opm-simulators/opm/autodiff/StandardWellsDense.hpp
Andreas Lauser 6bc8080722 Merge remote-tracking branch 'totto82/frankenstein_mod' into frankenstein_merge_master
* totto82/frankenstein_mod:
  Avoid copying of matrices inside StandardWellsDense.
2016-09-15 11:48:24 +02:00

1708 lines
81 KiB
C++

/*
Copyright 2016 SINTEF ICT, Applied Mathematics.
Copyright 2016 Statoil ASA.
Copyright 2016 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_STANDARDWELLSDENSE_HEADER_INCLUDED
#define OPM_STANDARDWELLSDENSE_HEADER_INCLUDED
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/common/utility/platform_dependent/disable_warnings.h>
#include <Eigen/Eigen>
#include <Eigen/Sparse>
#include <opm/common/utility/platform_dependent/reenable_warnings.h>
#include <cassert>
#include <tuple>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <opm/core/wells.h>
#include <opm/core/wells/DynamicListEconLimited.hpp>
#include <opm/autodiff/AutoDiffBlock.hpp>
#include <opm/autodiff/AutoDiffHelpers.hpp>
#include <opm/autodiff/VFPProperties.hpp>
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
#include <opm/autodiff/VFPInjProperties.hpp>
#include <opm/autodiff/VFPProdProperties.hpp>
#include <opm/autodiff/WellHelpers.hpp>
#include <opm/autodiff/BlackoilModelEnums.hpp>
#include <opm/autodiff/WellDensitySegmented.hpp>
#include <opm/autodiff/BlackoilDetails.hpp>
#include <opm/autodiff/BlackoilModelParameters.hpp>
#include <opm/autodiff/LinearisedBlackoilResidual.hpp>
#include<dune/common/fmatrix.hh>
#include<dune/istl/bcrsmatrix.hh>
#include<dune/istl/matrixmatrix.hh>
#include <opm/material/densead/Math.hpp>
#include <opm/material/densead/Evaluation.hpp>
namespace Opm {
/// Class for handling the standard well model.
template<typename FluidSystem, typename BlackoilIndices>
class StandardWellsDense {
public:
// --------- Types ---------
using ADB = AutoDiffBlock<double>;
typedef DenseAd::Evaluation<double, /*size=*/6> EvalWell;
typedef WellStateFullyImplicitBlackoil WellState;
typedef BlackoilModelParameters ModelParameters;
//typedef AutoDiffBlock<double> ADB;
using Vector = ADB::V;
using V = ADB::V;
typedef ADB::M M;
typedef double Scalar;
typedef Dune::FieldVector<Scalar, 3 > VectorBlockType;
typedef Dune::FieldMatrix<Scalar, 3, 3 > MatrixBlockType;
typedef Dune::BCRSMatrix <MatrixBlockType> Mat;
typedef Dune::BlockVector<VectorBlockType> BVector;
// copied from BlackoilModelBase
// should put to somewhere better
using DataBlock = Eigen::Array<double,
Eigen::Dynamic,
Eigen::Dynamic,
Eigen::RowMajor>;
// --------- Public methods ---------
StandardWellsDense(const Wells* wells_arg,
const ModelParameters& param,
const bool terminal_output,
const std::vector<double>& pv)
: wells_active_(wells_arg!=nullptr)
, wells_(wells_arg)
, param_(param)
, terminal_output_(terminal_output)
, fluid_(nullptr)
, active_(nullptr)
, vfp_properties_(nullptr)
, well_perforation_densities_(wells_arg->well_connpos[wells_arg->number_of_wells])
, well_perforation_pressure_diffs_(wells_arg->well_connpos[wells_arg->number_of_wells])
, wellVariables_(wells_arg->number_of_wells * wells_arg->number_of_phases)
, F0_(wells_arg->number_of_wells * wells_arg->number_of_phases)
{
invDuneD_.setBuildMode( Mat::row_wise );
duneC_.setBuildMode( Mat::row_wise );
duneB_.setBuildMode( Mat::row_wise );
}
void init(const BlackoilPropsAdInterface* fluid_arg,
const std::vector<bool>* active_arg,
const VFPProperties* vfp_properties_arg,
const double gravity_arg,
const std::vector<double>& depth_arg,
const std::vector<double>& pv_arg)
{
if ( ! localWellsActive() ) {
return;
}
fluid_ = fluid_arg;
active_ = active_arg;
vfp_properties_ = vfp_properties_arg;
gravity_ = gravity_arg;
cell_depths_ = extractPerfData(depth_arg);
pv_ = pv_arg;
// setup sparsity pattern for the matrices
//[A B^T [x = [ res
// C D] x_well] res_well]
const int nw = wells().number_of_wells;
const int nperf = wells().well_connpos[nw];
const int nc = numCells();
// set invDuneD
invDuneD_.setSize( nw, nw, nw );
// set duneC
duneC_.setSize( nw, nc, nperf );
// set duneB
duneB_.setSize( nw, nc, nperf );
for(auto row=invDuneD_.createbegin(), end = invDuneD_.createend(); row!=end; ++row) {
// Add nonzeros for diagonal
row.insert(row.index());
}
for(auto row = duneC_.createbegin(), end = duneC_.createend(); row!=end; ++row) {
// Add nonzeros for diagonal
for (int perf = wells().well_connpos[row.index()] ; perf < wells().well_connpos[row.index()+1]; ++perf) {
const int cell_idx = wells().well_cells[perf];
row.insert(cell_idx);
}
}
// make the B^T matrix
for(auto row = duneB_.createbegin(), end = duneB_.createend(); row!=end; ++row) {
for (int perf = wells().well_connpos[row.index()] ; perf < wells().well_connpos[row.index()+1]; ++perf) {
const int cell_idx = wells().well_cells[perf];
row.insert(cell_idx);
}
}
resWell_.resize( nw );
}
template <typename Simulator>
IterationReport assemble(Simulator& ebosSimulator,
const int iterationIdx,
const double dt,
WellState& well_state) {
IterationReport iter_report = {false, false, 0, 0};
if ( ! localWellsActive() ) {
return iter_report;
}
resetWellControlFromState(well_state);
updateWellControls(well_state);
// Set the primary variables for the wells
setWellVariables(well_state);
if (iterationIdx == 0) {
computeWellConnectionPressures(ebosSimulator, well_state);
computeAccumWells();
}
if (param_.solve_welleq_initially_ && iterationIdx == 0) {
// solve the well equations as a pre-processing step
iter_report = solveWellEq(ebosSimulator, dt, well_state);
}
assembleWellEq(ebosSimulator, dt, well_state, false);
if (param_.compute_well_potentials_) {
//wellModel().computeWellPotentials(mob_perfcells, b_perfcells, state0, well_state);
}
return iter_report;
}
template <typename Simulator>
void assembleWellEq(Simulator& ebosSimulator,
const double dt,
WellState& well_state,
bool only_wells) {
const int np = wells().number_of_phases;
const int nw = wells().number_of_wells;
// clear all entries
duneB_ = 0.0;
duneC_ = 0.0;
invDuneD_ = 0.0;
resWell_ = 0.0;
auto& ebosJac = ebosSimulator.model().linearizer().matrix();
auto& ebosResid = ebosSimulator.model().linearizer().residual();
const double volume = 0.002831684659200; // 0.1 cu ft;
for (int w = 0; w < nw; ++w) {
for (int perf = wells().well_connpos[w] ; perf < wells().well_connpos[w+1]; ++perf) {
const int cell_idx = wells().well_cells[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
std::vector<EvalWell> cq_s(np,0.0);
computeWellFlux(w, wells().WI[perf], intQuants, wellPerforationPressureDiffs()[perf], cq_s);
for (int p1 = 0; p1 < np; ++p1) {
if (!only_wells) {
// subtract sum of phase fluxes in the reservoir equation.
