mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-28 02:00:59 -06:00
6bc8080722
* totto82/frankenstein_mod: Avoid copying of matrices inside StandardWellsDense.
1708 lines
81 KiB
C++
1708 lines
81 KiB
C++
/*
|
|
Copyright 2016 SINTEF ICT, Applied Mathematics.
|
|
Copyright 2016 Statoil ASA.
|
|
Copyright 2016 IRIS AS
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
#ifndef OPM_STANDARDWELLSDENSE_HEADER_INCLUDED
|
|
#define OPM_STANDARDWELLSDENSE_HEADER_INCLUDED
|
|
|
|
#include <opm/common/OpmLog/OpmLog.hpp>
|
|
|
|
#include <opm/common/utility/platform_dependent/disable_warnings.h>
|
|
#include <Eigen/Eigen>
|
|
#include <Eigen/Sparse>
|
|
#include <opm/common/utility/platform_dependent/reenable_warnings.h>
|
|
|
|
#include <cassert>
|
|
#include <tuple>
|
|
|
|
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
|
|
|
|
#include <opm/core/wells.h>
|
|
#include <opm/core/wells/DynamicListEconLimited.hpp>
|
|
#include <opm/autodiff/AutoDiffBlock.hpp>
|
|
#include <opm/autodiff/AutoDiffHelpers.hpp>
|
|
#include <opm/autodiff/VFPProperties.hpp>
|
|
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
|
|
#include <opm/autodiff/VFPInjProperties.hpp>
|
|
#include <opm/autodiff/VFPProdProperties.hpp>
|
|
#include <opm/autodiff/WellHelpers.hpp>
|
|
#include <opm/autodiff/BlackoilModelEnums.hpp>
|
|
#include <opm/autodiff/WellDensitySegmented.hpp>
|
|
#include <opm/autodiff/BlackoilDetails.hpp>
|
|
#include <opm/autodiff/BlackoilModelParameters.hpp>
|
|
#include <opm/autodiff/LinearisedBlackoilResidual.hpp>
|
|
|
|
#include<dune/common/fmatrix.hh>
|
|
#include<dune/istl/bcrsmatrix.hh>
|
|
#include<dune/istl/matrixmatrix.hh>
|
|
|
|
#include <opm/material/densead/Math.hpp>
|
|
#include <opm/material/densead/Evaluation.hpp>
|
|
|
|
namespace Opm {
|
|
|
|
|
|
/// Class for handling the standard well model.
|
|
template<typename FluidSystem, typename BlackoilIndices>
|
|
class StandardWellsDense {
|
|
public:
|
|
|
|
// --------- Types ---------
|
|
using ADB = AutoDiffBlock<double>;
|
|
|
|
typedef DenseAd::Evaluation<double, /*size=*/6> EvalWell;
|
|
typedef WellStateFullyImplicitBlackoil WellState;
|
|
typedef BlackoilModelParameters ModelParameters;
|
|
|
|
//typedef AutoDiffBlock<double> ADB;
|
|
using Vector = ADB::V;
|
|
using V = ADB::V;
|
|
typedef ADB::M M;
|
|
typedef double Scalar;
|
|
typedef Dune::FieldVector<Scalar, 3 > VectorBlockType;
|
|
typedef Dune::FieldMatrix<Scalar, 3, 3 > MatrixBlockType;
|
|
typedef Dune::BCRSMatrix <MatrixBlockType> Mat;
|
|
typedef Dune::BlockVector<VectorBlockType> BVector;
|
|
|
|
|
|
// copied from BlackoilModelBase
|
|
// should put to somewhere better
|
|
using DataBlock = Eigen::Array<double,
|
|
Eigen::Dynamic,
|
|
Eigen::Dynamic,
|
|
Eigen::RowMajor>;
|
|
// --------- Public methods ---------
|
|
StandardWellsDense(const Wells* wells_arg,
|
|
const ModelParameters& param,
|
|
const bool terminal_output,
|
|
const std::vector<double>& pv)
|
|
: wells_active_(wells_arg!=nullptr)
|
|
, wells_(wells_arg)
|
|
, param_(param)
|
|
, terminal_output_(terminal_output)
|
|
, fluid_(nullptr)
|
|
, active_(nullptr)
|
|
, vfp_properties_(nullptr)
|
|
, well_perforation_densities_(wells_arg->well_connpos[wells_arg->number_of_wells])
|
|
, well_perforation_pressure_diffs_(wells_arg->well_connpos[wells_arg->number_of_wells])
|
|
, wellVariables_(wells_arg->number_of_wells * wells_arg->number_of_phases)
|
|
, F0_(wells_arg->number_of_wells * wells_arg->number_of_phases)
|
|
{
|
|
invDuneD_.setBuildMode( Mat::row_wise );
|
|
duneC_.setBuildMode( Mat::row_wise );
|
|
duneB_.setBuildMode( Mat::row_wise );
|
|
}
|
|
|
|
void init(const BlackoilPropsAdInterface* fluid_arg,
|
|
const std::vector<bool>* active_arg,
|
|
const VFPProperties* vfp_properties_arg,
|
|
const double gravity_arg,
|
|
const std::vector<double>& depth_arg,
|
|
const std::vector<double>& pv_arg)
|
|
{
|
|
|
|
if ( ! localWellsActive() ) {
|
|
return;
|
|
}
|
|
|
|
fluid_ = fluid_arg;
|
|
active_ = active_arg;
|
|
vfp_properties_ = vfp_properties_arg;
|
|
gravity_ = gravity_arg;
|
|
cell_depths_ = extractPerfData(depth_arg);
|
|
pv_ = pv_arg;
|
|
|
|
// setup sparsity pattern for the matrices
|
|
//[A B^T [x = [ res
|
|
// C D] x_well] res_well]
|
|
|
|
const int nw = wells().number_of_wells;
|
|
const int nperf = wells().well_connpos[nw];
|
|
const int nc = numCells();
|
|
|
|
// set invDuneD
|
|
invDuneD_.setSize( nw, nw, nw );
|
|
|
|
// set duneC
|
|
duneC_.setSize( nw, nc, nperf );
|
|
|
|
// set duneB
|
|
duneB_.setSize( nw, nc, nperf );
|
|
|
|
for(auto row=invDuneD_.createbegin(), end = invDuneD_.createend(); row!=end; ++row) {
|
|
// Add nonzeros for diagonal
|
|
row.insert(row.index());
|
|
}
|
|
|
|
for(auto row = duneC_.createbegin(), end = duneC_.createend(); row!=end; ++row) {
|
|
// Add nonzeros for diagonal
|
|
for (int perf = wells().well_connpos[row.index()] ; perf < wells().well_connpos[row.index()+1]; ++perf) {
|
|
const int cell_idx = wells().well_cells[perf];
|
|
row.insert(cell_idx);
|
|
}
|
|
}
|
|
|
|
// make the B^T matrix
|
|
for(auto row = duneB_.createbegin(), end = duneB_.createend(); row!=end; ++row) {
|
|
for (int perf = wells().well_connpos[row.index()] ; perf < wells().well_connpos[row.index()+1]; ++perf) {
|
|
const int cell_idx = wells().well_cells[perf];
|
|
row.insert(cell_idx);
|
|
}
|
|
}
|
|
|
|
resWell_.resize( nw );
|
|
}
|
|
|
|
|
|
template <typename Simulator>
|
|
IterationReport assemble(Simulator& ebosSimulator,
|
|
const int iterationIdx,
|
|
const double dt,
|
|
WellState& well_state) {
|
|
|
|
IterationReport iter_report = {false, false, 0, 0};
|
|
if ( ! localWellsActive() ) {
|
|
return iter_report;
|
|
}
|
|
|
|
resetWellControlFromState(well_state);
|
|
updateWellControls(well_state);
|
|
// Set the primary variables for the wells
|
|
setWellVariables(well_state);
|
|
|
|
if (iterationIdx == 0) {
|
|
computeWellConnectionPressures(ebosSimulator, well_state);
|
|
computeAccumWells();
|
|
}
|
|
|
|
if (param_.solve_welleq_initially_ && iterationIdx == 0) {
|
|
// solve the well equations as a pre-processing step
|
|
iter_report = solveWellEq(ebosSimulator, dt, well_state);
|
|
}
|
|
assembleWellEq(ebosSimulator, dt, well_state, false);
|
|
|
|
|
|
if (param_.compute_well_potentials_) {
|
|
//wellModel().computeWellPotentials(mob_perfcells, b_perfcells, state0, well_state);
|
|
}
|
|
return iter_report;
|
|
}
|
|
|
|
template <typename Simulator>
|
|
void assembleWellEq(Simulator& ebosSimulator,
|
|
const double dt,
|
|
WellState& well_state,
|
|
bool only_wells) {
|
|
const int np = wells().number_of_phases;
|
|
const int nw = wells().number_of_wells;
|
|
|
|
|
|
// clear all entries
|
|
duneB_ = 0.0;
|
|
duneC_ = 0.0;
|
|
invDuneD_ = 0.0;
|
|
resWell_ = 0.0;
|
|
|
|
auto& ebosJac = ebosSimulator.model().linearizer().matrix();
|
|
auto& ebosResid = ebosSimulator.model().linearizer().residual();
|
|
|
|
const double volume = 0.002831684659200; // 0.1 cu ft;
|
|
for (int w = 0; w < nw; ++w) {
|
|
|
|
for (int perf = wells().well_connpos[w] ; perf < wells().well_connpos[w+1]; ++perf) {
|
|
|
|
const int cell_idx = wells().well_cells[perf];
|
|
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
|
|
std::vector<EvalWell> cq_s(np,0.0);
|
|
computeWellFlux(w, wells().WI[perf], intQuants, wellPerforationPressureDiffs()[perf], cq_s);
|
|
|
|
for (int p1 = 0; p1 < np; ++p1) {
|
|
|
|
if (!only_wells) {
|
|
// subtract sum of phase fluxes in the reservoir equation.
