opm-simulators/examples/tutorialproblem_coupled.hh

242 lines
9.5 KiB
C++

// $Id$
/*****************************************************************************
* Copyright (C) 2008-2009 by Melanie Darcis, Klaus Mosthaf *
* Copyright (C) 2009 by Andreas Lauser *
* Institute of Hydraulic Engineering *
* University of Stuttgart, Germany *
* email: <givenname>.<name>@iws.uni-stuttgart.de *
* *
* This program is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
*****************************************************************************/
/*!
* \file
*
* \brief Tutorial problem for a fully coupled twophase box model.
*/
#ifndef DUMUX_TUTORIALPROBLEM_COUPLED_HH // guardian macro /*@\label{tutorial-coupled:guardian1}@*/
#define DUMUX_TUTORIALPROBLEM_COUPLED_HH // guardian macro /*@\label{tutorial-coupled:guardian2}@*/
// the numerical model
#include <dumux/boxmodels/2p/2pmodel.hh>
// the DUNE grid used
#include <dune/grid/sgrid.hh>
// spatialy dependent parameters
#include "tutorialspatialparameters_coupled.hh"
namespace Dumux
{
// forward declaration of the problem class
template <class TypeTag>
class TutorialProblemCoupled;
namespace Properties
{
// create a new type tag for the problem
NEW_TYPE_TAG(TutorialProblemCoupled, INHERITS_FROM(BoxTwoP)); /*@\label{tutorial-coupled:create-type-tag}@*/
// Set the "Problem" property
SET_PROP(TutorialProblemCoupled, Problem) /*@\label{tutorial-coupled:set-problem}@*/
{ typedef Dumux::TutorialProblemCoupled<TypeTag> type;};
// Set the grid
SET_PROP(TutorialProblemCoupled, Grid) /*@\label{tutorial-coupled:set-grid}@*/
{
typedef Dune::SGrid<2,2> type;
static type *create() /*@\label{tutorial-coupled:create-grid-method}@*/
{
typedef typename type::ctype ctype;
Dune::FieldVector<int, 2> cellRes; // vector holding resolution of the grid
Dune::FieldVector<ctype, 2> lowerLeft(0.0); // Coordinate of lower left corner of the grid
Dune::FieldVector<ctype, 2> upperRight; // Coordinate of upper right corner of the grid
cellRes[0] = 100;
cellRes[1] = 1;
upperRight[0] = 300;
upperRight[1] = 60;
return new Dune::SGrid<2,2>(cellRes,
lowerLeft,
upperRight);
}
};
// Set the wetting phase
SET_PROP(TutorialProblemCoupled, WettingPhase) /*@\label{tutorial-coupled:2p-system-start}@*/
{
private: typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
public: typedef Dumux::LiquidPhase<Scalar, Dumux::H2O<Scalar> > type; /*@\label{tutorial-coupled:wettingPhase}@*/
};
// Set the non-wetting phase
SET_PROP(TutorialProblemCoupled, NonwettingPhase)
{
private: typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
public: typedef Dumux::LiquidPhase<Scalar, Dumux::Oil<Scalar> > type; /*@\label{tutorial-coupled:nonwettingPhase}@*/
}; /*@\label{tutorial-coupled:2p-system-end}@*/
// Set the spatial parameters
SET_PROP(TutorialProblemCoupled, SpatialParameters) /*@\label{tutorial-coupled:set-spatialparameters}@*/
{ typedef Dumux::TutorialSpatialParametersCoupled<TypeTag> type; };
// Disable gravity
SET_BOOL_PROP(TutorialProblemCoupled, EnableGravity, false); /*@\label{tutorial-coupled:gravity}@*/
}
/*!
* \ingroup TwoPBoxModel
*
* \brief Tutorial problem for a fully coupled twophase box model.
