mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-29 10:40:59 -06:00
92538b0612
Moving it ensures it is also done for restart simulation runs. Without this, the well model will actually initialize the IQs, but only for owned cells, not overlap/ghost cells, which caused parallel failure.
385 lines
15 KiB
C++
385 lines
15 KiB
C++
/*
|
|
Copyright 2013, 2015, 2020 SINTEF Digital, Mathematics and Cybernetics.
|
|
Copyright 2015 Andreas Lauser
|
|
Copyright 2017 IRIS
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_SIMULATORFULLYIMPLICITBLACKOILEBOS_HEADER_INCLUDED
|
|
#define OPM_SIMULATORFULLYIMPLICITBLACKOILEBOS_HEADER_INCLUDED
|
|
|
|
#include <opm/simulators/flow/NonlinearSolverEbos.hpp>
|
|
#include <opm/simulators/flow/BlackoilModelEbos.hpp>
|
|
#include <opm/simulators/flow/BlackoilModelParametersEbos.hpp>
|
|
#include <opm/simulators/wells/WellState.hpp>
|
|
#include <opm/simulators/aquifers/BlackoilAquiferModel.hpp>
|
|
#include <opm/simulators/utils/moduleVersion.hpp>
|
|
#include <opm/simulators/timestepping/AdaptiveTimeSteppingEbos.hpp>
|
|
#include <opm/grid/utility/StopWatch.hpp>
|
|
|
|
#include <opm/common/ErrorMacros.hpp>
|
|
|
|
namespace Opm::Properties {
|
|
|
|
template<class TypeTag, class MyTypeTag>
|
|
struct EnableAdaptiveTimeStepping {
|
|
using type = UndefinedProperty;
|
|
};
|
|
template<class TypeTag, class MyTypeTag>
|
|
struct EnableTuning {
|
|
using type = UndefinedProperty;
|
|
};
|
|
|
|
template<class TypeTag>
|
|
struct EnableTerminalOutput<TypeTag, TTag::EclFlowProblem> {
|
|
static constexpr bool value = true;
|
|
};
|
|
template<class TypeTag>
|
|
struct EnableAdaptiveTimeStepping<TypeTag, TTag::EclFlowProblem> {
|
|
static constexpr bool value = true;
|
|
};
|
|
template<class TypeTag>
|
|
struct EnableTuning<TypeTag, TTag::EclFlowProblem> {
|
|
static constexpr bool value = false;
|
|
};
|
|
|
|
} // namespace Opm::Properties
|
|
|
|
namespace Opm {
|
|
|
|
void outputReportStep(const SimulatorTimer& timer);
|
|
void outputTimestampFIP(const SimulatorTimer& timer,
|
|
const std::string& title,
|
|
const std::string& version);
|
|
|
|
/// a simulator for the blackoil model
|
|
template<class TypeTag>
|
|
class SimulatorFullyImplicitBlackoilEbos
|
|
{
|
|
public:
|
|
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
|
using Grid = GetPropType<TypeTag, Properties::Grid>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
using BlackoilIndices = GetPropType<TypeTag, Properties::Indices>;
|
|
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
|
|
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
|
|
using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
|
|
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
|
|
using AquiferModel = GetPropType<TypeTag, Properties::EclAquiferModel>;
|
|
|
|
typedef AdaptiveTimeSteppingEbos<TypeTag> TimeStepper;
|
|
typedef BlackOilPolymerModule<TypeTag> PolymerModule;
|
|
typedef BlackOilMICPModule<TypeTag> MICPModule;
|
|
|
|
typedef BlackoilModelEbos<TypeTag> Model;
|
|
typedef NonlinearSolverEbos<TypeTag, Model> Solver;
|
|
typedef typename Model::ModelParameters ModelParameters;
|
|
typedef typename Solver::SolverParameters SolverParameters;
|
|
typedef BlackoilWellModel<TypeTag> WellModel;
|
|
|
|
|
|
/// Initialise from parameters and objects to observe.
|
|
/// \param[in] param parameters, this class accepts the following:
|
|
/// parameter (default) effect
|
|
/// -----------------------------------------------------------
|
|
/// output (true) write output to files?