|
|
ebosResid[cell_idx][flowPhaseToEbosCompIdx(p1)] -= cq_s[p1].value;
|
|
}
|
|
|
|
// subtract sum of phase fluxes in the well equations.
|
|
resWell_[w][flowPhaseToEbosCompIdx(p1)] -= cq_s[p1].value;
|
|
|
|
// assemble the jacobians
|
|
for (int p2 = 0; p2 < np; ++p2) {
|
|
if (!only_wells) {
|
|
ebosJac[cell_idx][cell_idx][flowPhaseToEbosCompIdx(p1)][flowToEbosPvIdx(p2)] -= cq_s[p1].derivatives[p2];
|
|
duneB_[w][cell_idx][flowToEbosPvIdx(p2)][flowPhaseToEbosCompIdx(p1)] -= cq_s[p1].derivatives[p2+3]; // intput in transformed matrix
|
|
duneC_[w][cell_idx][flowPhaseToEbosCompIdx(p1)][flowToEbosPvIdx(p2)] -= cq_s[p1].derivatives[p2];
|
|
}
|
|
invDuneD_[w][w][flowPhaseToEbosCompIdx(p1)][flowToEbosPvIdx(p2)] -= cq_s[p1].derivatives[p2+3];
|
|
}
|
|
|
|
// Store the perforation phase flux for later usage.
|
|
well_state.perfPhaseRates()[perf*np + p1] = cq_s[p1].value;
|
|
}
|
|
// Store the perforation pressure for later usage.
|
|
well_state.perfPress()[perf] = well_state.bhp()[w] + wellPerforationPressureDiffs()[perf];
|
|
}
|
|
|
|
// add vol * dF/dt + Q to the well equations;
|
|
for (int p1 = 0; p1 < np; ++p1) {
|
|
EvalWell resWell_loc = (wellVolumeFraction(w, p1) - F0_[w + nw*p1]) * volume / dt;
|
|
resWell_loc += getQs(w, p1);
|
|
for (int p2 = 0; p2 < np; ++p2) {
|
|
invDuneD_[w][w][flowPhaseToEbosCompIdx(p1)][flowToEbosPvIdx(p2)] += resWell_loc.derivatives[p2+3];
|
|
}
|
|
resWell_[w][flowPhaseToEbosCompIdx(p1)] += resWell_loc.value;
|
|
}
|
|
}
|
|
|
|
// do the local inversion of D.
|
|
localInvert( invDuneD_ );
|
|
|
|
}
|
|
|
|
void localInvert(Mat& istlA) const {
|
|
for (auto row = istlA.begin(), rowend = istlA.end(); row != rowend; ++row ) {
|
|
for (auto col = row->begin(), colend = row->end(); col != colend; ++col ) {
|
|
//std::cout << (*col) << std::endl;
|
|
(*col).invert();
|
|
}
|
|
}
|
|
}
|
|
|
|
void print(Mat& istlA) const {
|
|
for (auto row = istlA.begin(), rowend = istlA.end(); row != rowend; ++row ) {
|
|
for (auto col = row->begin(), colend = row->end(); col != colend; ++col ) {
|
|
std::cout << row.index() << " " << col.index() << "/n \n"<<(*col) << std::endl;
|
|
}
|
|
}
|
|
}
|
|
|
|
// substract Binv(D)rw from r;
|
|
void apply( BVector& r) const {
|
|
if ( ! localWellsActive() ) {
|
|
return;
|
|
}
|
|
|
|
BVector invDrw(invDuneD_.N());
|
|
invDuneD_.mv(resWell_,invDrw);
|
|
duneB_.mmtv(invDrw, r);
|
|
}
|
|
|
|
// subtract B*inv(D)*C * x from A*x
|
|
void apply(const BVector& x, BVector& Ax) {
|
|
if ( ! localWellsActive() ) {
|
|
return;
|
|
}
|
|
BVector Cx(duneC_.N());
|
|
duneC_.mv(x, Cx);
|
|
BVector invDCx(invDuneD_.N());
|
|
invDuneD_.mv(Cx, invDCx);
|
|
duneB_.mmtv(invDCx,Ax);
|
|
}
|
|
|
|
// xw = inv(D)*(rw - C*x)
|
|
void recoverVariable(const BVector& x, BVector& xw) const {
|
|
if ( ! localWellsActive() ) {
|
|
return;
|
|
}
|
|
BVector resWell = resWell_;
|
|
duneC_.mmv(x, resWell);
|
|
invDuneD_.mv(resWell, xw);
|
|
}
|
|
|
|
|
|
int flowPhaseToEbosCompIdx( const int phaseIdx ) const
|
|
{
|
|
const int phaseToComp[ 3 ] = { FluidSystem::waterCompIdx, FluidSystem::oilCompIdx, FluidSystem::gasCompIdx };
|
|
return phaseToComp[ phaseIdx ];
|
|
}
|
|
|
|
int flowToEbosPvIdx( const int flowPv ) const
|
|
{
|
|
const int flowToEbos[ 3 ] = {
|
|
BlackoilIndices::pressureSwitchIdx,
|
|
BlackoilIndices::waterSaturationIdx,
|
|
BlackoilIndices::compositionSwitchIdx
|
|
};
|
|
return flowToEbos[ flowPv ];
|
|
}
|
|
|
|
int ebosCompToFlowPhaseIdx( const int compIdx ) const
|
|
{
|
|
const int compToPhase[ 3 ] = { Oil, Water, Gas };
|
|
return compToPhase[ compIdx ];
|
|
}
|
|
|
|
|
|
|
|
std::vector<double>
|
|
extractPerfData(const std::vector<double>& in) const {
|
|
const int nw = wells().number_of_wells;
|
|
const int nperf = wells().well_connpos[nw];
|
|
std::vector<double> out(nperf);
|
|
for (int w = 0; w < nw; ++w) {
|
|
for (int perf = wells().well_connpos[w] ; perf < wells().well_connpos[w+1]; ++perf) {
|
|
const int well_idx = wells().well_cells[perf];
|
|
out[perf] = in[well_idx];
|
|
}
|
|
}
|
|
return out;
|
|
}
|
|
|
|
int numPhases() const { return wells().number_of_phases; }
|
|
|
|
int numCells() const { return pv_.size();}
|
|
|
|
template<class WellState>
|
|
void resetWellControlFromState(WellState xw) {
|
|
const int nw = wells_->number_of_wells;
|
|
for (int w = 0; w < nw; ++w) {
|
|
WellControls* wc = wells_->ctrls[w];
|
|
well_controls_set_current( wc, xw.currentControls()[w]);
|
|
}
|
|
}
|
|
|
|
const Wells& wells() const
|
|
{
|
|
assert(wells_ != 0);
|
|
return *(wells_);
|
|
}
|
|
|
|
const Wells* wellsPointer() const
|
|
{
|
|
return wells_;
|
|
}
|
|
|
|
/// return true if wells are available in the reservoir
|
|
bool wellsActive() const
|
|
{
|
|
return wells_active_;
|
|
}
|
|
void setWellsActive(const bool wells_active)
|
|
{
|
|
wells_active_ = wells_active;
|
|
}
|
|
/// return true if wells are available on this process
|
|
bool localWellsActive() const
|
|
{
|
|
return wells_ ? (wells_->number_of_wells > 0 ) : false;
|
|
}
|
|
|
|
int numWellVars() const
|
|
{
|
|
if ( !localWellsActive() )
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
// For each well, we have a bhp variable, and one flux per phase.
|
|
const int nw = wells().number_of_wells;
|
|
return (numPhases() + 1) * nw;
|
|
}
|
|
|
|
/// Density of each well perforation
|
|
std::vector<double> wellPerforationDensities() const {
|
|
return well_perforation_densities_;
|
|
}
|
|
|
|
/// Diff to bhp for each well perforation.
