mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-03 21:16:54 -06:00
526 lines
22 KiB
C++
526 lines
22 KiB
C++
/*
|
|
Copyright 2014, 2015 SINTEF ICT, Applied Mathematics.
|
|
Copyright 2014, 2015 Statoil ASA.
|
|
Copyright 2017, IRIS
|
|
|
|
This file is part of the Open Porous Media Project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_RATECONVERTER_HPP_HEADER_INCLUDED
|
|
#define OPM_RATECONVERTER_HPP_HEADER_INCLUDED
|
|
|
|
#include <opm/core/props/BlackoilPhases.hpp>
|
|
#include <opm/grid/utility/RegionMapping.hpp>
|
|
#include <opm/simulators/wells/RegionAttributeHelpers.hpp>
|
|
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
|
|
#include <dune/grid/common/gridenums.hh>
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <memory>
|
|
#include <stdexcept>
|
|
#include <type_traits>
|
|
#include <unordered_map>
|
|
#include <utility>
|
|
#include <vector>
|
|
/**
|
|
* \file
|
|
* Facility for converting component rates at surface conditions to
|
|
* phase (voidage) rates at reservoir conditions.
|
|
*
|
|
* This uses the average hydrocarbon pressure to define fluid
|
|
* properties. The facility is intended to support Reservoir Voidage
|
|
* rates only ('RESV').
|
|
*/
|
|
|
|
namespace Opm {
|
|
namespace RateConverter {
|
|
|
|
/**
|
|
* Convert component rates at surface conditions to phase
|
|
* (voidage) rates at reservoir conditions.
|
|
*
|
|
* The conversion uses fluid properties evaluated at average
|
|
* hydrocarbon pressure in regions or field.
|
|
*
|
|
* \tparam FluidSystem Fluid system class. Expected to be a BlackOilFluidSystem
|
|
*
|
|
* \tparam Region Type of a forward region mapping. Expected
|
|
* to provide indexed access through \code operator[]()
|
|
* \endcode as well as inner types \c value_type, \c
|
|
* size_type, and \c const_iterator. Typically \code
|
|
* std::vector<int> \endcode.
|
|
*/
|
|
template <class FluidSystem, class Region>
|
|
class SurfaceToReservoirVoidage {
|
|
public:
|
|
/**
|
|
* Constructor.
|
|
*
|
|
* \param[in] region Forward region mapping. Often
|
|
* corresponds to the "FIPNUM" mapping of an ECLIPSE input
|
|
* deck.
|
|
*/
|
|
SurfaceToReservoirVoidage(const PhaseUsage& phaseUsage,
|
|
const Region& region)
|
|
: phaseUsage_(phaseUsage)
|
|
, rmap_ (region)
|
|
, attr_ (rmap_, Attributes())
|
|
{
|
|
}
|
|
|
|
|
|
/**
|
|
* Compute pore volume averaged hydrocarbon state pressure, rs and rv.
|
|
*
|
|
* Fluid properties are evaluated at average hydrocarbon
|
|
* state for purpose of conversion from surface rate to
|
|
* reservoir voidage rate.
|
|
*
|
|
*/
|
|
template <typename ElementContext, class EbosSimulator>
|
|
void defineState(const EbosSimulator& simulator)
|
|
{
|
|
|
|
// create map from cell to region
|
|
// and set all attributes to zero
|
|
for (const auto& reg : rmap_.activeRegions()) {
|
|
auto& ra = attr_.attributes(reg);
|
|
ra.pressure = 0.0;
|
|
ra.temperature = 0.0;
|
|
ra.rs = 0.0;
|
|
ra.rv = 0.0;
|
|
ra.pv = 0.0;
|
|
ra.saltConcentration = 0.0;
|
|
|
|
}
|
|
|
|
// quantities for pore volume average
|
|
std::unordered_map<RegionId, Attributes> attributes_pv;
|
|
|
|
// quantities for hydrocarbon volume average
|
|
std::unordered_map<RegionId, Attributes> attributes_hpv;
|
|
|
|
for (const auto& reg : rmap_.activeRegions()) {
|
|
attributes_pv.insert({reg, Attributes()});
|
|
attributes_hpv.insert({reg, Attributes()});
|
|
}
|
|
|
|
ElementContext elemCtx( simulator );
|
|
const auto& gridView = simulator.gridView();
|
|
const auto& comm = gridView.comm();
|
|
OPM_BEGIN_PARALLEL_TRY_CATCH();
|
|
|
|
const auto& elemEndIt = gridView.template end</*codim=*/0>();
|
|
for (auto elemIt = gridView.template begin</*codim=*/0>();
|
|
elemIt != elemEndIt;
|
|
++elemIt)
|
|
{
|
|
|
|
const auto& elem = *elemIt;
|
|
if (elem.partitionType() != Dune::InteriorEntity)
|
|
continue;
|
|
|
|
elemCtx.updatePrimaryStencil(elem);
|
|
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
|
const unsigned cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const auto& fs = intQuants.fluidState();
|
|
// use pore volume weighted averages.