ebosResid[cell_idx][flowPhaseToEbosCompIdx(p1)] -= cq_s[p1].value;
}
// subtract sum of phase fluxes in the well equations.
resWell_[w][flowPhaseToEbosCompIdx(p1)] -= cq_s[p1].value;
// assemble the jacobians
for (int p2 = 0; p2 < np; ++p2) {
if (!only_wells) {
ebosJac[cell_idx][cell_idx][flowPhaseToEbosCompIdx(p1)][flowToEbosPvIdx(p2)] -= cq_s[p1].derivatives[p2];
duneB_[w][cell_idx][flowToEbosPvIdx(p2)][flowPhaseToEbosCompIdx(p1)] -= cq_s[p1].derivatives[p2+3]; // intput in transformed matrix
duneC_[w][cell_idx][flowPhaseToEbosCompIdx(p1)][flowToEbosPvIdx(p2)] -= cq_s[p1].derivatives[p2];
}
invDuneD_[w][w][flowPhaseToEbosCompIdx(p1)][flowToEbosPvIdx(p2)] -= cq_s[p1].derivatives[p2+3];
}
// Store the perforation phase flux for later usage.
well_state.perfPhaseRates()[perf*np + p1] = cq_s[p1].value;
}
// Store the perforation pressure for later usage.
well_state.perfPress()[perf] = well_state.bhp()[w] + wellPerforationPressureDiffs()[perf];
}
// add vol * dF/dt + Q to the well equations;
for (int p1 = 0; p1 < np; ++p1) {
EvalWell resWell_loc = (wellVolumeFraction(w, p1) - F0_[w + nw*p1]) * volume / dt;
resWell_loc += getQs(w, p1);
for (int p2 = 0; p2 < np; ++p2) {
invDuneD_[w][w][flowPhaseToEbosCompIdx(p1)][flowToEbosPvIdx(p2)] += resWell_loc.derivatives[p2+3];
}
resWell_[w][flowPhaseToEbosCompIdx(p1)] += resWell_loc.value;
}
}
// do the local inversion of D.
localInvert( invDuneD_ );
}
void localInvert(Mat& istlA) const {
for (auto row = istlA.begin(), rowend = istlA.end(); row != rowend; ++row ) {
for (auto col = row->begin(), colend = row->end(); col != colend; ++col ) {
//std::cout << (*col) << std::endl;
(*col).invert();
}
}
}
void print(Mat& istlA) const {
for (auto row = istlA.begin(), rowend = istlA.end(); row != rowend; ++row ) {
for (auto col = row->begin(), colend = row->end(); col != colend; ++col ) {
std::cout << row.index() << " " << col.index() << "/n \n"<<(*col) << std::endl;
}
}
}
// substract Binv(D)rw from r;
void apply( BVector& r) const {
if ( ! localWellsActive() ) {
return;
}
BVector invDrw(invDuneD_.N());
invDuneD_.mv(resWell_,invDrw);
duneB_.mmtv(invDrw, r);
}
// subtract B*inv(D)*C * x from A*x
void apply(const BVector& x, BVector& Ax) {
if ( ! localWellsActive() ) {
return;
}
BVector Cx(duneC_.N());
duneC_.mv(x, Cx);
BVector invDCx(invDuneD_.N());
invDuneD_.mv(Cx, invDCx);
duneB_.mmtv(invDCx,Ax);
}
// xw = inv(D)*(rw - C*x)
void recoverVariable(const BVector& x, BVector& xw) const {
if ( ! localWellsActive() ) {
return;
}
BVector resWell = resWell_;
duneC_.mmv(x, resWell);
invDuneD_.mv(resWell, xw);
}
int flowPhaseToEbosCompIdx( const int phaseIdx ) const
{
const int phaseToComp[ 3 ] = { FluidSystem::waterCompIdx, FluidSystem::oilCompIdx, FluidSystem::gasCompIdx };
return phaseToComp[ phaseIdx ];
}
int flowToEbosPvIdx( const int flowPv ) const
{
const int flowToEbos[ 3 ] = {
BlackoilIndices::pressureSwitchIdx,
BlackoilIndices::waterSaturationIdx,
BlackoilIndices::compositionSwitchIdx
};
return flowToEbos[ flowPv ];
}
int ebosCompToFlowPhaseIdx( const int compIdx ) const
{
const int compToPhase[ 3 ] = { Oil, Water, Gas };
return compToPhase[ compIdx ];
}
std::vector<double>
extractPerfData(const std::vector<double>& in) const {
const int nw = wells().number_of_wells;
const int nperf = wells().well_connpos[nw];
std::vector<double> out(nperf);
for (int w = 0; w < nw; ++w) {
for (int perf = wells().well_connpos[w] ; perf < wells().well_connpos[w+1]; ++perf) {
const int well_idx = wells().well_cells[perf];
out[perf] = in[well_idx];
}
}
return out;
}
int numPhases() const { return wells().number_of_phases; }
int numCells() const { return pv_.size();}
template<class WellState>
void resetWellControlFromState(WellState xw) {
const int nw = wells_->number_of_wells;
for (int w = 0; w < nw; ++w) {
WellControls* wc = wells_->ctrls[w];
well_controls_set_current( wc, xw.currentControls()[w]);
}
}
const Wells& wells() const
{
assert(wells_ != 0);
return *(wells_);
}
const Wells* wellsPointer() const
{
return wells_;
}
/// return true if wells are available in the reservoir
bool wellsActive() const
{
return wells_active_;
}
void setWellsActive(const bool wells_active)
{
wells_active_ = wells_active;
}
/// return true if wells are available on this process
bool localWellsActive() const
{
return wells_ ? (wells_->number_of_wells > 0 ) : false;
}
int numWellVars() const
{
if ( !localWellsActive() )
{
return 0;
}
// For each well, we have a bhp variable, and one flux per phase.
const int nw = wells().number_of_wells;
return (numPhases() + 1) * nw;
}
/// Density of each well perforation
std::vector<double> wellPerforationDensities() const {
return well_perforation_densities_;
}
/// Diff to bhp for each well perforation.