|
|
std::vector<double> wellPerforationPressureDiffs() const
|
|
{
|
|
return well_perforation_pressure_diffs_;
|
|
}
|
|
|
|
|
|
typedef DenseAd::Evaluation<double, /*size=*/3> Eval;
|
|
EvalWell extendEval(Eval in) const {
|
|
EvalWell out = 0.0;
|
|
out.value = in.value;
|
|
for(int i = 0;i<3;++i) {
|
|
out.derivatives[i] = in.derivatives[flowToEbosPvIdx(i)];
|
|
}
|
|
return out;
|
|
}
|
|
|
|
void
|
|
setWellVariables(const WellState& xw) {
|
|
const int np = wells().number_of_phases;
|
|
const int nw = wells().number_of_wells;
|
|
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
|
|
for (int w = 0; w < nw; ++w) {
|
|
wellVariables_[w + nw*phaseIdx] = 0.0;
|
|
wellVariables_[w + nw*phaseIdx].value = xw.wellSolutions()[w + nw* phaseIdx];
|
|
wellVariables_[w + nw*phaseIdx].derivatives[np + phaseIdx] = 1.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
void print(EvalWell in) const {
|
|
std::cout << in.value << std::endl;
|
|
for (int i = 0; i < in.derivatives.size(); ++i) {
|
|
std::cout << in.derivatives[i] << std::endl;
|
|
}
|
|
}
|
|
|
|
void
|
|
computeAccumWells() {
|
|
const int np = wells().number_of_phases;
|
|
const int nw = wells().number_of_wells;
|
|
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
|
|
for (int w = 0; w < nw; ++w) {
|
|
F0_[w + nw * phaseIdx] = wellVolumeFraction(w,phaseIdx).value;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
template<typename intensiveQuants>
|
|
void
|
|
computeWellFlux(const int& w, const double& Tw, const intensiveQuants& intQuants, const double& cdp, std::vector<EvalWell>& cq_s) const
|
|
{
|
|
const Opm::PhaseUsage& pu = fluid_->phaseUsage();
|
|
EvalWell bhp = getBhp(w);
|
|
const int np = wells().number_of_phases;
|
|
std::vector<EvalWell> cmix_s(np,0.0);
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
//int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phase);
|
|
cmix_s[phase] = wellVolumeFraction(w,phase);
|
|
}
|
|
const auto& fs = intQuants.fluidState();
|
|
EvalWell pressure = extendEval(fs.pressure(FluidSystem::oilPhaseIdx));
|
|
EvalWell rs = extendEval(fs.Rs());
|
|
EvalWell rv = extendEval(fs.Rv());
|
|
std::vector<EvalWell> b_perfcells_dense(np, 0.0);
|
|
std::vector<EvalWell> mob_perfcells_dense(np, 0.0);
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phase);
|
|
b_perfcells_dense[phase] = extendEval(fs.invB(ebosPhaseIdx));
|
|
mob_perfcells_dense[phase] = extendEval(intQuants.mobility(ebosPhaseIdx));
|
|
}
|
|
|
|
// Pressure drawdown (also used to determine direction of flow)
|
|
EvalWell well_pressure = bhp + cdp;
|
|
EvalWell drawdown = pressure - well_pressure;
|
|
|
|
// injection perforations
|
|
if ( drawdown.value > 0 ) {
|
|
|
|
//Do nothing if crossflow is not allowed
|
|
if (!wells().allow_cf[w] && wells().type[w] == INJECTOR)
|
|
return;
|
|
// compute phase volumetric rates at standard conditions
|
|
std::vector<EvalWell> cq_ps(np, 0.0);
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
const EvalWell cq_p = - Tw * (mob_perfcells_dense[phase] * drawdown);
|
|
cq_ps[phase] = b_perfcells_dense[phase] * cq_p;
|
|
}
|
|
|
|
if ((*active_)[Oil] && (*active_)[Gas]) {
|
|
const int oilpos = pu.phase_pos[Oil];
|
|
const int gaspos = pu.phase_pos[Gas];
|
|
const EvalWell cq_psOil = cq_ps[oilpos];
|
|
const EvalWell cq_psGas = cq_ps[gaspos];
|
|
cq_ps[gaspos] += rs * cq_psOil;
|
|
cq_ps[oilpos] += rv * cq_psGas;
|
|
}
|
|
|
|
// map to ADB
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
cq_s[phase] = cq_ps[phase];
|
|
}
|
|
|
|
} else {
|
|
//Do nothing if crossflow is not allowed
|
|
if (!wells().allow_cf[w] && wells().type[w] == PRODUCER)
|
|
return;
|
|
|
|
// Using total mobilities
|
|
EvalWell total_mob_dense = mob_perfcells_dense[0];
|
|
for (int phase = 1; phase < np; ++phase) {
|
|
total_mob_dense += mob_perfcells_dense[phase];
|
|
}
|
|
// injection perforations total volume rates
|
|
const EvalWell cqt_i = - Tw * (total_mob_dense * drawdown);
|
|
|
|
// compute volume ratio between connection at standard conditions
|
|
EvalWell volumeRatio = 0.0;
|
|
if ((*active_)[Water]) {
|
|
const int watpos = pu.phase_pos[Water];
|
|
volumeRatio += cmix_s[watpos] / b_perfcells_dense[watpos];
|
|
}
|
|
|
|
if ((*active_)[Oil] && (*active_)[Gas]) {
|
|
EvalWell well_temperature = extendEval(fs.temperature(FluidSystem::oilPhaseIdx));
|
|
EvalWell rsSatEval = FluidSystem::oilPvt().saturatedGasDissolutionFactor(fs.pvtRegionIndex(), well_temperature, well_pressure);
|
|
EvalWell rvSatEval = FluidSystem::gasPvt().saturatedOilVaporizationFactor(fs.pvtRegionIndex(), well_temperature, well_pressure);
|
|
|
|
const int oilpos = pu.phase_pos[Oil];
|
|
const int gaspos = pu.phase_pos[Gas];
|
|
EvalWell rvPerf = 0.0;
|
|
if (cmix_s[gaspos] > 0)
|
|
rvPerf = cmix_s[oilpos] / cmix_s[gaspos];
|
|
|
|
if (rvPerf.value > rvSatEval.value) {
|
|
rvPerf = rvSatEval;
|
|
//rvPerf.value = rvSatEval.value;
|
|
}
|
|
|
|
EvalWell rsPerf = 0.0;
|
|
if (cmix_s[oilpos] > 0)
|
|
rsPerf = cmix_s[gaspos] / cmix_s[oilpos];
|
|
|
|
if (rsPerf.value > rsSatEval.value) {
|
|
//rsPerf = 0.0;
|
|
rsPerf= rsSatEval;
|
|
}
|
|
|
|
// Incorporate RS/RV factors if both oil and gas active
|
|
const EvalWell d = 1.0 - rvPerf * rsPerf;
|
|
|
|
const EvalWell tmp_oil = (cmix_s[oilpos] - rvPerf * cmix_s[gaspos]) / d;
|
|
//std::cout << "tmp_oil " <<tmp_oil << std::endl;
|
|
volumeRatio += tmp_oil / b_perfcells_dense[oilpos];
|
|
|
|
const EvalWell tmp_gas = (cmix_s[gaspos] - rsPerf * cmix_s[oilpos]) / d;
|
|
//std::cout << "tmp_gas " <<tmp_gas << std::endl;
|
|
volumeRatio += tmp_gas / b_perfcells_dense[gaspos];
|
|
}
|
|
else {
|
|
if ((*active_)[Oil]) {
|
|
const int oilpos = pu.phase_pos[Oil];
|
|
volumeRatio += cmix_s[oilpos] / b_perfcells_dense[oilpos];
|
|
}
|
|
if ((*active_)[Gas]) {
|
|
const int gaspos = pu.phase_pos[Gas];
|
|
volumeRatio += cmix_s[gaspos] / b_perfcells_dense[gaspos];
|
|
}
|
|
}
|
|
// injecting connections total volumerates at standard conditions
|
|
EvalWell cqt_is = cqt_i/volumeRatio;
|
|
//std::cout << "volrat " << volumeRatio << " " << volrat_perf_[perf] << std::endl;
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
cq_s[phase] = cmix_s[phase] * cqt_is; // * b_perfcells_dense[phase];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
template <typename Simulator>
|
|
IterationReport solveWellEq(Simulator& ebosSimulator,
|
|
const double dt,
|
|
WellState& well_state)
|
|
{
|
|
const int nw = wells().number_of_wells;
|
|
WellState well_state0 = well_state;
|
|
|
|
int it = 0;
|
|
bool converged;
|
|
do {
|
|
assembleWellEq(ebosSimulator, dt, well_state, true);
|
|
converged = getWellConvergence(ebosSimulator, it);
|
|
|
|
if (converged) {
|
|
break;
|
|
}
|
|
|
|
++it;
|
|
if( localWellsActive() )
|
|
{
|
|
BVector dx_well (nw);
|
|
invDuneD_.mv(resWell_, dx_well);
|
|
|
|
updateWellState(dx_well, well_state);
|
|
updateWellControls(well_state);
|
|
setWellVariables(well_state);
|
|
}
|
|
} while (it < 15);
|
|
|
|
if (!converged) {
|
|
well_state = well_state0;
|
|
}
|
|
|
|
const bool failed = false; // Not needed in this method.