|
|
const double pv_cell =
|
|
simulator.model().dofTotalVolume(cellIdx)
|
|
* intQuants.porosity().value();
|
|
|
|
// only count oil and gas filled parts of the domain
|
|
double hydrocarbon = 1.0;
|
|
const auto& pu = phaseUsage_;
|
|
if (RegionAttributeHelpers::PhaseUsed::water(pu)) {
|
|
hydrocarbon -= fs.saturation(FluidSystem::waterPhaseIdx).value();
|
|
}
|
|
|
|
const int reg = rmap_.region(cellIdx);
|
|
assert(reg >= 0);
|
|
|
|
// sum p, rs, rv, and T.
|
|
const double hydrocarbonPV = pv_cell*hydrocarbon;
|
|
if (hydrocarbonPV > 0.) {
|
|
auto& attr = attributes_hpv[reg];
|
|
attr.pv += hydrocarbonPV;
|
|
if (RegionAttributeHelpers::PhaseUsed::oil(pu) && RegionAttributeHelpers::PhaseUsed::gas(pu)) {
|
|
attr.rs += fs.Rs().value() * hydrocarbonPV;
|
|
attr.rv += fs.Rv().value() * hydrocarbonPV;
|
|
}
|
|
if (RegionAttributeHelpers::PhaseUsed::oil(pu)) {
|
|
attr.pressure += fs.pressure(FluidSystem::oilPhaseIdx).value() * hydrocarbonPV;
|
|
attr.temperature += fs.temperature(FluidSystem::oilPhaseIdx).value() * hydrocarbonPV;
|
|
} else {
|
|
assert(RegionAttributeHelpers::PhaseUsed::gas(pu));
|
|
attr.pressure += fs.pressure(FluidSystem::gasPhaseIdx).value() * hydrocarbonPV;
|
|
attr.temperature += fs.temperature(FluidSystem::gasPhaseIdx).value() * hydrocarbonPV;
|
|
}
|
|
attr.saltConcentration += fs.saltConcentration().value() * hydrocarbonPV;
|
|
}
|
|
|
|
if (pv_cell > 0.) {
|
|
auto& attr = attributes_pv[reg];
|
|
attr.pv += pv_cell;
|
|
if (RegionAttributeHelpers::PhaseUsed::oil(pu) && RegionAttributeHelpers::PhaseUsed::gas(pu)) {
|
|
attr.rs += fs.Rs().value() * pv_cell;
|
|
attr.rv += fs.Rv().value() * pv_cell;
|
|
}
|
|
if (RegionAttributeHelpers::PhaseUsed::oil(pu)) {
|
|
attr.pressure += fs.pressure(FluidSystem::oilPhaseIdx).value() * pv_cell;
|
|
attr.temperature += fs.temperature(FluidSystem::oilPhaseIdx).value() * pv_cell;
|
|
} else if (RegionAttributeHelpers::PhaseUsed::gas(pu)) {
|
|
attr.pressure += fs.pressure(FluidSystem::gasPhaseIdx).value() * pv_cell;
|
|
attr.temperature += fs.temperature(FluidSystem::gasPhaseIdx).value() * pv_cell;
|
|
} else {
|
|
assert(RegionAttributeHelpers::PhaseUsed::water(pu));
|
|
attr.pressure += fs.pressure(FluidSystem::waterPhaseIdx).value() * pv_cell;
|
|
attr.temperature += fs.temperature(FluidSystem::waterPhaseIdx).value() * pv_cell;
|
|
}
|
|
attr.saltConcentration += fs.saltConcentration().value() * pv_cell;
|
|
}
|
|
}
|
|
|
|
OPM_END_PARALLEL_TRY_CATCH("SurfaceToReservoirVoidage::defineState() failed: ", simulator.vanguard().grid().comm());
|
|
|
|
for (const auto& reg : rmap_.activeRegions()) {
|
|
auto& ra = attr_.attributes(reg);
|
|
const double hpv_sum = comm.sum(attributes_hpv[reg].pv);
|
|
// TODO: should we have some epsilon here instead of zero?