|
|
/// output_dir ("output") output directoty
|
|
/// output_interval (1) output every nth step
|
|
/// nl_pressure_residual_tolerance (0.0) pressure solver residual tolerance (in Pascal)
|
|
/// nl_pressure_change_tolerance (1.0) pressure solver change tolerance (in Pascal)
|
|
/// nl_pressure_maxiter (10) max nonlinear iterations in pressure
|
|
/// nl_maxiter (30) max nonlinear iterations in transport
|
|
/// nl_tolerance (1e-9) transport solver absolute residual tolerance
|
|
/// num_transport_substeps (1) number of transport steps per pressure step
|
|
/// use_segregation_split (false) solve for gravity segregation (if false,
|
|
/// segregation is ignored).
|
|
///
|
|
/// \param[in] props fluid and rock properties
|
|
/// \param[in] linsolver linear solver
|
|
/// \param[in] eclipse_state the object which represents an internalized ECL deck
|
|
/// \param[in] output_writer
|
|
/// \param[in] threshold_pressures_by_face if nonempty, threshold pressures that inhibit flow
|
|
SimulatorFullyImplicitBlackoilEbos(Simulator& ebosSimulator)
|
|
: ebosSimulator_(ebosSimulator)
|
|
{
|
|
phaseUsage_ = phaseUsageFromDeck(eclState());
|
|
|
|
// Only rank 0 does print to std::cout
|
|
const auto& comm = grid().comm();
|
|
terminalOutput_ = EWOMS_GET_PARAM(TypeTag, bool, EnableTerminalOutput);
|
|
terminalOutput_ = terminalOutput_ && (comm.rank() == 0);
|
|
}
|
|
|
|
static void registerParameters()
|
|
{
|
|
ModelParameters::registerParameters();
|
|
SolverParameters::registerParameters();
|
|
TimeStepper::registerParameters();
|
|
|
|
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableTerminalOutput,
|
|
"Print high-level information about the simulation's progress to the terminal");
|
|
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableAdaptiveTimeStepping,
|
|
"Use adaptive time stepping between report steps");
|
|
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableTuning,
|
|
"Honor some aspects of the TUNING keyword.");
|
|
}
|
|
|
|
/// Run the simulation.
|
|
/// This will run succesive timesteps until timer.done() is true. It will
|
|
/// modify the reservoir and well states.
|
|
/// \param[in,out] timer governs the requested reporting timesteps
|
|
/// \param[in,out] state state of reservoir: pressure, fluxes
|
|
/// \return simulation report, with timing data
|
|
SimulatorReport run(SimulatorTimer& timer)
|
|
{
|
|
init(timer);
|
|
// Make cache up to date. No need for updating it in elementCtx.
|
|
ebosSimulator_.model().invalidateAndUpdateIntensiveQuantities(/*timeIdx=*/0);
|
|
// Main simulation loop.
|
|
while (!timer.done()) {
|
|
bool continue_looping = runStep(timer);
|
|
if (!continue_looping) break;
|
|
}
|
|
return finalize();
|
|
}
|
|
|
|
void init(SimulatorTimer &timer)
|
|
{
|
|
ebosSimulator_.setEpisodeIndex(-1);
|
|
|
|
// Create timers and file for writing timing info.