|
|
const int linear_iters = 0; // Not needed in this method
|
|
return IterationReport{failed, converged, linear_iters, it};
|
|
}
|
|
|
|
void printIf(int c, double x, double y, double eps, std::string type) {
|
|
if (std::abs(x-y) > eps) {
|
|
std::cout << type << " " << c << ": "<<x << " " << y << std::endl;
|
|
}
|
|
}
|
|
|
|
|
|
std::vector<double> residual() {
|
|
|
|
const int np = numPhases();
|
|
const int nw = wells().number_of_wells;
|
|
std::vector<double> res(np*nw);
|
|
for( int p=0; p<np; ++p) {
|
|
for (int i = 0; i < nw; ++i) {
|
|
int idx = i + nw*p;
|
|
res[idx] = resWell_[i][flowPhaseToEbosCompIdx(p)];
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
|
|
template <typename Simulator>
|
|
bool getWellConvergence(Simulator& ebosSimulator,
|
|
const int iteration)
|
|
{
|
|
const int np = numPhases();
|
|
const int nc = numCells();
|
|
const double tol_wells = param_.tolerance_wells_;
|
|
const double maxResidualAllowed = param_.max_residual_allowed_;
|
|
|
|
std::vector<double> R_sum(np);
|
|
std::vector<double> B_avg(np);
|
|
std::vector<double> maxCoeff(np);
|
|
std::vector<double> maxNormWell(np);
|
|
Eigen::Array<V::Scalar, Eigen::Dynamic, Eigen::Dynamic> B(nc, np);
|
|
Eigen::Array<V::Scalar, Eigen::Dynamic, Eigen::Dynamic> R(nc, np);
|
|
Eigen::Array<V::Scalar, Eigen::Dynamic, Eigen::Dynamic> tempV(nc, np);
|
|
|
|
for ( int idx = 0; idx < np; ++idx )
|
|
{
|
|
V b(nc);
|
|
for (int cell_idx = 0; cell_idx < nc; ++cell_idx) {
|
|
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(idx);
|
|
|
|
b[cell_idx] = 1 / fs.invB(ebosPhaseIdx).value;
|
|
}
|
|
B.col(idx) = b;
|
|
}
|
|
|
|
detail::convergenceReduction(B, tempV, R, R_sum, maxCoeff, B_avg, maxNormWell, nc, np, pv_, residual());
|
|
|
|
std::vector<double> well_flux_residual(np);
|
|
bool converged_Well = true;
|
|
// Finish computation
|
|
for ( int idx = 0; idx < np; ++idx )
|
|
{
|
|
well_flux_residual[idx] = B_avg[idx] * maxNormWell[idx];
|
|
converged_Well = converged_Well && (well_flux_residual[idx] < tol_wells);
|
|
}
|
|
|
|
// if one of the residuals is NaN, throw exception, so that the solver can be restarted
|
|
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
|
|
const auto& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx));
|
|
|
|
if (std::isnan(well_flux_residual[phaseIdx])) {
|
|
OPM_THROW(Opm::NumericalProblem, "NaN residual for phase " << phaseName);
|
|
}
|
|
if (well_flux_residual[phaseIdx] > maxResidualAllowed) {
|
|
OPM_THROW(Opm::NumericalProblem, "Too large residual for phase " << phaseName);
|
|
}
|
|
}
|
|
|
|
if ( terminal_output_ )
|
|
{
|
|
// Only rank 0 does print to std::cout
|
|
if (iteration == 0) {
|
|
std::string msg;
|
|
msg = "Iter";
|
|
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
|
|
const std::string& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx));
|
|
msg += " W-FLUX(" + phaseName + ")";
|
|
}
|
|
OpmLog::note(msg);
|
|
}
|
|
std::ostringstream ss;
|
|
const std::streamsize oprec = ss.precision(3);
|
|
const std::ios::fmtflags oflags = ss.setf(std::ios::scientific);
|
|
ss << std::setw(4) << iteration;
|
|
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
|
|
ss << std::setw(11) << well_flux_residual[phaseIdx];
|
|
}
|
|
ss.precision(oprec);
|
|
ss.flags(oflags);
|
|
OpmLog::note(ss.str());
|
|
}
|
|
return converged_Well;
|
|
}
|
|
|
|
|
|
|
|
template<typename Simulator>
|
|
void
|
|
computeWellConnectionPressures(const Simulator& ebosSimulator,
|
|
const WellState& xw)
|
|
{
|
|
if( ! localWellsActive() ) return ;
|
|
// 1. Compute properties required by computeConnectionPressureDelta().
|
|
// Note that some of the complexity of this part is due to the function
|
|
// taking std::vector<double> arguments, and not Eigen objects.
|
|
std::vector<double> b_perf;
|
|
std::vector<double> rsmax_perf;
|
|
std::vector<double> rvmax_perf;
|
|
std::vector<double> surf_dens_perf;
|
|
computePropertiesForWellConnectionPressures(ebosSimulator, xw, b_perf, rsmax_perf, rvmax_perf, surf_dens_perf);
|
|
computeWellConnectionDensitesPressures(xw, b_perf, rsmax_perf, rvmax_perf, surf_dens_perf, cell_depths_, gravity_);
|
|
|
|
}
|
|
|
|
template<typename Simulator, class WellState>
|
|
void
|
|
computePropertiesForWellConnectionPressures(const Simulator& ebosSimulator,
|
|
const WellState& xw,
|
|
std::vector<double>& b_perf,
|
|
std::vector<double>& rsmax_perf,
|
|
std::vector<double>& rvmax_perf,
|
|
std::vector<double>& surf_dens_perf)
|
|
{
|
|
const int nperf = wells().well_connpos[wells().number_of_wells];
|
|
const int nw = wells().number_of_wells;
|
|
const PhaseUsage& pu = fluid_->phaseUsage();
|
|
const int np = fluid_->numPhases();
|
|
b_perf.resize(nperf*np);
|
|
rsmax_perf.resize(nperf);
|
|
rvmax_perf.resize(nperf);
|
|
surf_dens_perf.resize(nperf*np);
|
|
|
|
// Compute the average pressure in each well block
|
|
for (int w = 0; w < nw; ++w) {
|
|
for (int perf = wells().well_connpos[w]; perf < wells().well_connpos[w+1]; ++perf) {
|
|
|
|
const int cell_idx = wells().well_cells[perf];
|
|
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
const double p_above = perf == wells().well_connpos[w] ? xw.bhp()[w] : xw.perfPress()[perf - 1];
|
|
const double p_avg = (xw.perfPress()[perf] + p_above)/2;
|
|
double temperature = fs.temperature(FluidSystem::oilPhaseIdx).value;
|
|
|
|
if (pu.phase_used[BlackoilPhases::Aqua]) {
|
|
b_perf[ pu.phase_pos[BlackoilPhases::Aqua] + perf * pu.num_phases] =
|
|
FluidSystem::waterPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
|
|
}
|
|
|
|
if (pu.phase_used[BlackoilPhases::Vapour]) {
|
|
int gaspos = pu.phase_pos[BlackoilPhases::Vapour] + perf * pu.num_phases;
|
|
|
|
if (pu.phase_used[BlackoilPhases::Liquid]) {
|
|
int oilpos = pu.phase_pos[BlackoilPhases::Liquid] + perf * pu.num_phases;
|
|
const double oilrate = std::abs(xw.wellRates()[oilpos]); //in order to handle negative rates in producers
|
|
rvmax_perf[perf] = FluidSystem::gasPvt().saturatedOilVaporizationFactor(fs.pvtRegionIndex(), temperature, p_avg);
|
|
if (oilrate > 0) {
|
|
const double gasrate = std::abs(xw.wellRates()[gaspos]);
|
|
double rv = 0.0;
|
|
if (gasrate > 0) {
|
|
rv = oilrate / gasrate;
|
|
}
|
|
rv = std::min(rv, rvmax_perf[perf]);
|
|
|
|
b_perf[gaspos] = FluidSystem::gasPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg, rv);
|
|
}
|
|
else {
|
|
b_perf[gaspos] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
|
|
}
|
|
|
|
} else {
|
|
b_perf[gaspos] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
|
|
}
|
|
}
|
|
|
|
if (pu.phase_used[BlackoilPhases::Liquid]) {
|
|
int oilpos = pu.phase_pos[BlackoilPhases::Liquid] + perf * pu.num_phases;
|
|
if (pu.phase_used[BlackoilPhases::Vapour]) {
|
|
rsmax_perf[perf] = FluidSystem::oilPvt().saturatedGasDissolutionFactor(fs.pvtRegionIndex(), temperature, p_avg);
|
|
int gaspos = pu.phase_pos[BlackoilPhases::Vapour] + perf * pu.num_phases;
|
|
const double gasrate = std::abs(xw.wellRates()[gaspos]);
|
|
if (gasrate > 0) {
|
|
const double oilrate = std::abs(xw.wellRates()[oilpos]);
|
|
double rs = 0.0;
|
|
if (oilrate > 0) {
|
|
rs = gasrate / oilrate;
|
|
}
|
|
rs = std::min(rs, rsmax_perf[perf]);
|
|
b_perf[oilpos] = FluidSystem::oilPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg, rs);
|
|
} else {
|
|
b_perf[oilpos] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
|
|
}
|
|
} else {
|
|
b_perf[oilpos] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
|
|
}
|
|
}
|
|
|
|
// Surface density.