std::vector<double> wellPerforationPressureDiffs() const
{
return well_perforation_pressure_diffs_;
}
typedef DenseAd::Evaluation<double, /*size=*/3> Eval;
EvalWell extendEval(Eval in) const {
EvalWell out = 0.0;
out.value = in.value;
for(int i = 0;i<3;++i) {
out.derivatives[i] = in.derivatives[flowToEbosPvIdx(i)];
}
return out;
}
void
setWellVariables(const WellState& xw) {
const int np = wells().number_of_phases;
const int nw = wells().number_of_wells;
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
for (int w = 0; w < nw; ++w) {
wellVariables_[w + nw*phaseIdx] = 0.0;
wellVariables_[w + nw*phaseIdx].value = xw.wellSolutions()[w + nw* phaseIdx];
wellVariables_[w + nw*phaseIdx].derivatives[np + phaseIdx] = 1.0;
}
}
}
void print(EvalWell in) const {
std::cout << in.value << std::endl;
for (int i = 0; i < in.derivatives.size(); ++i) {
std::cout << in.derivatives[i] << std::endl;
}
}
void
computeAccumWells() {
const int np = wells().number_of_phases;
const int nw = wells().number_of_wells;
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
for (int w = 0; w < nw; ++w) {
F0_[w + nw * phaseIdx] = wellVolumeFraction(w,phaseIdx).value;
}
}
}
template<typename intensiveQuants>
void
computeWellFlux(const int& w, const double& Tw, const intensiveQuants& intQuants, const double& cdp, std::vector<EvalWell>& cq_s) const
{
const Opm::PhaseUsage& pu = fluid_->phaseUsage();
EvalWell bhp = getBhp(w);
const int np = wells().number_of_phases;
std::vector<EvalWell> cmix_s(np,0.0);
for (int phase = 0; phase < np; ++phase) {
//int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phase);
cmix_s[phase] = wellVolumeFraction(w,phase);
}
const auto& fs = intQuants.fluidState();
EvalWell pressure = extendEval(fs.pressure(FluidSystem::oilPhaseIdx));
EvalWell rs = extendEval(fs.Rs());
EvalWell rv = extendEval(fs.Rv());
std::vector<EvalWell> b_perfcells_dense(np, 0.0);
std::vector<EvalWell> mob_perfcells_dense(np, 0.0);
for (int phase = 0; phase < np; ++phase) {
int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phase);
b_perfcells_dense[phase] = extendEval(fs.invB(ebosPhaseIdx));
mob_perfcells_dense[phase] = extendEval(intQuants.mobility(ebosPhaseIdx));
}
// Pressure drawdown (also used to determine direction of flow)
EvalWell well_pressure = bhp + cdp;
EvalWell drawdown = pressure - well_pressure;
// injection perforations
if ( drawdown.value > 0 ) {
//Do nothing if crossflow is not allowed
if (!wells().allow_cf[w] && wells().type[w] == INJECTOR)
return;
// compute phase volumetric rates at standard conditions
std::vector<EvalWell> cq_ps(np, 0.0);
for (int phase = 0; phase < np; ++phase) {
const EvalWell cq_p = - Tw * (mob_perfcells_dense[phase] * drawdown);
cq_ps[phase] = b_perfcells_dense[phase] * cq_p;
}
if ((*active_)[Oil] && (*active_)[Gas]) {
const int oilpos = pu.phase_pos[Oil];
const int gaspos = pu.phase_pos[Gas];
const EvalWell cq_psOil = cq_ps[oilpos];
const EvalWell cq_psGas = cq_ps[gaspos];
cq_ps[gaspos] += rs * cq_psOil;
cq_ps[oilpos] += rv * cq_psGas;
}
// map to ADB
for (int phase = 0; phase < np; ++phase) {
cq_s[phase] = cq_ps[phase];
}
} else {
//Do nothing if crossflow is not allowed
if (!wells().allow_cf[w] && wells().type[w] == PRODUCER)
return;
// Using total mobilities
EvalWell total_mob_dense = mob_perfcells_dense[0];
for (int phase = 1; phase < np; ++phase) {
total_mob_dense += mob_perfcells_dense[phase];
}
// injection perforations total volume rates
const EvalWell cqt_i = - Tw * (total_mob_dense * drawdown);
// compute volume ratio between connection at standard conditions
EvalWell volumeRatio = 0.0;
if ((*active_)[Water]) {
const int watpos = pu.phase_pos[Water];
volumeRatio += cmix_s[watpos] / b_perfcells_dense[watpos];
}
if ((*active_)[Oil] && (*active_)[Gas]) {
EvalWell well_temperature = extendEval(fs.temperature(FluidSystem::oilPhaseIdx));
EvalWell rsSatEval = FluidSystem::oilPvt().saturatedGasDissolutionFactor(fs.pvtRegionIndex(), well_temperature, well_pressure);
EvalWell rvSatEval = FluidSystem::gasPvt().saturatedOilVaporizationFactor(fs.pvtRegionIndex(), well_temperature, well_pressure);
const int oilpos = pu.phase_pos[Oil];
const int gaspos = pu.phase_pos[Gas];
EvalWell rvPerf = 0.0;
if (cmix_s[gaspos] > 0)
rvPerf = cmix_s[oilpos] / cmix_s[gaspos];
if (rvPerf.value > rvSatEval.value) {
rvPerf = rvSatEval;
//rvPerf.value = rvSatEval.value;
}
EvalWell rsPerf = 0.0;
if (cmix_s[oilpos] > 0)
rsPerf = cmix_s[gaspos] / cmix_s[oilpos];
if (rsPerf.value > rsSatEval.value) {
//rsPerf = 0.0;
rsPerf= rsSatEval;
}
// Incorporate RS/RV factors if both oil and gas active
const EvalWell d = 1.0 - rvPerf * rsPerf;
const EvalWell tmp_oil = (cmix_s[oilpos] - rvPerf * cmix_s[gaspos]) / d;
//std::cout << "tmp_oil " <<tmp_oil << std::endl;
volumeRatio += tmp_oil / b_perfcells_dense[oilpos];
const EvalWell tmp_gas = (cmix_s[gaspos] - rsPerf * cmix_s[oilpos]) / d;
//std::cout << "tmp_gas " <<tmp_gas << std::endl;
volumeRatio += tmp_gas / b_perfcells_dense[gaspos];
}
else {
if ((*active_)[Oil]) {
const int oilpos = pu.phase_pos[Oil];
volumeRatio += cmix_s[oilpos] / b_perfcells_dense[oilpos];
}
if ((*active_)[Gas]) {
const int gaspos = pu.phase_pos[Gas];
volumeRatio += cmix_s[gaspos] / b_perfcells_dense[gaspos];
}
}
// injecting connections total volumerates at standard conditions
EvalWell cqt_is = cqt_i/volumeRatio;
//std::cout << "volrat " << volumeRatio << " " << volrat_perf_[perf] << std::endl;
for (int phase = 0; phase < np; ++phase) {
cq_s[phase] = cmix_s[phase] * cqt_is; // * b_perfcells_dense[phase];
}
}
}
template <typename Simulator>
IterationReport solveWellEq(Simulator& ebosSimulator,
const double dt,
WellState& well_state)
{
const int nw = wells().number_of_wells;
WellState well_state0 = well_state;
int it = 0;
bool converged;
do {
assembleWellEq(ebosSimulator, dt, well_state, true);
converged = getWellConvergence(ebosSimulator, it);
if (converged) {
break;
}
++it;
if( localWellsActive() )
{
BVector dx_well (nw);
invDuneD_.mv(resWell_, dx_well);
updateWellState(dx_well, well_state);
updateWellControls(well_state);
setWellVariables(well_state);
}
} while (it < 15);
if (!converged) {
well_state = well_state0;
}
const bool failed = false; // Not needed in this method.
