mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-02 05:49:09 -06:00
245 lines
9.3 KiB
C++
245 lines
9.3 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Opm::DiscreteFractureIntensiveQuantities
|
|
*/
|
|
#ifndef EWOMS_DISCRETE_FRACTURE_INTENSIVE_QUANTITIES_HH
|
|
#define EWOMS_DISCRETE_FRACTURE_INTENSIVE_QUANTITIES_HH
|
|
|
|
#include "discretefractureproperties.hh"
|
|
|
|
#include <opm/models/immiscible/immiscibleintensivequantities.hh>
|
|
|
|
#include <opm/material/common/Valgrind.hpp>
|
|
|
|
namespace Opm {
|
|
|
|
/*!
|
|
* \ingroup DiscreteFractureModel
|
|
* \ingroup IntensiveQuantities
|
|
*
|
|
* \brief Contains the quantities which are are constant within a
|
|
* finite volume in the discret fracture immiscible multi-phase
|
|
* model.
|
|
*/
|
|
template <class TypeTag>
|
|
class DiscreteFractureIntensiveQuantities : public ImmiscibleIntensiveQuantities<TypeTag>
|
|
{
|
|
using ParentType = ImmiscibleIntensiveQuantities<TypeTag>;
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
|
|
|
enum { numPhases = FluidSystem::numPhases };
|
|
enum { dimWorld = GridView::dimensionworld };
|
|
|
|
static_assert(dimWorld == 2, "The fracture module currently is only "
|
|
"implemented for the 2D case!");
|
|
static_assert(numPhases == 2, "The fracture module currently is only "
|
|
"implemented for two fluid phases!");
|
|
|
|
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
|
|
enum { wettingPhaseIdx = MaterialLaw::wettingPhaseIdx };
|
|
enum { nonWettingPhaseIdx = MaterialLaw::nonWettingPhaseIdx };
|
|
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
|
|
using FluidState = Opm::ImmiscibleFluidState<Scalar, FluidSystem,
|
|
/*storeEnthalpy=*/enableEnergy>;
|
|
|
|
public:
|
|
DiscreteFractureIntensiveQuantities()
|
|
{ }
|
|
|
|
DiscreteFractureIntensiveQuantities(const DiscreteFractureIntensiveQuantities& other) = default;
|
|
|
|
DiscreteFractureIntensiveQuantities& operator=(const DiscreteFractureIntensiveQuantities& other) = default;
|
|
|
|
/*!
|
|
* \copydoc IntensiveQuantities::update
|
|
*/
|
|
void update(const ElementContext& elemCtx, unsigned vertexIdx, unsigned timeIdx)
|
|
{
|
|
ParentType::update(elemCtx, vertexIdx, timeIdx);
|
|
|
|
const auto& problem = elemCtx.problem();
|
|
const auto& fractureMapper = problem.fractureMapper();
|
|
unsigned globalVertexIdx = elemCtx.globalSpaceIndex(vertexIdx, timeIdx);
|
|
|
|
Opm::Valgrind::SetUndefined(fractureFluidState_);
|
|
Opm::Valgrind::SetUndefined(fractureVolume_);
|
|
Opm::Valgrind::SetUndefined(fracturePorosity_);
|
|
Opm::Valgrind::SetUndefined(fractureIntrinsicPermeability_);
|
|
Opm::Valgrind::SetUndefined(fractureRelativePermeabilities_);
|
|
|
|
// do nothing if there is no fracture within the current degree of freedom
|
|
if (!fractureMapper.isFractureVertex(globalVertexIdx)) {
|
|
fractureVolume_ = 0;
|
|
return;
|
|
}
|
|
|
|
// Make sure that the wetting saturation in the matrix fluid
|
|
// state does not get larger than 1
|
|
Scalar SwMatrix =
|
|
std::min<Scalar>(1.0, this->fluidState_.saturation(wettingPhaseIdx));
|
|
this->fluidState_.setSaturation(wettingPhaseIdx, SwMatrix);
|
|
this->fluidState_.setSaturation(nonWettingPhaseIdx, 1 - SwMatrix);
|
|
|
|
// retrieve the facture width and intrinsic permeability from
|
|
// the problem
|
|
fracturePorosity_ =
|
|
problem.fracturePorosity(elemCtx, vertexIdx, timeIdx);
|
|
fractureIntrinsicPermeability_ =
|
|
problem.fractureIntrinsicPermeability(elemCtx, vertexIdx, timeIdx);
|
|
|
|
// compute the fracture volume for the current sub-control
|
|
// volume. note, that we don't take overlaps of fractures into
|
|
// account for this.