|
|
for (int p = 0; p < pu.num_phases; ++p) {
|
|
surf_dens_perf[np*perf + p] = FluidSystem::referenceDensity( flowPhaseToEbosPhaseIdx( p ), fs.pvtRegionIndex());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class WellState>
|
|
void updateWellState(const BVector& dwells,
|
|
WellState& well_state)
|
|
{
|
|
if( localWellsActive() )
|
|
{
|
|
const int np = wells().number_of_phases;
|
|
const int nw = wells().number_of_wells;
|
|
|
|
double dFLimit = 0.2;
|
|
double dBHPLimit = 2.0;
|
|
std::vector<double> xvar_well_old = well_state.wellSolutions();
|
|
|
|
for (int w = 0; w < nw; ++w) {
|
|
|
|
// update the second and third well variable (The flux fractions)
|
|
std::vector<double> F(np,0.0);
|
|
const int sign2 = dwells[w][flowPhaseToEbosCompIdx(1)] > 0 ? 1: -1;
|
|
const double dx2_limited = sign2 * std::min(std::abs(dwells[w][flowPhaseToEbosCompIdx(1)]),dFLimit);
|
|
well_state.wellSolutions()[nw + w] = xvar_well_old[nw + w] - dx2_limited;
|
|
const int sign3 = dwells[w][flowPhaseToEbosCompIdx(2)] > 0 ? 1: -1;
|
|
const double dx3_limited = sign3 * std::min(std::abs(dwells[w][flowPhaseToEbosCompIdx(2)]),dFLimit);
|
|
well_state.wellSolutions()[2*nw + w] = xvar_well_old[2*nw + w] - dx3_limited;
|
|
F[Water] = well_state.wellSolutions()[nw + w];
|
|
F[Gas] = well_state.wellSolutions()[2*nw + w];
|
|
F[Oil] = 1.0 - F[Water] - F[Gas];
|
|
|
|
if (F[Water] < 0.0) {
|
|
F[Gas] /= (1.0 - F[Water]);
|
|
F[Oil] /= (1.0 - F[Water]);
|
|
F[Water] = 0.0;
|
|
}
|
|
if (F[Gas] < 0.0) {
|
|
F[Water] /= (1.0 - F[Gas]);
|
|
F[Oil] /= (1.0 - F[Gas]);
|
|
F[Gas] = 0.0;
|
|
}
|
|
if (F[Oil] < 0.0) {
|
|
F[Water] /= (1.0 - F[Oil]);
|
|
F[Gas] /= (1.0 - F[Oil]);
|
|
F[Oil] = 0.0;
|
|
}
|
|
well_state.wellSolutions()[nw + w] = F[Water];
|
|
well_state.wellSolutions()[2*nw + w] = F[Gas];
|
|
//std::cout << wells().name[w] << " "<< F[Water] << " " << F[Oil] << " " << F[Gas] << std::endl;
|
|
|
|
// The interpretation of the first well variable depends on the well control
|
|
const WellControls* wc = wells().ctrls[w];
|
|
|
|
// The current control in the well state overrides
|
|
// the current control set in the Wells struct, which
|
|
// is instead treated as a default.
|
|
const int current = well_state.currentControls()[w];
|
|
const double target_rate = well_controls_iget_target(wc, current);
|
|
|
|
std::vector<double> g = {1,1,0.01};
|
|
if (well_controls_iget_type(wc, current) == RESERVOIR_RATE) {
|
|
const double* distr = well_controls_iget_distr(wc, current);
|
|
for (int p = 0; p < np; ++p) {
|
|
F[p] /= distr[p];
|
|
}
|
|
} else {
|
|
for (int p = 0; p < np; ++p) {
|
|
F[p] /= g[p];
|
|
}
|
|
}
|
|
|
|
switch (well_controls_iget_type(wc, current)) {
|
|
case THP: // The BHP and THP both uses the total rate as first well variable.
|
|
case BHP:
|
|
{
|
|
well_state.wellSolutions()[w] = xvar_well_old[w] - dwells[w][flowPhaseToEbosCompIdx(0)];
|
|
|
|
switch (wells().type[w]) {
|
|
case INJECTOR:
|
|
for (int p = 0; p < np; ++p) {
|
|
const double comp_frac = wells().comp_frac[np*w + p];
|
|
well_state.wellRates()[w*np + p] = comp_frac * well_state.wellSolutions()[w];
|
|
}
|
|
break;
|
|
case PRODUCER:
|
|
for (int p = 0; p < np; ++p) {
|
|
well_state.wellRates()[w*np + p] = well_state.wellSolutions()[w] * F[p];
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (well_controls_iget_type(wc, current) == THP) {
|
|
|
|
// Calculate bhp from thp control and well rates
|
|
double aqua = 0.0;
|
|
double liquid = 0.0;
|
|
double vapour = 0.0;
|
|
|
|
const Opm::PhaseUsage& pu = fluid_->phaseUsage();
|
|
|
|
if ((*active_)[ Water ]) {
|
|
aqua = well_state.wellRates()[w*np + pu.phase_pos[ Water ] ];
|
|
}
|
|
if ((*active_)[ Oil ]) {
|
|
liquid = well_state.wellRates()[w*np + pu.phase_pos[ Oil ] ];
|
|
}
|
|
if ((*active_)[ Gas ]) {
|
|
vapour = well_state.wellRates()[w*np + pu.phase_pos[ Gas ] ];
|
|
}
|
|
|
|
const int vfp = well_controls_iget_vfp(wc, current);
|
|
const double& thp = well_controls_iget_target(wc, current);
|
|
const double& alq = well_controls_iget_alq(wc, current);
|
|
|
|
//Set *BHP* target by calculating bhp from THP
|
|
const WellType& well_type = wells().type[w];
|
|
// pick the density in the top layer
|
|
const int perf = wells().well_connpos[w];
|
|
const double rho = well_perforation_densities_[perf];
|
|
|
|
if (well_type == INJECTOR) {
|
|
double dp = wellhelpers::computeHydrostaticCorrection(
|
|
wells(), w, vfp_properties_->getInj()->getTable(vfp)->getDatumDepth(),
|
|
rho, gravity_);
|
|
|
|
well_state.bhp()[w] = vfp_properties_->getInj()->bhp(vfp, aqua, liquid, vapour, thp) - dp;
|
|
}
|
|
else if (well_type == PRODUCER) {
|
|
double dp = wellhelpers::computeHydrostaticCorrection(
|
|
wells(), w, vfp_properties_->getProd()->getTable(vfp)->getDatumDepth(),
|
|
rho, gravity_);
|
|
|
|
well_state.bhp()[w] = vfp_properties_->getProd()->bhp(vfp, aqua, liquid, vapour, thp, alq) - dp;
|
|
}
|
|
else {
|
|
OPM_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well");
|
|
}
|
|
}
|
|
|
|
}
|
|
break;
|
|
case SURFACE_RATE: // Both rate controls use bhp as first well variable
|
|
case RESERVOIR_RATE:
|
|
{
|
|
const int sign1 = dwells[w][flowPhaseToEbosCompIdx(0)] > 0 ? 1: -1;
|
|
const double dx1_limited = sign1 * std::min(std::abs(dwells[w][flowPhaseToEbosCompIdx(0)]),std::abs(xvar_well_old[w])*dBHPLimit);
|
|
well_state.wellSolutions()[w] = xvar_well_old[w] - dx1_limited;
|
|
well_state.bhp()[w] = well_state.wellSolutions()[w];
|
|
|
|
if (well_controls_iget_type(wc, current) == SURFACE_RATE) {
|
|
if (wells().type[w]==PRODUCER) {
|
|
|
|
double F_target = 0.0;
|
|
for (int p = 0; p < np; ++p) {
|
|
F_target += wells().comp_frac[np*w + p] * F[p];
|
|
}
|
|
for (int p = 0; p < np; ++p) {
|
|
well_state.wellRates()[np*w + p] = F[p] * target_rate /F_target;
|
|
}
|
|
} else {
|
|
|
|
for (int p = 0; p < np; ++p) {
|
|
well_state.wellRates()[w*np + p] = wells().comp_frac[np*w + p] * target_rate;
|
|
}
|
|
}
|
|
} else { // RESERVOIR_RATE
|
|
for (int p = 0; p < np; ++p) {
|
|
well_state.wellRates()[np*w + p] = F[p] * target_rate;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
template <class WellState>
|
|
void updateWellControls(WellState& xw)
|
|
{
|
|
if( !localWellsActive() ) return ;
|
|
|
|
std::string modestring[4] = { "BHP", "THP", "RESERVOIR_RATE", "SURFACE_RATE" };
|
|
// Find, for each well, if any constraints are broken. If so,
|
|
// switch control to first broken constraint.
|
|
const int np = wells().number_of_phases;
|
|
const int nw = wells().number_of_wells;
|
|
#pragma omp parallel for schedule(dynamic)
|
|
for (int w = 0; w < nw; ++w) {
|
|
WellControls* wc = wells().ctrls[w];
|
|
// The current control in the well state overrides
|
|
// the current control set in the Wells struct, which
|
|
// is instead treated as a default.
|
|
int current = xw.currentControls()[w];
|
|
// Loop over all controls except the current one, and also
|
|
// skip any RESERVOIR_RATE controls, since we cannot
|
|
// handle those.
|
|
const int nwc = well_controls_get_num(wc);
|
|
int ctrl_index = 0;
|
|
for (; ctrl_index < nwc; ++ctrl_index) {
|
|
if (ctrl_index == current) {
|
|
// This is the currently used control, so it is
|
|
// used as an equation. So this is not used as an
|
|
// inequality constraint, and therefore skipped.
|
|
continue;
|
|
}
|
|
if (wellhelpers::constraintBroken(
|
|
xw.bhp(), xw.thp(), xw.wellRates(),
|
|
w, np, wells().type[w], wc, ctrl_index)) {
|
|
// ctrl_index will be the index of the broken constraint after the loop.
|
|
break;
|
|
}
|
|
}
|
|
if (ctrl_index != nwc) {
|
|
// Constraint number ctrl_index was broken, switch to it.