const int linear_iters = 0; // Not needed in this method
return IterationReport{failed, converged, linear_iters, it};
}
void printIf(int c, double x, double y, double eps, std::string type) {
if (std::abs(x-y) > eps) {
std::cout << type << " " << c << ": "<<x << " " << y << std::endl;
}
}
std::vector<double> residual() {
const int np = numPhases();
const int nw = wells().number_of_wells;
std::vector<double> res(np*nw);
for( int p=0; p<np; ++p) {
for (int i = 0; i < nw; ++i) {
int idx = i + nw*p;
res[idx] = resWell_[i][flowPhaseToEbosCompIdx(p)];
}
}
return res;
}
template <typename Simulator>
bool getWellConvergence(Simulator& ebosSimulator,
const int iteration)
{
const int np = numPhases();
const int nc = numCells();
const double tol_wells = param_.tolerance_wells_;
const double maxResidualAllowed = param_.max_residual_allowed_;
std::vector<double> R_sum(np);
std::vector<double> B_avg(np);
std::vector<double> maxCoeff(np);
std::vector<double> maxNormWell(np);
Eigen::Array<V::Scalar, Eigen::Dynamic, Eigen::Dynamic> B(nc, np);
Eigen::Array<V::Scalar, Eigen::Dynamic, Eigen::Dynamic> R(nc, np);
Eigen::Array<V::Scalar, Eigen::Dynamic, Eigen::Dynamic> tempV(nc, np);
for ( int idx = 0; idx < np; ++idx )
{
V b(nc);
for (int cell_idx = 0; cell_idx < nc; ++cell_idx) {
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& fs = intQuants.fluidState();
int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(idx);
b[cell_idx] = 1 / fs.invB(ebosPhaseIdx).value;
}
B.col(idx) = b;
}
detail::convergenceReduction(B, tempV, R, R_sum, maxCoeff, B_avg, maxNormWell, nc, np, pv_, residual());
std::vector<double> well_flux_residual(np);
bool converged_Well = true;
// Finish computation
for ( int idx = 0; idx < np; ++idx )
{
well_flux_residual[idx] = B_avg[idx] * maxNormWell[idx];
converged_Well = converged_Well && (well_flux_residual[idx] < tol_wells);
}
// if one of the residuals is NaN, throw exception, so that the solver can be restarted
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
const auto& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx));
if (std::isnan(well_flux_residual[phaseIdx])) {
OPM_THROW(Opm::NumericalProblem, "NaN residual for phase " << phaseName);
}
if (well_flux_residual[phaseIdx] > maxResidualAllowed) {
OPM_THROW(Opm::NumericalProblem, "Too large residual for phase " << phaseName);
}
}
if ( terminal_output_ )
{
// Only rank 0 does print to std::cout
if (iteration == 0) {
std::string msg;
msg = "Iter";
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
const std::string& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx));
msg += " W-FLUX(" + phaseName + ")";
}
OpmLog::note(msg);
}
std::ostringstream ss;
const std::streamsize oprec = ss.precision(3);
const std::ios::fmtflags oflags = ss.setf(std::ios::scientific);
ss << std::setw(4) << iteration;
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
ss << std::setw(11) << well_flux_residual[phaseIdx];
}
ss.precision(oprec);
ss.flags(oflags);
OpmLog::note(ss.str());
}
return converged_Well;
}
template<typename Simulator>
void
computeWellConnectionPressures(const Simulator& ebosSimulator,
const WellState& xw)
{
if( ! localWellsActive() ) return ;
// 1. Compute properties required by computeConnectionPressureDelta().
// Note that some of the complexity of this part is due to the function
// taking std::vector<double> arguments, and not Eigen objects.
std::vector<double> b_perf;
std::vector<double> rsmax_perf;
std::vector<double> rvmax_perf;
std::vector<double> surf_dens_perf;
computePropertiesForWellConnectionPressures(ebosSimulator, xw, b_perf, rsmax_perf, rvmax_perf, surf_dens_perf);
computeWellConnectionDensitesPressures(xw, b_perf, rsmax_perf, rvmax_perf, surf_dens_perf, cell_depths_, gravity_);
}
template<typename Simulator, class WellState>
void
computePropertiesForWellConnectionPressures(const Simulator& ebosSimulator,
const WellState& xw,
std::vector<double>& b_perf,
std::vector<double>& rsmax_perf,
std::vector<double>& rvmax_perf,
std::vector<double>& surf_dens_perf)
{
const int nperf = wells().well_connpos[wells().number_of_wells];
const int nw = wells().number_of_wells;
const PhaseUsage& pu = fluid_->phaseUsage();
const int np = fluid_->numPhases();
b_perf.resize(nperf*np);
rsmax_perf.resize(nperf);
rvmax_perf.resize(nperf);
surf_dens_perf.resize(nperf*np);
// Compute the average pressure in each well block
for (int w = 0; w < nw; ++w) {
for (int perf = wells().well_connpos[w]; perf < wells().well_connpos[w+1]; ++perf) {
const int cell_idx = wells().well_cells[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& fs = intQuants.fluidState();
const double p_above = perf == wells().well_connpos[w] ? xw.bhp()[w] : xw.perfPress()[perf - 1];
const double p_avg = (xw.perfPress()[perf] + p_above)/2;
double temperature = fs.temperature(FluidSystem::oilPhaseIdx).value;
if (pu.phase_used[BlackoilPhases::Aqua]) {
b_perf[ pu.phase_pos[BlackoilPhases::Aqua] + perf * pu.num_phases] =
FluidSystem::waterPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
if (pu.phase_used[BlackoilPhases::Vapour]) {
int gaspos = pu.phase_pos[BlackoilPhases::Vapour] + perf * pu.num_phases;
if (pu.phase_used[BlackoilPhases::Liquid]) {
int oilpos = pu.phase_pos[BlackoilPhases::Liquid] + perf * pu.num_phases;
const double oilrate = std::abs(xw.wellRates()[oilpos]); //in order to handle negative rates in producers
rvmax_perf[perf] = FluidSystem::gasPvt().saturatedOilVaporizationFactor(fs.pvtRegionIndex(), temperature, p_avg);
if (oilrate > 0) {
const double gasrate = std::abs(xw.wellRates()[gaspos]);
double rv = 0.0;
if (gasrate > 0) {
rv = oilrate / gasrate;
}
rv = std::min(rv, rvmax_perf[perf]);
b_perf[gaspos] = FluidSystem::gasPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg, rv);
}
else {
b_perf[gaspos] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
} else {
b_perf[gaspos] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
}
if (pu.phase_used[BlackoilPhases::Liquid]) {
int oilpos = pu.phase_pos[BlackoilPhases::Liquid] + perf * pu.num_phases;
if (pu.phase_used[BlackoilPhases::Vapour]) {
rsmax_perf[perf] = FluidSystem::oilPvt().saturatedGasDissolutionFactor(fs.pvtRegionIndex(), temperature, p_avg);
int gaspos = pu.phase_pos[BlackoilPhases::Vapour] + perf * pu.num_phases;
const double gasrate = std::abs(xw.wellRates()[gaspos]);
if (gasrate > 0) {
const double oilrate = std::abs(xw.wellRates()[oilpos]);
double rs = 0.0;
if (oilrate > 0) {
rs = gasrate / oilrate;
}
rs = std::min(rs, rsmax_perf[perf]);
b_perf[oilpos] = FluidSystem::oilPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg, rs);
} else {
b_perf[oilpos] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
} else {
b_perf[oilpos] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
}
// Surface density.
