opm-simulators/doc/handbook/ModelDescriptions/richardsboxmodel.tex

14 lines
2.3 KiB
TeX

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This file has been autogenerated from the LaTeX part of the %
% doxygen documentation; DO NOT EDIT IT! Change the model's .hh %
% file instead!! %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
This model implements a variant of the Richards equation for quasi-\/twophase flow. In the unsaturated zone, Richards' equation is frequently used to calculate the water distribution above the groundwater level. It can be derived from the twophase equations, i.e. \[ \frac{\partial\;\phi S_\alpha \rho_\alpha}{\partial t} - \mathbf{div} \left\{ \rho_\alpha \frac{k_{r\alpha}}{\mu_\alpha}\;K \mathbf{grad}\left[ p_\alpha - g\rho_\alpha \right] \right\} = q_\alpha, \] where $\alpha \in \{w, n\}$ is the fluid phase, $\rho_\alpha$ is the fluid density, $S_\alpha$ is the fluid saturation, $\phi$ is the porosity of the soil, $k_{r\alpha}$ is the relative permeability for the fluid, $\mu_\alpha$ is the fluid's dynamic viscosity, $K$ is the intrinsic permeability, $p_\alpha$ is the fluid pressure and $g$ is the potential of the gravity field.
In contrast to the full twophase model, the Richards model assumes gas as the non-\/wetting fluid and that it exhibits a much lower viscosity than the (liquid) wetting phase. (For example at atmospheric pressure and at room temperature, the viscosity of air is only about $1\%$ of the viscosity of liquid water.) As a consequence, the $\frac{k_{r\alpha}}{\mu_\alpha}$ term typically is much larger for the gas phase than for the wetting phase. For this reason, the Richards model assumes that $\frac{k_{rn}}{\mu_n}$ tends to infinity. This implies that the pressure of the gas phase is equivalent to a static pressure and can thus be specified externally and that therefore, mass conservation only needs to be considered for the wetting phase.
The model thus choses the absolute pressure of the wetting phase $p_w$ as its only primary variable. The wetting phase saturation is calculated using the inverse of the capillary pressure, i.e. \[ S_w = p_c^{-1}(p_n - p_w) \] holds, where $p_n$ is a given reference pressure. Nota bene that the last step is assumes that the capillary pressure-\/saturation curve can be inverted uniquely, so it is not possible to set the capillary pressure to zero when using the Richards model!