|
|
if (hpv_sum > 0.) {
|
|
const auto& attri_hpv = attributes_hpv[reg];
|
|
const double p_hpv_sum = comm.sum(attri_hpv.pressure);
|
|
const double T_hpv_sum = comm.sum(attri_hpv.temperature);
|
|
const double rs_hpv_sum = comm.sum(attri_hpv.rs);
|
|
const double rv_hpv_sum = comm.sum(attri_hpv.rv);
|
|
const double sc_hpv_sum = comm.sum(attri_hpv.saltConcentration);
|
|
|
|
ra.pressure = p_hpv_sum / hpv_sum;
|
|
ra.temperature = T_hpv_sum / hpv_sum;
|
|
ra.rs = rs_hpv_sum / hpv_sum;
|
|
ra.rv = rv_hpv_sum / hpv_sum;
|
|
ra.pv = hpv_sum;
|
|
ra.saltConcentration = sc_hpv_sum / hpv_sum;
|
|
} else {
|
|
// using the pore volume to do the averaging
|
|
const auto& attri_pv = attributes_pv[reg];
|
|
const double pv_sum = comm.sum(attri_pv.pv);
|
|
assert(pv_sum > 0.);
|
|
const double p_pv_sum = comm.sum(attri_pv.pressure);
|
|
const double T_pv_sum = comm.sum(attri_pv.temperature);
|
|
const double rs_pv_sum = comm.sum(attri_pv.rs);
|
|
const double rv_pv_sum = comm.sum(attri_pv.rv);
|
|
const double sc_pv_sum = comm.sum(attri_pv.saltConcentration);
|
|
|
|
ra.pressure = p_pv_sum / pv_sum;
|
|
ra.temperature = T_pv_sum / pv_sum;
|
|
ra.rs = rs_pv_sum / pv_sum;
|
|
ra.rv = rv_pv_sum / pv_sum;
|
|
ra.pv = pv_sum;
|
|
ra.saltConcentration = sc_pv_sum / pv_sum;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Region identifier.
|
|
*
|
|
* Integral type.
|
|
*/
|
|
typedef typename RegionMapping<Region>::RegionId RegionId;
|
|
|
|
/**
|
|
* Compute coefficients for surface-to-reservoir voidage
|
|
* conversion.
|
|
*
|
|
* \tparam Input Type representing contiguous collection
|
|
* of component rates at surface conditions. Must support
|
|
* direct indexing through \code operator[]()\endcode.
|
|
*
|
|
* \tparam Coeff Type representing contiguous collection
|
|
* of surface-to-reservoir conversion coefficients. Must
|
|
* support direct indexing through \code operator[]()
|
|
* \endcode.
|
|
*
|
|
*
|
|
* \param[in] r Fluid-in-place region of the well
|
|
* \param[in] pvtRegionIdx PVT region of the well
|
|
*
|
|
*
|
|
* \param[out] coeff Surface-to-reservoir conversion
|
|
* coefficients that can be used to compute total reservoir
|
|
* volumes from surface volumes with the formula
|
|
* q_{rT} = \sum_p coeff[p] q_{sp}.
|
|
* However, individual phase reservoir volumes cannot be calculated from
|
|
* these coefficients (i.e. q_{rp} is not equal to coeff[p] q_{sp})
|
|
* since they can depend on more than one surface volume rate when
|
|
* we have dissolved gas or vaporized oil.