for (int p = 0; p < pu.num_phases; ++p) {
surf_dens_perf[np*perf + p] = FluidSystem::referenceDensity( flowPhaseToEbosPhaseIdx( p ), fs.pvtRegionIndex());
}
}
}
}
template <class WellState>
void updateWellState(const BVector& dwells,
WellState& well_state)
{
if( localWellsActive() )
{
const int np = wells().number_of_phases;
const int nw = wells().number_of_wells;
double dFLimit = 0.2;
double dBHPLimit = 2.0;
std::vector<double> xvar_well_old = well_state.wellSolutions();
for (int w = 0; w < nw; ++w) {
// update the second and third well variable (The flux fractions)
std::vector<double> F(np,0.0);
const int sign2 = dwells[w][flowPhaseToEbosCompIdx(1)] > 0 ? 1: -1;
const double dx2_limited = sign2 * std::min(std::abs(dwells[w][flowPhaseToEbosCompIdx(1)]),dFLimit);
well_state.wellSolutions()[nw + w] = xvar_well_old[nw + w] - dx2_limited;
const int sign3 = dwells[w][flowPhaseToEbosCompIdx(2)] > 0 ? 1: -1;
const double dx3_limited = sign3 * std::min(std::abs(dwells[w][flowPhaseToEbosCompIdx(2)]),dFLimit);
well_state.wellSolutions()[2*nw + w] = xvar_well_old[2*nw + w] - dx3_limited;
F[Water] = well_state.wellSolutions()[nw + w];
F[Gas] = well_state.wellSolutions()[2*nw + w];
F[Oil] = 1.0 - F[Water] - F[Gas];
if (F[Water] < 0.0) {
F[Gas] /= (1.0 - F[Water]);
F[Oil] /= (1.0 - F[Water]);
F[Water] = 0.0;
}
if (F[Gas] < 0.0) {
F[Water] /= (1.0 - F[Gas]);
F[Oil] /= (1.0 - F[Gas]);
F[Gas] = 0.0;
}
if (F[Oil] < 0.0) {
F[Water] /= (1.0 - F[Oil]);
F[Gas] /= (1.0 - F[Oil]);
F[Oil] = 0.0;
}
well_state.wellSolutions()[nw + w] = F[Water];
well_state.wellSolutions()[2*nw + w] = F[Gas];
//std::cout << wells().name[w] << " "<< F[Water] << " " << F[Oil] << " " << F[Gas] << std::endl;
// The interpretation of the first well variable depends on the well control
const WellControls* wc = wells().ctrls[w];
// The current control in the well state overrides
// the current control set in the Wells struct, which
// is instead treated as a default.
const int current = well_state.currentControls()[w];
const double target_rate = well_controls_iget_target(wc, current);
std::vector<double> g = {1,1,0.01};
if (well_controls_iget_type(wc, current) == RESERVOIR_RATE) {
const double* distr = well_controls_iget_distr(wc, current);
for (int p = 0; p < np; ++p) {
F[p] /= distr[p];
}
} else {
for (int p = 0; p < np; ++p) {
F[p] /= g[p];
}
}
switch (well_controls_iget_type(wc, current)) {
case THP: // The BHP and THP both uses the total rate as first well variable.
case BHP:
{
well_state.wellSolutions()[w] = xvar_well_old[w] - dwells[w][flowPhaseToEbosCompIdx(0)];
switch (wells().type[w]) {
case INJECTOR:
for (int p = 0; p < np; ++p) {
const double comp_frac = wells().comp_frac[np*w + p];
well_state.wellRates()[w*np + p] = comp_frac * well_state.wellSolutions()[w];
}
break;
case PRODUCER:
for (int p = 0; p < np; ++p) {
well_state.wellRates()[w*np + p] = well_state.wellSolutions()[w] * F[p];
}
break;
}
if (well_controls_iget_type(wc, current) == THP) {
// Calculate bhp from thp control and well rates
double aqua = 0.0;
double liquid = 0.0;
double vapour = 0.0;
const Opm::PhaseUsage& pu = fluid_->phaseUsage();
if ((*active_)[ Water ]) {
aqua = well_state.wellRates()[w*np + pu.phase_pos[ Water ] ];
}
if ((*active_)[ Oil ]) {
liquid = well_state.wellRates()[w*np + pu.phase_pos[ Oil ] ];
}
if ((*active_)[ Gas ]) {
vapour = well_state.wellRates()[w*np + pu.phase_pos[ Gas ] ];
}
const int vfp = well_controls_iget_vfp(wc, current);
const double& thp = well_controls_iget_target(wc, current);
const double& alq = well_controls_iget_alq(wc, current);
//Set *BHP* target by calculating bhp from THP
const WellType& well_type = wells().type[w];
// pick the density in the top layer
const int perf = wells().well_connpos[w];
const double rho = well_perforation_densities_[perf];
if (well_type == INJECTOR) {
double dp = wellhelpers::computeHydrostaticCorrection(
wells(), w, vfp_properties_->getInj()->getTable(vfp)->getDatumDepth(),
rho, gravity_);
well_state.bhp()[w] = vfp_properties_->getInj()->bhp(vfp, aqua, liquid, vapour, thp) - dp;
}
else if (well_type == PRODUCER) {
double dp = wellhelpers::computeHydrostaticCorrection(
wells(), w, vfp_properties_->getProd()->getTable(vfp)->getDatumDepth(),
rho, gravity_);
well_state.bhp()[w] = vfp_properties_->getProd()->bhp(vfp, aqua, liquid, vapour, thp, alq) - dp;
}
else {
OPM_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well");
}
}
}
break;
case SURFACE_RATE: // Both rate controls use bhp as first well variable
case RESERVOIR_RATE:
{
const int sign1 = dwells[w][flowPhaseToEbosCompIdx(0)] > 0 ? 1: -1;
const double dx1_limited = sign1 * std::min(std::abs(dwells[w][flowPhaseToEbosCompIdx(0)]),std::abs(xvar_well_old[w])*dBHPLimit);
well_state.wellSolutions()[w] = xvar_well_old[w] - dx1_limited;
well_state.bhp()[w] = well_state.wellSolutions()[w];
if (well_controls_iget_type(wc, current) == SURFACE_RATE) {
if (wells().type[w]==PRODUCER) {
double F_target = 0.0;
for (int p = 0; p < np; ++p) {
F_target += wells().comp_frac[np*w + p] * F[p];
}
for (int p = 0; p < np; ++p) {
well_state.wellRates()[np*w + p] = F[p] * target_rate /F_target;
}
} else {
for (int p = 0; p < np; ++p) {
well_state.wellRates()[w*np + p] = wells().comp_frac[np*w + p] * target_rate;
}
}
} else { // RESERVOIR_RATE
for (int p = 0; p < np; ++p) {
well_state.wellRates()[np*w + p] = F[p] * target_rate;
}
}
}
break;
}
}
}
}
template <class WellState>
void updateWellControls(WellState& xw)
{
if( !localWellsActive() ) return ;
std::string modestring[4] = { "BHP", "THP", "RESERVOIR_RATE", "SURFACE_RATE" };
// Find, for each well, if any constraints are broken. If so,
// switch control to first broken constraint.
const int np = wells().number_of_phases;
const int nw = wells().number_of_wells;
#pragma omp parallel for schedule(dynamic)
for (int w = 0; w < nw; ++w) {
WellControls* wc = wells().ctrls[w];
// The current control in the well state overrides
// the current control set in the Wells struct, which
// is instead treated as a default.
int current = xw.currentControls()[w];
// Loop over all controls except the current one, and also
// skip any RESERVOIR_RATE controls, since we cannot
// handle those.
const int nwc = well_controls_get_num(wc);
int ctrl_index = 0;
for (; ctrl_index < nwc; ++ctrl_index) {
if (ctrl_index == current) {
// This is the currently used control, so it is
// used as an equation. So this is not used as an
// inequality constraint, and therefore skipped.
continue;
}
if (wellhelpers::constraintBroken(
xw.bhp(), xw.thp(), xw.wellRates(),
w, np, wells().type[w], wc, ctrl_index)) {
// ctrl_index will be the index of the broken constraint after the loop.
break;
}
}
if (ctrl_index != nwc) {
// Constraint number ctrl_index was broken, switch to it.