|
|
// We disregard terminal_ouput here as with it only messages
|
|
// for wells on one process will be printed.
|
|
std::ostringstream ss;
|
|
ss << "Switching control mode for well " << wells().name[w]
|
|
<< " from " << modestring[well_controls_iget_type(wc, current)]
|
|
<< " to " << modestring[well_controls_iget_type(wc, ctrl_index)] << std::endl;
|
|
OpmLog::info(ss.str());
|
|
xw.currentControls()[w] = ctrl_index;
|
|
current = xw.currentControls()[w];
|
|
well_controls_set_current( wc, current);
|
|
|
|
|
|
|
|
// Updating well state and primary variables if constraint is broken
|
|
|
|
// Target values are used as initial conditions for BHP, THP, and SURFACE_RATE
|
|
const double target = well_controls_iget_target(wc, current);
|
|
const double* distr = well_controls_iget_distr(wc, current);
|
|
switch (well_controls_iget_type(wc, current)) {
|
|
case BHP:
|
|
xw.bhp()[w] = target;
|
|
break;
|
|
|
|
case THP: {
|
|
double aqua = 0.0;
|
|
double liquid = 0.0;
|
|
double vapour = 0.0;
|
|
|
|
const Opm::PhaseUsage& pu = fluid_->phaseUsage();
|
|
|
|
if ((*active_)[ Water ]) {
|
|
aqua = xw.wellRates()[w*np + pu.phase_pos[ Water ] ];
|
|
}
|
|
if ((*active_)[ Oil ]) {
|
|
liquid = xw.wellRates()[w*np + pu.phase_pos[ Oil ] ];
|
|
}
|
|
if ((*active_)[ Gas ]) {
|
|
vapour = xw.wellRates()[w*np + pu.phase_pos[ Gas ] ];
|
|
}
|
|
|
|
const int vfp = well_controls_iget_vfp(wc, current);
|
|
const double& thp = well_controls_iget_target(wc, current);
|
|
const double& alq = well_controls_iget_alq(wc, current);
|
|
|
|
//Set *BHP* target by calculating bhp from THP
|
|
const WellType& well_type = wells().type[w];
|
|
|
|
// pick the density in the top layer
|
|
const int perf = wells().well_connpos[w];
|
|
const double rho = well_perforation_densities_[perf];
|
|
|
|
if (well_type == INJECTOR) {
|
|
double dp = wellhelpers::computeHydrostaticCorrection(
|
|
wells(), w, vfp_properties_->getInj()->getTable(vfp)->getDatumDepth(),
|
|
rho, gravity_);
|
|
|
|
xw.bhp()[w] = vfp_properties_->getInj()->bhp(vfp, aqua, liquid, vapour, thp) - dp;
|
|
}
|
|
else if (well_type == PRODUCER) {
|
|
double dp = wellhelpers::computeHydrostaticCorrection(
|
|
wells(), w, vfp_properties_->getProd()->getTable(vfp)->getDatumDepth(),
|
|
rho, gravity_);
|
|
|
|
xw.bhp()[w] = vfp_properties_->getProd()->bhp(vfp, aqua, liquid, vapour, thp, alq) - dp;
|
|
}
|
|
else {
|
|
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well");
|
|
}
|
|
break;
|
|
}
|
|
|
|
case RESERVOIR_RATE:
|
|
// No direct change to any observable quantity at
|
|
// surface condition. In this case, use existing
|
|
// flow rates as initial conditions as reservoir
|
|
// rate acts only in aggregate.
|
|
break;
|
|
|
|
case SURFACE_RATE:
|
|
// assign target value as initial guess for injectors and
|
|
// single phase producers (orat, grat, wrat)
|
|
const WellType& well_type = wells().type[w];
|
|
if (well_type == INJECTOR) {
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
const double& compi = wells().comp_frac[np * w + phase];
|
|
//if (compi > 0.0) {
|
|
xw.wellRates()[np*w + phase] = target * compi;
|
|
//}
|
|
}
|
|
} else if (well_type == PRODUCER) {
|
|
|
|
// only set target as initial rates for single phase
|
|
// producers. (orat, grat and wrat, and not lrat)
|
|
// lrat will result in numPhasesWithTargetsUnderThisControl == 2
|
|
int numPhasesWithTargetsUnderThisControl = 0;
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
if (distr[phase] > 0.0) {
|
|
numPhasesWithTargetsUnderThisControl += 1;
|
|
}
|
|
}
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
if (distr[phase] > 0.0 && numPhasesWithTargetsUnderThisControl < 2 ) {
|
|
xw.wellRates()[np*w + phase] = target * distr[phase];
|
|
}
|
|
}
|
|
} else {
|
|
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well");
|
|
}
|
|
|
|
|
|
break;
|
|
}
|
|
std::vector<double> g = {1,1,0.01};
|
|
if (well_controls_iget_type(wc, current) == RESERVOIR_RATE) {
|
|
const double* distr = well_controls_iget_distr(wc, current);
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
g[phase] = distr[phase];
|
|
}
|
|
}
|
|
switch (well_controls_iget_type(wc, current)) {
|
|
case THP:
|
|
case BHP:
|
|
{
|
|
const WellType& well_type = wells().type[w];
|
|
xw.wellSolutions()[w] = 0.0;
|
|
if (well_type == INJECTOR) {
|
|
for (int p = 0; p < np; ++p) {
|
|
xw.wellSolutions()[w] += xw.wellRates()[np*w + p] * wells().comp_frac[np*w + p];
|
|
}
|
|
} else {
|
|
for (int p = 0; p < np; ++p) {
|
|
xw.wellSolutions()[w] += g[p] * xw.wellRates()[np*w + p];
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
|
|
case RESERVOIR_RATE: // Intentional fall-through
|
|
case SURFACE_RATE:
|
|
{
|
|
xw.wellSolutions()[w] = xw.bhp()[w];
|
|
}
|
|
break;
|
|
}
|
|
|
|
double tot_well_rate = 0.0;
|
|
for (int p = 0; p < np; ++p) {
|
|
tot_well_rate += g[p] * xw.wellRates()[np*w + p];
|
|
}
|
|
if(std::abs(tot_well_rate) > 0) {
|
|
xw.wellSolutions()[nw + w] = g[Water] * xw.wellRates()[np*w + Water] / tot_well_rate;
|
|
xw.wellSolutions()[2*nw + w] = g[Gas] * xw.wellRates()[np*w + Gas] / tot_well_rate ;
|
|
} else {
|
|
xw.wellSolutions()[nw + w] = wells().comp_frac[np*w + Water];
|
|
xw.wellSolutions()[2 * nw + w] = wells().comp_frac[np*w + Gas];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
int flowPhaseToEbosPhaseIdx( const int phaseIdx ) const
|
|
{
|
|
const int flowToEbos[ 3 ] = { FluidSystem::waterPhaseIdx, FluidSystem::oilPhaseIdx, FluidSystem::gasPhaseIdx };
|
|
return flowToEbos[ phaseIdx ];
|
|
}
|
|
|
|
/// upate the dynamic lists related to economic limits
|
|
template<class WellState>
|
|
void
|
|
updateListEconLimited(ScheduleConstPtr schedule,
|
|
const int current_step,
|
|
const Wells* wells_struct,
|
|
const WellState& well_state,
|
|
DynamicListEconLimited& list_econ_limited) const
|
|
{
|
|
const int nw = wells_struct->number_of_wells;
|
|
|
|
for (int w = 0; w < nw; ++w) {
|
|
// flag to check if the mim oil/gas rate limit is violated
|
|
bool rate_limit_violated = false;
|
|
const std::string& well_name = wells_struct->name[w];
|
|
const Well* well_ecl = schedule->getWell(well_name);
|
|
const WellEconProductionLimits& econ_production_limits = well_ecl->getEconProductionLimits(current_step);
|
|
|
|
// economic limits only apply for production wells.
|
|
if (wells_struct->type[w] != PRODUCER) {
|
|
continue;
|
|
}
|
|
|
|
// if no limit is effective here, then continue to the next well
|
|
if ( !econ_production_limits.onAnyEffectiveLimit() ) {
|
|
continue;
|
|
}
|
|
// for the moment, we only handle rate limits, not handling potential limits
|
|
// the potential limits should not be difficult to add
|
|
const WellEcon::QuantityLimitEnum& quantity_limit = econ_production_limits.quantityLimit();
|
|
if (quantity_limit == WellEcon::POTN) {
|
|
const std::string msg = std::string("POTN limit for well ") + well_name + std::string(" is not supported for the moment. \n")
|
|
+ std::string("All the limits will be evaluated based on RATE. ");
|
|
OpmLog::warning("NOT_SUPPORTING_POTN", msg);
|
|
}
|
|
|
|
const WellMapType& well_map = well_state.wellMap();
|
|
const typename WellMapType::const_iterator i_well = well_map.find(well_name);
|
|
assert(i_well != well_map.end()); // should always be found?