|
|
fractureVolume_ = 0;
|
|
const auto& vertexPos = elemCtx.pos(vertexIdx, timeIdx);
|
|
for (unsigned vertex2Idx = 0; vertex2Idx < elemCtx.numDof(/*timeIdx=*/0); ++ vertex2Idx) {
|
|
unsigned globalVertex2Idx = elemCtx.globalSpaceIndex(vertex2Idx, timeIdx);
|
|
|
|
if (vertexIdx == vertex2Idx ||
|
|
!fractureMapper.isFractureEdge(globalVertexIdx, globalVertex2Idx))
|
|
continue;
|
|
|
|
Scalar fractureWidth =
|
|
problem.fractureWidth(elemCtx, vertexIdx, vertex2Idx, timeIdx);
|
|
|
|
auto distVec = elemCtx.pos(vertex2Idx, timeIdx);
|
|
distVec -= vertexPos;
|
|
|
|
Scalar edgeLength = distVec.two_norm();
|
|
|
|
// the fracture is always adjacent to two sub-control
|
|
// volumes of the control volume, so when calculating the
|
|
// volume of the fracture which gets attributed to one
|
|
// SCV, the fracture width needs to divided by 2. Also,
|
|
// only half of the edge is located in the current control
|
|
// volume, so its length also needs to divided by 2.
|
|
fractureVolume_ += (fractureWidth / 2) * (edgeLength / 2);
|
|
}
|
|
|
|
//////////
|
|
// set the fluid state for the fracture.
|
|
//////////
|
|
|
|
// start with the same fluid state as in the matrix. This
|
|
// implies equal saturations, pressures, temperatures,
|
|
// enthalpies, etc.
|
|
fractureFluidState_.assign(this->fluidState_);
|
|
|
|
// ask the problem for the material law parameters of the
|
|
// fracture.
|
|
const auto& fractureMatParams =
|
|
problem.fractureMaterialLawParams(elemCtx, vertexIdx, timeIdx);
|
|
|
|
// calculate the fracture saturations which would be required
|
|
// to be consistent with the pressures
|
|
Scalar saturations[numPhases];
|
|
MaterialLaw::saturations(saturations, fractureMatParams,
|
|
fractureFluidState_);
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
|
fractureFluidState_.setSaturation(phaseIdx, saturations[phaseIdx]);
|
|
|
|
// Make sure that the wetting saturation in the fracture does
|
|
// not get negative
|
|
Scalar SwFracture =
|
|
std::max<Scalar>(0.0, fractureFluidState_.saturation(wettingPhaseIdx));
|
|
fractureFluidState_.setSaturation(wettingPhaseIdx, SwFracture);
|
|
fractureFluidState_.setSaturation(nonWettingPhaseIdx, 1 - SwFracture);
|
|
|
|
// calculate the relative permeabilities of the fracture
|
|
MaterialLaw::relativePermeabilities(fractureRelativePermeabilities_,
|
|
fractureMatParams,
|
|
fractureFluidState_);
|
|
|
|
// make sure that valgrind complains if the fluid state is not
|
|
// fully defined.
|
|
fractureFluidState_.checkDefined();
|
|
}
|
|
|
|
public:
|
|
/*!
|
|
* \brief Returns the effective mobility of a given phase within
|
|
* the control volume.
|
|
*
|
|
* \param phaseIdx The phase index
|
|
*/
|
|
Scalar fractureRelativePermeability(unsigned phaseIdx) const
|
|
{ return fractureRelativePermeabilities_[phaseIdx]; }
|
|
|
|
/*!
|
|
* \brief Returns the effective mobility of a given phase within
|
|
* the control volume.
|
|
*
|
|
* \param phaseIdx The phase index
|
|
*/
|
|
Scalar fractureMobility(unsigned phaseIdx) const
|
|
{
|
|
return fractureRelativePermeabilities_[phaseIdx]
|
|
/ fractureFluidState_.viscosity(phaseIdx);
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns the average porosity within the fracture.
|
|
*/
|
|
Scalar fracturePorosity() const
|
|
{ return fracturePorosity_; }
|
|
|
|
/*!
|
|
* \brief Returns the average intrinsic permeability within the
|
|
* fracture.
|
|
*/
|
|
const DimMatrix& fractureIntrinsicPermeability() const
|
|
{ return fractureIntrinsicPermeability_; }
|
|
|
|
/*!
|
|
* \brief Return the volume [m^2] occupied by fractures within the
|
|
* given sub-control volume.
|
|
*/
|
|
Scalar fractureVolume() const
|
|
{ return fractureVolume_; }
|
|
|
|
/*!
|
|
* \brief Returns a fluid state object which represents the
|
|
* thermodynamic state of the fluids within the fracture.
|
|
*/
|
|
const FluidState& fractureFluidState() const
|
|
{ return fractureFluidState_; }
|
|
|
|
protected:
|
|
FluidState fractureFluidState_;
|
|
Scalar fractureVolume_;
|
|
Scalar fracturePorosity_;
|
|
DimMatrix fractureIntrinsicPermeability_;
|
|
Scalar fractureRelativePermeabilities_[numPhases];
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif
|