// We disregard terminal_ouput here as with it only messages
// for wells on one process will be printed.
std::ostringstream ss;
ss << "Switching control mode for well " << wells().name[w]
<< " from " << modestring[well_controls_iget_type(wc, current)]
<< " to " << modestring[well_controls_iget_type(wc, ctrl_index)] << std::endl;
OpmLog::info(ss.str());
xw.currentControls()[w] = ctrl_index;
current = xw.currentControls()[w];
well_controls_set_current( wc, current);
// Updating well state and primary variables if constraint is broken
// Target values are used as initial conditions for BHP, THP, and SURFACE_RATE
const double target = well_controls_iget_target(wc, current);
const double* distr = well_controls_iget_distr(wc, current);
switch (well_controls_iget_type(wc, current)) {
case BHP:
xw.bhp()[w] = target;
break;
case THP: {
double aqua = 0.0;
double liquid = 0.0;
double vapour = 0.0;
const Opm::PhaseUsage& pu = fluid_->phaseUsage();
if ((*active_)[ Water ]) {
aqua = xw.wellRates()[w*np + pu.phase_pos[ Water ] ];
}
if ((*active_)[ Oil ]) {
liquid = xw.wellRates()[w*np + pu.phase_pos[ Oil ] ];
}
if ((*active_)[ Gas ]) {
vapour = xw.wellRates()[w*np + pu.phase_pos[ Gas ] ];
}
const int vfp = well_controls_iget_vfp(wc, current);
const double& thp = well_controls_iget_target(wc, current);
const double& alq = well_controls_iget_alq(wc, current);
//Set *BHP* target by calculating bhp from THP
const WellType& well_type = wells().type[w];
// pick the density in the top layer
const int perf = wells().well_connpos[w];
const double rho = well_perforation_densities_[perf];
if (well_type == INJECTOR) {
double dp = wellhelpers::computeHydrostaticCorrection(
wells(), w, vfp_properties_->getInj()->getTable(vfp)->getDatumDepth(),
rho, gravity_);
xw.bhp()[w] = vfp_properties_->getInj()->bhp(vfp, aqua, liquid, vapour, thp) - dp;
}
else if (well_type == PRODUCER) {
double dp = wellhelpers::computeHydrostaticCorrection(
wells(), w, vfp_properties_->getProd()->getTable(vfp)->getDatumDepth(),
rho, gravity_);
xw.bhp()[w] = vfp_properties_->getProd()->bhp(vfp, aqua, liquid, vapour, thp, alq) - dp;
}
else {
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well");
}
break;
}
case RESERVOIR_RATE:
// No direct change to any observable quantity at
// surface condition. In this case, use existing
// flow rates as initial conditions as reservoir
// rate acts only in aggregate.
break;
case SURFACE_RATE:
// assign target value as initial guess for injectors and
// single phase producers (orat, grat, wrat)
const WellType& well_type = wells().type[w];
if (well_type == INJECTOR) {
for (int phase = 0; phase < np; ++phase) {
const double& compi = wells().comp_frac[np * w + phase];
//if (compi > 0.0) {
xw.wellRates()[np*w + phase] = target * compi;
//}
}
} else if (well_type == PRODUCER) {
// only set target as initial rates for single phase
// producers. (orat, grat and wrat, and not lrat)
// lrat will result in numPhasesWithTargetsUnderThisControl == 2
int numPhasesWithTargetsUnderThisControl = 0;
for (int phase = 0; phase < np; ++phase) {
if (distr[phase] > 0.0) {
numPhasesWithTargetsUnderThisControl += 1;
}
}
for (int phase = 0; phase < np; ++phase) {
if (distr[phase] > 0.0 && numPhasesWithTargetsUnderThisControl < 2 ) {
xw.wellRates()[np*w + phase] = target * distr[phase];
}
}
} else {
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well");
}
break;
}
std::vector<double> g = {1,1,0.01};
if (well_controls_iget_type(wc, current) == RESERVOIR_RATE) {
const double* distr = well_controls_iget_distr(wc, current);
for (int phase = 0; phase < np; ++phase) {
g[phase] = distr[phase];
}
}
switch (well_controls_iget_type(wc, current)) {
case THP:
case BHP:
{
const WellType& well_type = wells().type[w];
xw.wellSolutions()[w] = 0.0;
if (well_type == INJECTOR) {
for (int p = 0; p < np; ++p) {
xw.wellSolutions()[w] += xw.wellRates()[np*w + p] * wells().comp_frac[np*w + p];
}
} else {
for (int p = 0; p < np; ++p) {
xw.wellSolutions()[w] += g[p] * xw.wellRates()[np*w + p];
}
}
}
break;
case RESERVOIR_RATE: // Intentional fall-through
case SURFACE_RATE:
{
xw.wellSolutions()[w] = xw.bhp()[w];
}
break;
}
double tot_well_rate = 0.0;
for (int p = 0; p < np; ++p) {
tot_well_rate += g[p] * xw.wellRates()[np*w + p];
}
if(std::abs(tot_well_rate) > 0) {
xw.wellSolutions()[nw + w] = g[Water] * xw.wellRates()[np*w + Water] / tot_well_rate;
xw.wellSolutions()[2*nw + w] = g[Gas] * xw.wellRates()[np*w + Gas] / tot_well_rate ;
} else {
xw.wellSolutions()[nw + w] = wells().comp_frac[np*w + Water];
xw.wellSolutions()[2 * nw + w] = wells().comp_frac[np*w + Gas];
}
}
}
}
int flowPhaseToEbosPhaseIdx( const int phaseIdx ) const
{
const int flowToEbos[ 3 ] = { FluidSystem::waterPhaseIdx, FluidSystem::oilPhaseIdx, FluidSystem::gasPhaseIdx };
return flowToEbos[ phaseIdx ];
}
/// upate the dynamic lists related to economic limits
template<class WellState>
void
updateListEconLimited(ScheduleConstPtr schedule,
const int current_step,
const Wells* wells_struct,
const WellState& well_state,
DynamicListEconLimited& list_econ_limited) const
{
const int nw = wells_struct->number_of_wells;
for (int w = 0; w < nw; ++w) {
// flag to check if the mim oil/gas rate limit is violated
bool rate_limit_violated = false;
const std::string& well_name = wells_struct->name[w];
const Well* well_ecl = schedule->getWell(well_name);
const WellEconProductionLimits& econ_production_limits = well_ecl->getEconProductionLimits(current_step);
// economic limits only apply for production wells.
if (wells_struct->type[w] != PRODUCER) {
continue;
}
// if no limit is effective here, then continue to the next well
if ( !econ_production_limits.onAnyEffectiveLimit() ) {
continue;
}
// for the moment, we only handle rate limits, not handling potential limits
// the potential limits should not be difficult to add
const WellEcon::QuantityLimitEnum& quantity_limit = econ_production_limits.quantityLimit();
if (quantity_limit == WellEcon::POTN) {
const std::string msg = std::string("POTN limit for well ") + well_name + std::string(" is not supported for the moment. \n")
+ std::string("All the limits will be evaluated based on RATE. ");
OpmLog::warning("NOT_SUPPORTING_POTN", msg);
}
const WellMapType& well_map = well_state.wellMap();
const typename WellMapType::const_iterator i_well = well_map.find(well_name);
assert(i_well != well_map.end()); // should always be found?