|
|
const WellMapEntryType& map_entry = i_well->second;
|
|
const int well_number = map_entry[0];
|
|
|
|
if (econ_production_limits.onAnyRateLimit()) {
|
|
rate_limit_violated = checkRateEconLimits(econ_production_limits, well_state, well_number);
|
|
}
|
|
|
|
if (rate_limit_violated) {
|
|
if (econ_production_limits.endRun()) {
|
|
const std::string warning_message = std::string("ending run after well closed due to economic limits is not supported yet \n")
|
|
+ std::string("the program will keep running after ") + well_name + std::string(" is closed");
|
|
OpmLog::warning("NOT_SUPPORTING_ENDRUN", warning_message);
|
|
}
|
|
|
|
if (econ_production_limits.validFollowonWell()) {
|
|
OpmLog::warning("NOT_SUPPORTING_FOLLOWONWELL", "opening following on well after well closed is not supported yet");
|
|
}
|
|
|
|
if (well_ecl->getAutomaticShutIn()) {
|
|
list_econ_limited.addShutWell(well_name);
|
|
const std::string msg = std::string("well ") + well_name + std::string(" will be shut in due to economic limit");
|
|
OpmLog::info(msg);
|
|
} else {
|
|
list_econ_limited.addStoppedWell(well_name);
|
|
const std::string msg = std::string("well ") + well_name + std::string(" will be stopped due to economic limit");
|
|
OpmLog::info(msg);
|
|
}
|
|
// the well is closed, not need to check other limits
|
|
continue;
|
|
}
|
|
|
|
// checking for ratio related limits, mostly all kinds of ratio.
|
|
bool ratio_limits_violated = false;
|
|
RatioCheckTuple ratio_check_return;
|
|
|
|
if (econ_production_limits.onAnyRatioLimit()) {
|
|
ratio_check_return = checkRatioEconLimits(econ_production_limits, well_state, map_entry);
|
|
ratio_limits_violated = std::get<0>(ratio_check_return);
|
|
}
|
|
|
|
if (ratio_limits_violated) {
|
|
const bool last_connection = std::get<1>(ratio_check_return);
|
|
const int worst_offending_connection = std::get<2>(ratio_check_return);
|
|
|
|
const int perf_start = map_entry[1];
|
|
|
|
assert((worst_offending_connection >= 0) && (worst_offending_connection < map_entry[2]));
|
|
|
|
const int cell_worst_offending_connection = wells_struct->well_cells[perf_start + worst_offending_connection];
|
|
list_econ_limited.addClosedConnectionsForWell(well_name, cell_worst_offending_connection);
|
|
const std::string msg = std::string("Connection ") + std::to_string(worst_offending_connection) + std::string(" for well ")
|
|
+ well_name + std::string(" will be closed due to economic limit");
|
|
OpmLog::info(msg);
|
|
|
|
if (last_connection) {
|
|
list_econ_limited.addShutWell(well_name);
|
|
const std::string msg2 = well_name + std::string(" will be shut due to the last connection closed");
|
|
OpmLog::info(msg2);
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
template <class WellState>
|
|
void computeWellConnectionDensitesPressures(const WellState& xw,
|
|
const std::vector<double>& b_perf,
|
|
const std::vector<double>& rsmax_perf,
|
|
const std::vector<double>& rvmax_perf,
|
|
const std::vector<double>& surf_dens_perf,
|
|
const std::vector<double>& depth_perf,
|
|
const double grav) {
|
|
// Compute densities
|
|
well_perforation_densities_ =
|
|
WellDensitySegmented::computeConnectionDensities(
|
|
wells(), xw, fluid_->phaseUsage(),
|
|
b_perf, rsmax_perf, rvmax_perf, surf_dens_perf);
|
|
|
|
// Compute pressure deltas
|
|
well_perforation_pressure_diffs_ =
|
|
WellDensitySegmented::computeConnectionPressureDelta(
|
|
wells(), depth_perf, well_perforation_densities_, grav);
|
|
|
|
|
|
|
|
}
|
|
|
|
protected:
|
|
bool wells_active_;
|
|
const Wells* wells_;
|
|
ModelParameters param_;
|
|
bool terminal_output_;
|
|
|
|
const BlackoilPropsAdInterface* fluid_;
|
|
const std::vector<bool>* active_;
|
|
const VFPProperties* vfp_properties_;
|
|
double gravity_;
|
|
// the depth of the all the cell centers
|
|
// for standard Wells, it the same with the perforation depth
|
|
std::vector<double> cell_depths_;
|
|
std::vector<double> pv_;
|
|
|
|
std::vector<double> well_perforation_densities_;
|
|
std::vector<double> well_perforation_pressure_diffs_;
|
|
|
|
std::vector<EvalWell> wellVariables_;
|
|
std::vector<double> F0_;
|
|
|
|
Mat duneB_;
|
|
Mat duneC_;
|
|
Mat invDuneD_;
|
|
|
|
BVector resWell_;
|
|
|
|
// protected methods
|
|
EvalWell getBhp(const int wellIdx) const {
|
|
const WellControls* wc = wells().ctrls[wellIdx];
|
|
if (well_controls_get_current_type(wc) == BHP) {
|
|
EvalWell bhp = 0.0;
|
|
const double target_rate = well_controls_get_current_target(wc);
|
|
bhp.value = target_rate;
|
|
return bhp;
|
|
} else if (well_controls_get_current_type(wc) == THP) {
|
|
const int control = well_controls_get_current(wc);
|
|
const double thp = well_controls_get_current_target(wc);
|
|
const double alq = well_controls_iget_alq(wc, control);
|
|
const int table_id = well_controls_iget_vfp(wc, control);
|
|
EvalWell aqua = 0.0;
|
|
EvalWell liquid = 0.0;
|
|
EvalWell vapour = 0.0;
|
|
EvalWell bhp = 0.0;
|
|
double vfp_ref_depth = 0.0;
|
|
|
|
const Opm::PhaseUsage& pu = fluid_->phaseUsage();
|
|
|
|
if ((*active_)[ Water ]) {
|
|
aqua = getQs(wellIdx, pu.phase_pos[ Water]);
|
|
}
|
|
if ((*active_)[ Oil ]) {
|
|
liquid = getQs(wellIdx, pu.phase_pos[ Oil ]);
|
|
}
|
|
if ((*active_)[ Gas ]) {
|
|
vapour = getQs(wellIdx, pu.phase_pos[ Gas ]);
|
|
}
|
|
if (wells().type[wellIdx] == INJECTOR) {
|
|
bhp = vfp_properties_->getInj()->bhp(table_id, aqua, liquid, vapour, thp);
|
|
vfp_ref_depth = vfp_properties_->getInj()->getTable(table_id)->getDatumDepth();
|
|
} else {
|
|
bhp = vfp_properties_->getProd()->bhp(table_id, aqua, liquid, vapour, thp, alq);
|
|
vfp_ref_depth = vfp_properties_->getProd()->getTable(table_id)->getDatumDepth();
|
|
}
|
|
|
|
// pick the density in the top layer
|
|
const int perf = wells().well_connpos[wellIdx];
|
|
const double rho = well_perforation_densities_[perf];
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(wells(), wellIdx, vfp_ref_depth, rho, gravity_);
|
|
bhp -= dp;
|
|
return bhp;
|
|
|
|
}
|
|
return wellVariables_[wellIdx];
|
|
}
|
|
|
|
EvalWell getQs(const int wellIdx, const int phaseIdx) const {
|
|
EvalWell qs = 0.0;
|
|
const WellControls* wc = wells().ctrls[wellIdx];
|
|
const int np = wells().number_of_phases;
|
|
const double target_rate = well_controls_get_current_target(wc);
|
|
|
|
if (wells().type[wellIdx] == INJECTOR) {
|
|
const double comp_frac = wells().comp_frac[np*wellIdx + phaseIdx];
|
|
if (comp_frac == 0.0)
|
|
return qs;
|
|
|
|
if (well_controls_get_current_type(wc) == BHP || well_controls_get_current_type(wc) == THP) {
|
|
return wellVariables_[wellIdx];
|
|
}
|
|
qs.value = target_rate;
|
|
return qs;
|
|
}
|
|
|
|
// Producers
|
|
if (well_controls_get_current_type(wc) == BHP || well_controls_get_current_type(wc) == THP ) {
|
|
return wellVariables_[wellIdx] * wellVolumeFractionScaled(wellIdx,phaseIdx);
|
|
}
|
|
if (well_controls_get_current_type(wc) == SURFACE_RATE) {
|
|
const double comp_frac = wells().comp_frac[np*wellIdx + phaseIdx];
|
|
|
|
if (comp_frac == 1.0) {
|
|
qs.value = target_rate;
|
|
return qs;
|
|
}
|
|
int currentControlIdx = 0;
|
|
for (int i = 0; i < np; ++i) {
|
|
currentControlIdx += wells().comp_frac[np*wellIdx + i] * i;
|
|
}
|
|
|
|
if (wellVolumeFractionScaled(wellIdx,currentControlIdx) == 0) {
|
|
return qs;
|
|
}
|
|
return (target_rate * wellVolumeFractionScaled(wellIdx,phaseIdx) / wellVolumeFractionScaled(wellIdx,currentControlIdx));
|
|
}
|
|
// ReservoirRate
|
|
return target_rate * wellVolumeFractionScaled(wellIdx,phaseIdx);
|
|
}
|
|
|
|
EvalWell wellVolumeFraction(const int wellIdx, const int phaseIdx) const {
|
|
assert(wells().number_of_phases == 3);
|
|
const int nw = wells().number_of_wells;
|
|
if (phaseIdx == Water) {
|
|
return wellVariables_[nw + wellIdx];
|
|
}
|
|
|
|
if (phaseIdx == Gas) {
|
|
return wellVariables_[2*nw + wellIdx];
|
|
}
|
|
|
|
// Oil
|
|
return 1.0 - wellVariables_[nw + wellIdx] - wellVariables_[2 * nw + wellIdx];
|
|
}
|
|
|
|
EvalWell wellVolumeFractionScaled(const int wellIdx, const int phaseIdx) const {
|
|
const WellControls* wc = wells().ctrls[wellIdx];
|
|
if (well_controls_get_current_type(wc) == RESERVOIR_RATE) {
|
|
const double* distr = well_controls_get_current_distr(wc);
|
|
return wellVolumeFraction(wellIdx, phaseIdx) / distr[phaseIdx];
|
|
}
|
|
std::vector<double> g = {1,1,0.01};
|
|
return (wellVolumeFraction(wellIdx, phaseIdx) / g[phaseIdx]);
|
|
}
|
|
|
|
|
|
|
|
template <class WellState>
|
|
bool checkRateEconLimits(const WellEconProductionLimits& econ_production_limits,
|
|
const WellState& well_state,
|
|
const int well_number) const
|
|
{
|
|
const Opm::PhaseUsage& pu = fluid_->phaseUsage();
|
|
const int np = well_state.numPhases();
|
|
|
|
if (econ_production_limits.onMinOilRate()) {
|
|
assert((*active_)[Oil]);
|
|
const double oil_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Oil ] ];
|
|
const double min_oil_rate = econ_production_limits.minOilRate();
|
|
if (std::abs(oil_rate) < min_oil_rate) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (econ_production_limits.onMinGasRate() ) {
|
|
assert((*active_)[Gas]);
|
|
const double gas_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Gas ] ];
|
|
const double min_gas_rate = econ_production_limits.minGasRate();
|
|
if (std::abs(gas_rate) < min_gas_rate) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (econ_production_limits.onMinLiquidRate() ) {
|
|
assert((*active_)[Oil]);
|
|
assert((*active_)[Water]);
|
|
const double oil_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Oil ] ];
|
|
const double water_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Water ] ];
|
|
const double liquid_rate = oil_rate + water_rate;
|
|
const double min_liquid_rate = econ_production_limits.minLiquidRate();
|
|
if (std::abs(liquid_rate) < min_liquid_rate) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (econ_production_limits.onMinReservoirFluidRate()) {
|
|
OpmLog::warning("NOT_SUPPORTING_MIN_RESERVOIR_FLUID_RATE", "Minimum reservoir fluid production rate limit is not supported yet");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
using WellMapType = typename WellState::WellMapType;
|
|
using WellMapEntryType = typename WellState::mapentry_t;
|
|
|
|
// a tuple type for ratio limit check.
