fluidState_.setDensity(oilPhaseIdx, rho);
}
// retrieve the porosity from the problem
referencePorosity_ = problem.porosity(elemCtx, dofIdx, timeIdx);
porosity_ = referencePorosity_;
// the porosity must be modified by the compressibility of the
// rock...
Scalar rockCompressibility = problem.rockCompressibility(globalSpaceIdx);
if (rockCompressibility > 0.0) {
Scalar rockRefPressure = problem.rockReferencePressure(globalSpaceIdx);
Evaluation x;
if (FluidSystem::phaseIsActive(oilPhaseIdx)) {
x = rockCompressibility*(fluidState_.pressure(oilPhaseIdx) - rockRefPressure);
} else if (FluidSystem::phaseIsActive(waterPhaseIdx)){
x = rockCompressibility*(fluidState_.pressure(waterPhaseIdx) - rockRefPressure);
} else {
x = rockCompressibility*(fluidState_.pressure(gasPhaseIdx) - rockRefPressure);
}
porosity_ *= 1.0 + x + 0.5*x*x;
}
// deal with water induced rock compaction
porosity_ *= problem.template rockCompPoroMultiplier<Evaluation>(*this, globalSpaceIdx);
// the MICP processes change the porosity
if constexpr (enableMICP){
Evaluation biofilm_ = priVars.makeEvaluation(Indices::biofilmConcentrationIdx, timeIdx, linearizationType);
Evaluation calcite_ = priVars.makeEvaluation(Indices::calciteConcentrationIdx, timeIdx, linearizationType);
porosity_ += - biofilm_ - calcite_;
}
// deal with salt-precipitation
if (enableSaltPrecipitation && priVars.primaryVarsMeaningBrine() == PrimaryVariables::BrineMeaning::Sp) {
Evaluation Sp = priVars.makeEvaluation(Indices::saltConcentrationIdx, timeIdx);
porosity_ *= (1.0 - Sp);
}
rockCompTransMultiplier_ = problem.template rockCompTransMultiplier<Evaluation>(*this, globalSpaceIdx);
asImp_().solventPvtUpdate_(elemCtx, dofIdx, timeIdx);
asImp_().zPvtUpdate_();
asImp_().polymerPropertiesUpdate_(elemCtx, dofIdx, timeIdx);
asImp_().updateEnergyQuantities_(elemCtx, dofIdx, timeIdx, paramCache);
asImp_().foamPropertiesUpdate_(elemCtx, dofIdx, timeIdx);
asImp_().MICPPropertiesUpdate_(elemCtx, dofIdx, timeIdx);
asImp_().saltPropertiesUpdate_(elemCtx, dofIdx, timeIdx);
// update the quantities which are required by the chosen
// velocity model
FluxIntensiveQuantities::update_(elemCtx, dofIdx, timeIdx);
// update the diffusion specific quantities of the intensive quantities
DiffusionIntensiveQuantities::update_(fluidState_, paramCache, elemCtx, dofIdx, timeIdx);
#ifndef NDEBUG
// some safety checks in debug mode
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
assert(isfinite(fluidState_.density(phaseIdx)));
assert(isfinite(fluidState_.saturation(phaseIdx)));
assert(isfinite(fluidState_.temperature(phaseIdx)));
assert(isfinite(fluidState_.pressure(phaseIdx)));
assert(isfinite(fluidState_.invB(phaseIdx)));
}
assert(isfinite(fluidState_.Rs()));
assert(isfinite(fluidState_.Rv()));
#endif
}
/*!
* \copydoc ImmiscibleIntensiveQuantities::fluidState
*/
const FluidState& fluidState() const
{ return fluidState_; }
/*!
* \copydoc ImmiscibleIntensiveQuantities::mobility
*/
const Evaluation& mobility(unsigned phaseIdx) const
{ return mobility_[phaseIdx]; }
const Evaluation& mobility(unsigned phaseIdx, FaceDir::DirEnum facedir) const
{
using Dir = FaceDir::DirEnum;
if (dirMob_) {
switch(facedir) {
case Dir::XPlus:
return dirMob_->mobilityX_[phaseIdx];
case Dir::YPlus:
return dirMob_->mobilityY_[phaseIdx];
case Dir::ZPlus:
return dirMob_->mobilityZ_[phaseIdx];
default:
throw std::runtime_error("Unexpected face direction");
}
}
else {
return mobility_[phaseIdx];
}
}
/*!
* \copydoc ImmiscibleIntensiveQuantities::porosity
*/
const Evaluation& porosity() const
{ return porosity_; }
/*!
* The pressure-dependent transmissibility multiplier due to rock compressibility.
*/
const Evaluation& rockCompTransMultiplier() const
{ return rockCompTransMultiplier_; }
/*!
* \brief Returns the index of the PVT region used to calculate the thermodynamic
* quantities.
*
* This allows to specify different Pressure-Volume-Temperature (PVT) relations in
* different parts of the spatial domain.
*/
auto pvtRegionIndex() const
-> decltype(std::declval<FluidState>().pvtRegionIndex())
{ return fluidState_.pvtRegionIndex(); }
/*!
* \copydoc ImmiscibleIntensiveQuantities::relativePermeability
*/
Evaluation relativePermeability(unsigned phaseIdx) const
{
// warning: slow
return fluidState_.viscosity(phaseIdx)*mobility(phaseIdx);
}
/*!
* \brief Returns the porosity of the rock at reference conditions.
*
* I.e., the porosity of rock which is not perturbed by pressure and temperature
* changes.
*/
Scalar referencePorosity() const
{ return referencePorosity_; }
private:
friend BlackOilSolventIntensiveQuantities<TypeTag>;
friend BlackOilExtboIntensiveQuantities<TypeTag>;
friend BlackOilPolymerIntensiveQuantities<TypeTag>;
friend BlackOilEnergyIntensiveQuantities<TypeTag>;
friend BlackOilFoamIntensiveQuantities<TypeTag>;
friend BlackOilBrineIntensiveQuantities<TypeTag>;
friend BlackOilMICPIntensiveQuantities<TypeTag>;
Implementation& asImp_()
{ return *static_cast<Implementation*>(this); }
FluidState fluidState_;
Scalar referencePorosity_;
Evaluation porosity_;
Evaluation rockCompTransMultiplier_;
std::array<Evaluation,numPhases> mobility_;
// Instead of writing a custom copy constructor and a custom assignment operator just to handle
// the dirMob_ unique ptr member variable when copying BlackOilIntensiveQuantites (see for example
// updateIntensitiveQuantities_() in fvbaseelementcontext.hh for a copy example) we write the below
// custom wrapper class CopyablePtr which wraps the unique ptr and makes it copyable.
//
// The advantage of this approach is that we avoid having to call all the base class copy constructors and
// assignment operators explicitly (which is needed when writing the custom copy constructor and assignment
// operators) which could become a maintenance burden. For example, when adding a new base class (if that should
// be needed sometime in the future) to BlackOilIntensiveQuantites we could forget to update the copy
// constructor and assignment operators.
//
// We want each copy of the BlackOilIntensiveQuantites to be unique, (TODO: why?) so we have to make a copy
// of the unique_ptr each time we copy construct or assign to it from another BlackOilIntensiveQuantites.
// (On the other hand, if a copy could share the ptr with the original, a shared_ptr could be used instead and the
// wrapper would not be needed)
DirectionalMobilityPtr dirMob_;
};
} // namespace Opm
#endif