const WellMapEntryType& map_entry = i_well->second;
const int well_number = map_entry[0];
if (econ_production_limits.onAnyRateLimit()) {
rate_limit_violated = checkRateEconLimits(econ_production_limits, well_state, well_number);
}
if (rate_limit_violated) {
if (econ_production_limits.endRun()) {
const std::string warning_message = std::string("ending run after well closed due to economic limits is not supported yet \n")
+ std::string("the program will keep running after ") + well_name + std::string(" is closed");
OpmLog::warning("NOT_SUPPORTING_ENDRUN", warning_message);
}
if (econ_production_limits.validFollowonWell()) {
OpmLog::warning("NOT_SUPPORTING_FOLLOWONWELL", "opening following on well after well closed is not supported yet");
}
if (well_ecl->getAutomaticShutIn()) {
list_econ_limited.addShutWell(well_name);
const std::string msg = std::string("well ") + well_name + std::string(" will be shut in due to economic limit");
OpmLog::info(msg);
} else {
list_econ_limited.addStoppedWell(well_name);
const std::string msg = std::string("well ") + well_name + std::string(" will be stopped due to economic limit");
OpmLog::info(msg);
}
// the well is closed, not need to check other limits
continue;
}
// checking for ratio related limits, mostly all kinds of ratio.
bool ratio_limits_violated = false;
RatioCheckTuple ratio_check_return;
if (econ_production_limits.onAnyRatioLimit()) {
ratio_check_return = checkRatioEconLimits(econ_production_limits, well_state, map_entry);
ratio_limits_violated = std::get<0>(ratio_check_return);
}
if (ratio_limits_violated) {
const bool last_connection = std::get<1>(ratio_check_return);
const int worst_offending_connection = std::get<2>(ratio_check_return);
const int perf_start = map_entry[1];
assert((worst_offending_connection >= 0) && (worst_offending_connection < map_entry[2]));
const int cell_worst_offending_connection = wells_struct->well_cells[perf_start + worst_offending_connection];
list_econ_limited.addClosedConnectionsForWell(well_name, cell_worst_offending_connection);
const std::string msg = std::string("Connection ") + std::to_string(worst_offending_connection) + std::string(" for well ")
+ well_name + std::string(" will be closed due to economic limit");
OpmLog::info(msg);
if (last_connection) {
list_econ_limited.addShutWell(well_name);
const std::string msg2 = well_name + std::string(" will be shut due to the last connection closed");
OpmLog::info(msg2);
}
}
}
}
template <class WellState>
void computeWellConnectionDensitesPressures(const WellState& xw,
const std::vector<double>& b_perf,
const std::vector<double>& rsmax_perf,
const std::vector<double>& rvmax_perf,
const std::vector<double>& surf_dens_perf,
const std::vector<double>& depth_perf,
const double grav) {
// Compute densities
well_perforation_densities_ =
WellDensitySegmented::computeConnectionDensities(
wells(), xw, fluid_->phaseUsage(),
b_perf, rsmax_perf, rvmax_perf, surf_dens_perf);
// Compute pressure deltas
well_perforation_pressure_diffs_ =
WellDensitySegmented::computeConnectionPressureDelta(
wells(), depth_perf, well_perforation_densities_, grav);
}
protected:
bool wells_active_;
const Wells* wells_;
ModelParameters param_;
bool terminal_output_;
const BlackoilPropsAdInterface* fluid_;
const std::vector<bool>* active_;
const VFPProperties* vfp_properties_;
double gravity_;
// the depth of the all the cell centers
// for standard Wells, it the same with the perforation depth
std::vector<double> cell_depths_;
std::vector<double> pv_;
std::vector<double> well_perforation_densities_;
std::vector<double> well_perforation_pressure_diffs_;
std::vector<EvalWell> wellVariables_;
std::vector<double> F0_;
Mat duneB_;
Mat duneC_;
Mat invDuneD_;
BVector resWell_;
// protected methods
EvalWell getBhp(const int wellIdx) const {
const WellControls* wc = wells().ctrls[wellIdx];
if (well_controls_get_current_type(wc) == BHP) {
EvalWell bhp = 0.0;
const double target_rate = well_controls_get_current_target(wc);
bhp.value = target_rate;
return bhp;
} else if (well_controls_get_current_type(wc) == THP) {
const int control = well_controls_get_current(wc);
const double thp = well_controls_get_current_target(wc);
const double alq = well_controls_iget_alq(wc, control);
const int table_id = well_controls_iget_vfp(wc, control);
EvalWell aqua = 0.0;
EvalWell liquid = 0.0;
EvalWell vapour = 0.0;
EvalWell bhp = 0.0;
double vfp_ref_depth = 0.0;
const Opm::PhaseUsage& pu = fluid_->phaseUsage();
if ((*active_)[ Water ]) {
aqua = getQs(wellIdx, pu.phase_pos[ Water]);
}
if ((*active_)[ Oil ]) {
liquid = getQs(wellIdx, pu.phase_pos[ Oil ]);
}
if ((*active_)[ Gas ]) {
vapour = getQs(wellIdx, pu.phase_pos[ Gas ]);
}
if (wells().type[wellIdx] == INJECTOR) {
bhp = vfp_properties_->getInj()->bhp(table_id, aqua, liquid, vapour, thp);
vfp_ref_depth = vfp_properties_->getInj()->getTable(table_id)->getDatumDepth();
} else {
bhp = vfp_properties_->getProd()->bhp(table_id, aqua, liquid, vapour, thp, alq);
vfp_ref_depth = vfp_properties_->getProd()->getTable(table_id)->getDatumDepth();
}
// pick the density in the top layer
const int perf = wells().well_connpos[wellIdx];
const double rho = well_perforation_densities_[perf];
const double dp = wellhelpers::computeHydrostaticCorrection(wells(), wellIdx, vfp_ref_depth, rho, gravity_);
bhp -= dp;
return bhp;
}
return wellVariables_[wellIdx];
}
EvalWell getQs(const int wellIdx, const int phaseIdx) const {
EvalWell qs = 0.0;
const WellControls* wc = wells().ctrls[wellIdx];
const int np = wells().number_of_phases;
const double target_rate = well_controls_get_current_target(wc);
if (wells().type[wellIdx] == INJECTOR) {
const double comp_frac = wells().comp_frac[np*wellIdx + phaseIdx];
if (comp_frac == 0.0)
return qs;
if (well_controls_get_current_type(wc) == BHP || well_controls_get_current_type(wc) == THP) {
return wellVariables_[wellIdx];
}
qs.value = target_rate;
return qs;
}
// Producers
if (well_controls_get_current_type(wc) == BHP || well_controls_get_current_type(wc) == THP ) {
return wellVariables_[wellIdx] * wellVolumeFractionScaled(wellIdx,phaseIdx);
}
if (well_controls_get_current_type(wc) == SURFACE_RATE) {
const double comp_frac = wells().comp_frac[np*wellIdx + phaseIdx];
if (comp_frac == 1.0) {
qs.value = target_rate;
return qs;
}
int currentControlIdx = 0;
for (int i = 0; i < np; ++i) {
currentControlIdx += wells().comp_frac[np*wellIdx + i] * i;
}
if (wellVolumeFractionScaled(wellIdx,currentControlIdx) == 0) {
return qs;
}
return (target_rate * wellVolumeFractionScaled(wellIdx,phaseIdx) / wellVolumeFractionScaled(wellIdx,currentControlIdx));
}
// ReservoirRate
return target_rate * wellVolumeFractionScaled(wellIdx,phaseIdx);
}
EvalWell wellVolumeFraction(const int wellIdx, const int phaseIdx) const {
assert(wells().number_of_phases == 3);
const int nw = wells().number_of_wells;
if (phaseIdx == Water) {
return wellVariables_[nw + wellIdx];
}
if (phaseIdx == Gas) {
return wellVariables_[2*nw + wellIdx];
}
// Oil
return 1.0 - wellVariables_[nw + wellIdx] - wellVariables_[2 * nw + wellIdx];
}