|
|
// first value indicates whether ratio limit is violated, when the ratio limit is not violated, the following three
|
|
// values should not be used.
|
|
// second value indicates whehter there is only one connection left.
|
|
// third value indicates the indx of the worst-offending connection.
|
|
// the last value indicates the extent of the violation for the worst-offending connection, which is defined by
|
|
// the ratio of the actual value to the value of the violated limit.
|
|
using RatioCheckTuple = std::tuple<bool, bool, int, double>;
|
|
|
|
enum ConnectionIndex {
|
|
INVALIDCONNECTION = -10000
|
|
};
|
|
|
|
|
|
template <class WellState>
|
|
RatioCheckTuple checkRatioEconLimits(const WellEconProductionLimits& econ_production_limits,
|
|
const WellState& well_state,
|
|
const WellMapEntryType& map_entry) const
|
|
{
|
|
// TODO: not sure how to define the worst-offending connection when more than one
|
|
// ratio related limit is violated.
|
|
// The defintion used here is that we define the violation extent based on the
|
|
// ratio between the value and the corresponding limit.
|
|
// For each violated limit, we decide the worst-offending connection separately.
|
|
// Among the worst-offending connections, we use the one has the biggest violation
|
|
// extent.
|
|
|
|
bool any_limit_violated = false;
|
|
bool last_connection = false;
|
|
int worst_offending_connection = INVALIDCONNECTION;
|
|
double violation_extent = -1.0;
|
|
|
|
if (econ_production_limits.onMaxWaterCut()) {
|
|
const RatioCheckTuple water_cut_return = checkMaxWaterCutLimit(econ_production_limits, well_state, map_entry);
|
|
bool water_cut_violated = std::get<0>(water_cut_return);
|
|
if (water_cut_violated) {
|
|
any_limit_violated = true;
|
|
const double violation_extent_water_cut = std::get<3>(water_cut_return);
|
|
if (violation_extent_water_cut > violation_extent) {
|
|
violation_extent = violation_extent_water_cut;
|
|
worst_offending_connection = std::get<2>(water_cut_return);
|
|
last_connection = std::get<1>(water_cut_return);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (econ_production_limits.onMaxGasOilRatio()) {
|
|
OpmLog::warning("NOT_SUPPORTING_MAX_GOR", "the support for max Gas-Oil ratio is not implemented yet!");
|
|
}
|
|
|
|
if (econ_production_limits.onMaxWaterGasRatio()) {
|
|
OpmLog::warning("NOT_SUPPORTING_MAX_WGR", "the support for max Water-Gas ratio is not implemented yet!");
|
|
}
|
|
|
|
if (econ_production_limits.onMaxGasLiquidRatio()) {
|
|
OpmLog::warning("NOT_SUPPORTING_MAX_GLR", "the support for max Gas-Liquid ratio is not implemented yet!");
|
|
}
|
|
|
|
if (any_limit_violated) {
|
|
assert(worst_offending_connection >=0);
|
|
assert(violation_extent > 1.);
|
|
}
|
|
|
|
return std::make_tuple(any_limit_violated, last_connection, worst_offending_connection, violation_extent);
|
|
}
|
|
|
|
template <class WellState>
|
|
RatioCheckTuple checkMaxWaterCutLimit(const WellEconProductionLimits& econ_production_limits,
|
|
const WellState& well_state,
|
|
const WellMapEntryType& map_entry) const
|
|
{
|
|
bool water_cut_limit_violated = false;
|
|
int worst_offending_connection = INVALIDCONNECTION;
|
|
bool last_connection = false;
|
|
double violation_extent = -1.0;
|
|
|
|
const int np = well_state.numPhases();
|
|
const Opm::PhaseUsage& pu = fluid_->phaseUsage();
|
|
const int well_number = map_entry[0];
|
|
|
|
assert((*active_)[Oil]);
|
|
assert((*active_)[Water]);
|
|
|
|
const double oil_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Oil ] ];
|
|
const double water_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Water ] ];
|
|
const double liquid_rate = oil_rate + water_rate;
|
|
double water_cut;
|
|
if (std::abs(liquid_rate) != 0.) {
|
|
water_cut = water_rate / liquid_rate;
|
|
} else {
|
|
water_cut = 0.0;
|
|
}
|
|
|
|
const double max_water_cut_limit = econ_production_limits.maxWaterCut();
|
|
if (water_cut > max_water_cut_limit) {
|
|
water_cut_limit_violated = true;
|
|
}
|
|
|
|
if (water_cut_limit_violated) {
|
|
// need to handle the worst_offending_connection
|
|
const int perf_start = map_entry[1];
|
|
const int perf_number = map_entry[2];
|
|
|
|
std::vector<double> water_cut_perf(perf_number);
|
|
for (int perf = 0; perf < perf_number; ++perf) {
|
|
const int i_perf = perf_start + perf;
|
|
const double oil_perf_rate = well_state.perfPhaseRates()[i_perf * np + pu.phase_pos[ Oil ] ];
|
|
const double water_perf_rate = well_state.perfPhaseRates()[i_perf * np + pu.phase_pos[ Water ] ];
|
|
const double liquid_perf_rate = oil_perf_rate + water_perf_rate;
|
|
if (std::abs(liquid_perf_rate) != 0.) {
|
|
water_cut_perf[perf] = water_perf_rate / liquid_perf_rate;
|
|
} else {
|
|
water_cut_perf[perf] = 0.;
|
|
}
|
|
}
|
|
|
|
last_connection = (perf_number == 1);
|
|
if (last_connection) {
|
|
worst_offending_connection = 0;
|
|
violation_extent = water_cut_perf[0] / max_water_cut_limit;
|
|
return std::make_tuple(water_cut_limit_violated, last_connection, worst_offending_connection, violation_extent);
|
|
}
|
|
|
|
double max_water_cut_perf = 0.;
|
|
for (int perf = 0; perf < perf_number; ++perf) {
|
|
if (water_cut_perf[perf] > max_water_cut_perf) {
|
|
worst_offending_connection = perf;
|
|
max_water_cut_perf = water_cut_perf[perf];
|
|
}
|
|
}
|
|
|
|
assert(max_water_cut_perf != 0.);
|
|
assert((worst_offending_connection >= 0) && (worst_offending_connection < perf_number));
|
|
|
|
violation_extent = max_water_cut_perf / max_water_cut_limit;
|
|
}
|
|
|
|
return std::make_tuple(water_cut_limit_violated, last_connection, worst_offending_connection, violation_extent);
|
|
}
|
|
|
|
};
|
|
|
|
|
|
} // namespace Opm
|
|
|
|
#include "StandardWellsDense_impl.hpp"
|
|
|
|
#endif
|