|
|
solverTimer_ = std::make_unique<time::StopWatch>();
|
|
totalTimer_ = std::make_unique<time::StopWatch>();
|
|
totalTimer_->start();
|
|
|
|
// adaptive time stepping
|
|
bool enableAdaptive = EWOMS_GET_PARAM(TypeTag, bool, EnableAdaptiveTimeStepping);
|
|
bool enableTUNING = EWOMS_GET_PARAM(TypeTag, bool, EnableTuning);
|
|
if (enableAdaptive) {
|
|
const UnitSystem& unitSystem = this->ebosSimulator_.vanguard().eclState().getUnits();
|
|
if (enableTUNING) {
|
|
const auto& sched_state = schedule()[timer.currentStepNum()];
|
|
auto max_next_tstep = sched_state.max_next_tstep();
|
|
adaptiveTimeStepping_ = std::make_unique<TimeStepper>(max_next_tstep,
|
|
sched_state.tuning(),
|
|
unitSystem, terminalOutput_);
|
|
}
|
|
else {
|
|
adaptiveTimeStepping_ = std::make_unique<TimeStepper>(unitSystem, terminalOutput_);
|
|
}
|
|
|
|
if (isRestart()) {
|
|
// For restarts the ebosSimulator may have gotten some information
|
|
// about the next timestep size from the OPMEXTRA field
|
|
adaptiveTimeStepping_->setSuggestedNextStep(ebosSimulator_.timeStepSize());
|
|
}
|
|
}
|
|
}
|
|
|
|
bool runStep(SimulatorTimer& timer)
|
|
{
|
|
if (schedule().exitStatus().has_value()) {
|
|
if (terminalOutput_) {
|
|
OpmLog::info("Stopping simulation since EXIT was triggered by an action keyword.");
|
|
}
|
|
report_.success.exit_status = schedule().exitStatus().value();
|
|
return false;
|
|
}
|
|
|
|
// Report timestep.
|
|
if (terminalOutput_) {
|
|
std::ostringstream ss;
|
|
timer.report(ss);
|
|
OpmLog::debug(ss.str());
|
|
}
|
|
|
|
if (terminalOutput_) {
|
|
outputReportStep(timer);
|
|
}
|
|
|
|
// write the inital state at the report stage
|
|
if (timer.initialStep()) {
|
|
Dune::Timer perfTimer;
|
|
perfTimer.start();
|
|
|
|
ebosSimulator_.setEpisodeIndex(-1);
|
|
ebosSimulator_.setEpisodeLength(0.0);
|
|
ebosSimulator_.setTimeStepSize(0.0);
|
|
wellModel_().beginReportStep(timer.currentStepNum());
|
|
ebosSimulator_.problem().writeOutput();
|
|
|
|
report_.success.output_write_time += perfTimer.stop();
|
|
}
|
|
|
|
// Run a multiple steps of the solver depending on the time step control.
|
|
solverTimer_->start();
|
|
|
|
auto solver = createSolver(wellModel_());
|
|
|
|
ebosSimulator_.startNextEpisode(
|
|
ebosSimulator_.startTime()
|
|
+ schedule().seconds(timer.currentStepNum()),
|
|
timer.currentStepLength());
|
|
ebosSimulator_.setEpisodeIndex(timer.currentStepNum());
|
|
solver->model().beginReportStep();
|
|
bool enableTUNING = EWOMS_GET_PARAM(TypeTag, bool, EnableTuning);
|
|
|
|
// If sub stepping is enabled allow the solver to sub cycle
|
|
// in case the report steps are too large for the solver to converge
|
|
//
|
|
// \Note: The report steps are met in any case
|
|
// \Note: The sub stepping will require a copy of the state variables
|
|
if (adaptiveTimeStepping_) {
|
|
const auto& events = schedule()[timer.currentStepNum()].events();
|
|
if (enableTUNING) {
|
|
if (events.hasEvent(ScheduleEvents::TUNING_CHANGE)) {
|
|
const auto& sched_state = schedule()[timer.currentStepNum()];
|
|
const auto& tuning = sched_state.tuning();
|
|
const auto& max_next_tstep = sched_state.max_next_tstep();
|
|
adaptiveTimeStepping_->updateTUNING(max_next_tstep, tuning);
|
|
}
|
|
}
|
|
bool event = events.hasEvent(ScheduleEvents::NEW_WELL) ||
|
|
events.hasEvent(ScheduleEvents::INJECTION_TYPE_CHANGED) ||
|
|
events.hasEvent(ScheduleEvents::WELL_SWITCHED_INJECTOR_PRODUCER) ||
|
|
events.hasEvent(ScheduleEvents::WELL_STATUS_CHANGE);
|
|
auto stepReport = adaptiveTimeStepping_->step(timer, *solver, event, nullptr);
|
|
report_ += stepReport;
|
|
//Pass simulation report to eclwriter for summary output
|
|
ebosSimulator_.problem().setSimulationReport(report_);
|
|
} else {
|
|
// solve for complete report step
|
|
auto stepReport = solver->step(timer);
|
|
report_ += stepReport;
|
|
if (terminalOutput_) {
|
|
std::ostringstream ss;
|
|
stepReport.reportStep(ss);
|
|
OpmLog::info(ss.str());
|
|
}
|
|
}
|
|
|
|
// write simulation state at the report stage
|
|
Dune::Timer perfTimer;
|
|
perfTimer.start();
|
|
const double nextstep = adaptiveTimeStepping_ ? adaptiveTimeStepping_->suggestedNextStep() : -1.0;
|
|
ebosSimulator_.problem().setNextTimeStepSize(nextstep);
|
|
ebosSimulator_.problem().writeOutput();
|
|
report_.success.output_write_time += perfTimer.stop();
|
|
|
|
solver->model().endReportStep();
|
|
|
|
// take time that was used to solve system for this reportStep
|
|
solverTimer_->stop();
|
|
|
|
// update timing.