*/
// Definition of the actual problem
template <class TypeTag>
class TutorialProblemCoupled : public TwoPProblem<TypeTag> /*@\label{tutorial-coupled:def-problem}@*/
{
typedef TwoPProblem<TypeTag> ParentType;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(GridView)) GridView;
// Grid dimension
enum { dim = GridView::dimension };
// Types from DUNE-Grid
typedef typename GridView::template Codim<0>::Entity Element;
typedef typename GridView::template Codim<dim>::Entity Vertex;
typedef typename GridView::Intersection Intersection;
typedef Dune::FieldVector<Scalar, dim> GlobalPosition;
// Dumux specific types
typedef typename GET_PROP_TYPE(TypeTag, PTAG(TimeManager)) TimeManager;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(TwoPIndices)) Indices;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(PrimaryVariables)) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(BoundaryTypes)) BoundaryTypes;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(FVElementGeometry)) FVElementGeometry;
public:
TutorialProblemCoupled(TimeManager &timeManager,
const GridView &gridView)
: ParentType(timeManager, gridView)
{
}
// Specifies the problem name. This is used as a prefix for files
// generated by the simulation.
const char *name() const
{ return "tutorial_coupled"; }
//! Returns true if a restart file should be written.
/* The default behaviour is to write no restart file.
*/
bool shouldWriteRestartFile() const /*@\label{tutorial-coupled:restart}@*/
{
return false;
}
//! Returns true if the current solution should be written to disk (i.e. as a VTK file)
/*! The default behaviour is to write out the solution for
* every time step. Else, the user has to change the divisor in this function.
*/
bool shouldWriteOutput() const /*@\label{tutorial-coupled:output}@*/
{
return this->timeManager().timeStepIndex() > 0 &&
(this->timeManager().timeStepIndex() % 1 == 0);
}
// Return the temperature within a finite volume. We use constant
// 10 degrees Celsius.
Scalar temperature(const Element &element,
const FVElementGeometry &fvElemGeom,
int scvIdx) const
{ return 283.15; };
// Specifies which kind of boundary condition should be used for
// which equation for a finite volume on the boundary.
void boundaryTypes(BoundaryTypes &BCtypes, const Vertex &vertex) const
{
const GlobalPosition &pos = vertex.geometry().center();
if (pos[0] < eps_) // Dirichlet conditions on left boundary
BCtypes.setAllDirichlet();
else // neuman for the remaining boundaries
BCtypes.setAllNeumann();
}
// Evaluate the Dirichlet boundary conditions for a finite volume
// on the grid boundary. Here, the 'values' parameter stores
// primary variables.
void dirichlet(PrimaryVariables &values, const Vertex &vertex) const
{
values[Indices::pwIdx] = 200.0e3; // 200 kPa = 2 bar
values[Indices::SnIdx] = 0.0; // 0 % oil saturation on left boundary
}
// Evaluate the boundary conditions for a Neumann boundary
// segment. Here, the 'values' parameter stores the mass flux in
// normal direction of each phase. Negative values mean influx.
void neumann(PrimaryVariables &values,
const Element &element,
const FVElementGeometry &fvElemGeom,
const Intersection &isIt,
int scvIdx,
int boundaryFaceIdx) const
{
const GlobalPosition &pos =
fvElemGeom.boundaryFace[boundaryFaceIdx].ipGlobal;
Scalar right = this->bboxMax()[0];
// extraction of oil on the right boundary for approx. 1.e6 seconds
if (pos[0] > right - eps_) {
// oil outflux of 30 g/(m * s) on the right boundary.
values[Indices::contiWEqIdx] = 0;
values[Indices::contiNEqIdx] = 3e-2;
} else {
// no-flow on the remaining Neumann-boundaries.
values[Indices::contiWEqIdx] = 0;
values[Indices::contiNEqIdx] = 0;
}
}
// Evaluate the initial value for a control volume. For this
// method, the 'values' parameter stores primary variables.
void initial(PrimaryVariables &values,
const Element &element,
const FVElementGeometry &fvElemGeom,
int scvIdx) const
{
values[Indices::pwIdx] = 200.0e3; // 200 kPa = 2 bar
values[Indices::SnIdx] = 1.0;
}
// Evaluate the source term for all phases within a given
// sub-control-volume. In this case, the 'values' parameter stores
// the rate mass generated or annihilate per volume unit. Positive
// values mean that mass is created.
void source(PrimaryVariables &values,
const Element &element,
const FVElementGeometry &fvElemGeom,
int scvIdx) const
{
values[Indices::contiWEqIdx] = 0.0;
values[Indices::contiNEqIdx]= 0.0;
}
private:
// small epsilon value
static const Scalar eps_ = 3e-6;
};
}
#endif