EvalWell wellVolumeFractionScaled(const int wellIdx, const int phaseIdx) const {
const WellControls* wc = wells().ctrls[wellIdx];
if (well_controls_get_current_type(wc) == RESERVOIR_RATE) {
const double* distr = well_controls_get_current_distr(wc);
return wellVolumeFraction(wellIdx, phaseIdx) / distr[phaseIdx];
}
std::vector<double> g = {1,1,0.01};
return (wellVolumeFraction(wellIdx, phaseIdx) / g[phaseIdx]);
}
template <class WellState>
bool checkRateEconLimits(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state,
const int well_number) const
{
const Opm::PhaseUsage& pu = fluid_->phaseUsage();
const int np = well_state.numPhases();
if (econ_production_limits.onMinOilRate()) {
assert((*active_)[Oil]);
const double oil_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Oil ] ];
const double min_oil_rate = econ_production_limits.minOilRate();
if (std::abs(oil_rate) < min_oil_rate) {
return true;
}
}
if (econ_production_limits.onMinGasRate() ) {
assert((*active_)[Gas]);
const double gas_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Gas ] ];
const double min_gas_rate = econ_production_limits.minGasRate();
if (std::abs(gas_rate) < min_gas_rate) {
return true;
}
}
if (econ_production_limits.onMinLiquidRate() ) {
assert((*active_)[Oil]);
assert((*active_)[Water]);
const double oil_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Oil ] ];
const double water_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Water ] ];
const double liquid_rate = oil_rate + water_rate;
const double min_liquid_rate = econ_production_limits.minLiquidRate();
if (std::abs(liquid_rate) < min_liquid_rate) {
return true;
}
}
if (econ_production_limits.onMinReservoirFluidRate()) {
OpmLog::warning("NOT_SUPPORTING_MIN_RESERVOIR_FLUID_RATE", "Minimum reservoir fluid production rate limit is not supported yet");
}
return false;
}
using WellMapType = typename WellState::WellMapType;
using WellMapEntryType = typename WellState::mapentry_t;
// a tuple type for ratio limit check.
// first value indicates whether ratio limit is violated, when the ratio limit is not violated, the following three
// values should not be used.
// second value indicates whehter there is only one connection left.
// third value indicates the indx of the worst-offending connection.
// the last value indicates the extent of the violation for the worst-offending connection, which is defined by
// the ratio of the actual value to the value of the violated limit.
using RatioCheckTuple = std::tuple<bool, bool, int, double>;
enum ConnectionIndex {
INVALIDCONNECTION = -10000
};
template <class WellState>
RatioCheckTuple checkRatioEconLimits(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state,
const WellMapEntryType& map_entry) const
{
// TODO: not sure how to define the worst-offending connection when more than one
// ratio related limit is violated.
// The defintion used here is that we define the violation extent based on the
// ratio between the value and the corresponding limit.
// For each violated limit, we decide the worst-offending connection separately.
// Among the worst-offending connections, we use the one has the biggest violation
// extent.
bool any_limit_violated = false;
bool last_connection = false;
int worst_offending_connection = INVALIDCONNECTION;
double violation_extent = -1.0;
if (econ_production_limits.onMaxWaterCut()) {
const RatioCheckTuple water_cut_return = checkMaxWaterCutLimit(econ_production_limits, well_state, map_entry);
bool water_cut_violated = std::get<0>(water_cut_return);
if (water_cut_violated) {
any_limit_violated = true;
const double violation_extent_water_cut = std::get<3>(water_cut_return);
if (violation_extent_water_cut > violation_extent) {
violation_extent = violation_extent_water_cut;
worst_offending_connection = std::get<2>(water_cut_return);
last_connection = std::get<1>(water_cut_return);
}
}
}
if (econ_production_limits.onMaxGasOilRatio()) {
OpmLog::warning("NOT_SUPPORTING_MAX_GOR", "the support for max Gas-Oil ratio is not implemented yet!");
}
if (econ_production_limits.onMaxWaterGasRatio()) {
OpmLog::warning("NOT_SUPPORTING_MAX_WGR", "the support for max Water-Gas ratio is not implemented yet!");
}
if (econ_production_limits.onMaxGasLiquidRatio()) {
OpmLog::warning("NOT_SUPPORTING_MAX_GLR", "the support for max Gas-Liquid ratio is not implemented yet!");
}
if (any_limit_violated) {
assert(worst_offending_connection >=0);
assert(violation_extent > 1.);
}
return std::make_tuple(any_limit_violated, last_connection, worst_offending_connection, violation_extent);
}
template <class WellState>
RatioCheckTuple checkMaxWaterCutLimit(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state,
const WellMapEntryType& map_entry) const
{
bool water_cut_limit_violated = false;
int worst_offending_connection = INVALIDCONNECTION;
bool last_connection = false;
double violation_extent = -1.0;
const int np = well_state.numPhases();
const Opm::PhaseUsage& pu = fluid_->phaseUsage();
const int well_number = map_entry[0];
assert((*active_)[Oil]);
assert((*active_)[Water]);
const double oil_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Oil ] ];
const double water_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Water ] ];
const double liquid_rate = oil_rate + water_rate;
double water_cut;
if (std::abs(liquid_rate) != 0.) {
water_cut = water_rate / liquid_rate;
} else {
water_cut = 0.0;
}
const double max_water_cut_limit = econ_production_limits.maxWaterCut();
if (water_cut > max_water_cut_limit) {
water_cut_limit_violated = true;
}
if (water_cut_limit_violated) {
// need to handle the worst_offending_connection
const int perf_start = map_entry[1];
const int perf_number = map_entry[2];
std::vector<double> water_cut_perf(perf_number);
for (int perf = 0; perf < perf_number; ++perf) {
const int i_perf = perf_start + perf;
const double oil_perf_rate = well_state.perfPhaseRates()[i_perf * np + pu.phase_pos[ Oil ] ];
const double water_perf_rate = well_state.perfPhaseRates()[i_perf * np + pu.phase_pos[ Water ] ];
const double liquid_perf_rate = oil_perf_rate + water_perf_rate;
if (std::abs(liquid_perf_rate) != 0.) {
water_cut_perf[perf] = water_perf_rate / liquid_perf_rate;
} else {
water_cut_perf[perf] = 0.;
}
}
last_connection = (perf_number == 1);
if (last_connection) {
worst_offending_connection = 0;
violation_extent = water_cut_perf[0] / max_water_cut_limit;
return std::make_tuple(water_cut_limit_violated, last_connection, worst_offending_connection, violation_extent);
}
double max_water_cut_perf = 0.;
for (int perf = 0; perf < perf_number; ++perf) {
if (water_cut_perf[perf] > max_water_cut_perf) {
worst_offending_connection = perf;
max_water_cut_perf = water_cut_perf[perf];
}
}
assert(max_water_cut_perf != 0.);
assert((worst_offending_connection >= 0) && (worst_offending_connection < perf_number));
violation_extent = max_water_cut_perf / max_water_cut_limit;
}
return std::make_tuple(water_cut_limit_violated, last_connection, worst_offending_connection, violation_extent);
}
};
} // namespace Opm
#include "StandardWellsDense_impl.hpp"
#endif