|
|
report_.success.solver_time += solverTimer_->secsSinceStart();
|
|
|
|
// Increment timer, remember well state.
|
|
++timer;
|
|
|
|
if (terminalOutput_) {
|
|
if (!timer.initialStep()) {
|
|
const std::string version = moduleVersionName();
|
|
outputTimestampFIP(timer, eclState().getTitle(), version);
|
|
}
|
|
}
|
|
|
|
if (terminalOutput_) {
|
|
std::string msg =
|
|
"Time step took " + std::to_string(solverTimer_->secsSinceStart()) + " seconds; "
|
|
"total solver time " + std::to_string(report_.success.solver_time) + " seconds.";
|
|
OpmLog::debug(msg);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
SimulatorReport finalize()
|
|
{
|
|
// make sure all output is written to disk before run is finished
|
|
{
|
|
Dune::Timer finalOutputTimer;
|
|
finalOutputTimer.start();
|
|
|
|
ebosSimulator_.problem().finalizeOutput();
|
|
report_.success.output_write_time += finalOutputTimer.stop();
|
|
}
|
|
|
|
// Stop timer and create timing report
|
|
totalTimer_->stop();
|
|
report_.success.total_time = totalTimer_->secsSinceStart();
|
|
report_.success.converged = true;
|
|
|
|
return report_;
|
|
}
|
|
|
|
const Grid& grid() const
|
|
{ return ebosSimulator_.vanguard().grid(); }
|
|
|
|
protected:
|
|
|
|
std::unique_ptr<Solver> createSolver(WellModel& wellModel)
|
|
{
|
|
auto model = std::make_unique<Model>(ebosSimulator_,
|
|
modelParam_,
|
|
wellModel,
|
|
terminalOutput_);
|
|
|
|
return std::make_unique<Solver>(solverParam_, std::move(model));
|
|
}
|
|
|
|
const EclipseState& eclState() const
|
|
{ return ebosSimulator_.vanguard().eclState(); }
|
|
|
|
|
|
const Schedule& schedule() const
|
|
{ return ebosSimulator_.vanguard().schedule(); }
|
|
|
|
bool isRestart() const
|
|
{
|
|
const auto& initconfig = eclState().getInitConfig();
|
|
return initconfig.restartRequested();
|
|
}
|
|
|
|
WellModel& wellModel_()
|
|
{ return ebosSimulator_.problem().wellModel(); }
|
|
|
|
const WellModel& wellModel_() const
|
|
{ return ebosSimulator_.problem().wellModel(); }
|
|
|
|
// Data.
|
|
Simulator& ebosSimulator_;
|
|
std::unique_ptr<WellConnectionAuxiliaryModule<TypeTag>> wellAuxMod_;
|
|
|
|
ModelParameters modelParam_;
|
|
SolverParameters solverParam_;
|
|
|
|
// Observed objects.
|
|
PhaseUsage phaseUsage_;
|
|
// Misc. data
|
|
bool terminalOutput_;
|
|
|
|
SimulatorReport report_;
|
|
std::unique_ptr<time::StopWatch> solverTimer_;
|
|
std::unique_ptr<time::StopWatch> totalTimer_;
|
|
std::unique_ptr<TimeStepper> adaptiveTimeStepping_;
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif // OPM_SIMULATOR_FULLY_IMPLICIT_BLACKOIL_EBOS_HPP
|