|
|
*/
|
|
template <class Coeff>
|
|
void
|
|
calcCoeff(const RegionId r, const int pvtRegionIdx, Coeff& coeff) const
|
|
{
|
|
const auto& pu = phaseUsage_;
|
|
const auto& ra = attr_.attributes(r);
|
|
const double p = ra.pressure;
|
|
const double T = ra.temperature;
|
|
const double saltConcentration = ra.saltConcentration;
|
|
|
|
const int iw = RegionAttributeHelpers::PhasePos::water(pu);
|
|
const int io = RegionAttributeHelpers::PhasePos::oil (pu);
|
|
const int ig = RegionAttributeHelpers::PhasePos::gas (pu);
|
|
|
|
std::fill(& coeff[0], & coeff[0] + phaseUsage_.num_phases, 0.0);
|
|
|
|
if (RegionAttributeHelpers::PhaseUsed::water(pu)) {
|
|
// q[w]_r = q[w]_s / bw
|
|
|
|
const double bw = FluidSystem::waterPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, saltConcentration);
|
|
|
|
coeff[iw] = 1.0 / bw;
|
|
}
|
|
|
|
// Actual Rs and Rv:
|
|
double Rs = ra.rs;
|
|
double Rv = ra.rv;
|
|
|
|
// Determinant of 'R' matrix
|
|
const double detR = 1.0 - (Rs * Rv);
|
|
|
|
if (RegionAttributeHelpers::PhaseUsed::oil(pu)) {
|
|
// q[o]_r = 1/(bo * (1 - rs*rv)) * (q[o]_s - rv*q[g]_s)
|
|
|
|
const double bo = FluidSystem::oilPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rs);
|
|
const double den = bo * detR;
|
|
|
|
coeff[io] += 1.0 / den;
|
|
|
|
if (RegionAttributeHelpers::PhaseUsed::gas(pu)) {
|
|
coeff[ig] -= ra.rv / den;
|
|
}
|
|
}
|
|
|
|
if (RegionAttributeHelpers::PhaseUsed::gas(pu)) {
|
|
// q[g]_r = 1/(bg * (1 - rs*rv)) * (q[g]_s - rs*q[o]_s)
|
|
|
|
const double bg = FluidSystem::gasPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rv, 0.0 /*=Rvw*/);
|
|
const double den = bg * detR;
|
|
|
|
coeff[ig] += 1.0 / den;
|
|
|
|
if (RegionAttributeHelpers::PhaseUsed::oil(pu)) {
|
|
coeff[io] -= ra.rs / den;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class Coeff>
|
|
void
|
|
calcInjCoeff(const RegionId r, const int pvtRegionIdx, Coeff& coeff) const
|
|
{
|
|
const auto& pu = phaseUsage_;
|
|
const auto& ra = attr_.attributes(r);
|
|
const double p = ra.pressure;
|
|
const double T = ra.temperature;
|
|
const double saltConcentration = ra.saltConcentration;
|
|
|
|
const int iw = RegionAttributeHelpers::PhasePos::water(pu);
|
|
const int io = RegionAttributeHelpers::PhasePos::oil (pu);
|
|
const int ig = RegionAttributeHelpers::PhasePos::gas (pu);
|
|
|
|
std::fill(& coeff[0], & coeff[0] + phaseUsage_.num_phases, 0.0);
|
|
|
|
if (RegionAttributeHelpers::PhaseUsed::water(pu)) {
|
|
// q[w]_r = q[w]_s / bw
|
|
|
|
const double bw = FluidSystem::waterPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, saltConcentration);
|
|
|
|
coeff[iw] = 1.0 / bw;
|
|
}
|
|
|
|
if (RegionAttributeHelpers::PhaseUsed::oil(pu)) {
|
|
const double bo = FluidSystem::oilPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, 0.0);
|
|
coeff[io] += 1.0 / bo;
|
|
}
|
|
|
|
if (RegionAttributeHelpers::PhaseUsed::gas(pu)) {
|
|
const double bg = FluidSystem::gasPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, 0.0, 0.0);
|
|
coeff[ig] += 1.0 / bg;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Converting surface volume rates to reservoir voidage rates
|
|
*
|
|
* \tparam Rates Type representing contiguous collection
|
|
* of surface-to-reservoir conversion coefficients. Must
|
|
* support direct indexing through \code operator[]()
|
|
* \endcode.
|
|
*
|
|
*
|
|
* \param[in] r Fluid-in-place region of the well
|
|
* \param[in] pvtRegionIdx PVT region of the well
|
|
* \param[in] surface_rates surface voluem rates for
|
|
* all active phases
|
|
*
|
|
* \param[out] voidage_rates reservoir volume rates for
|
|
* all active phases
|
|
*/
|
|
template <class Rates >
|
|
void
|
|
calcReservoirVoidageRates(const RegionId r, const int pvtRegionIdx, const Rates& surface_rates,
|
|
Rates& voidage_rates) const
|
|
{
|
|
assert(voidage_rates.size() == surface_rates.size());
|
|
|
|
std::fill(voidage_rates.begin(), voidage_rates.end(), 0.0);
|
|
|
|
const auto& pu = phaseUsage_;
|
|
const auto& ra = attr_.attributes(r);
|
|
const double p = ra.pressure;
|
|
const double T = ra.temperature;
|
|
const double saltConcentration = ra.saltConcentration;
|
|
|
|
const int iw = RegionAttributeHelpers::PhasePos::water(pu);
|
|
const int io = RegionAttributeHelpers::PhasePos::oil (pu);
|
|
const int ig = RegionAttributeHelpers::PhasePos::gas (pu);
|
|
|
|
if (RegionAttributeHelpers::PhaseUsed::water(pu)) {
|
|
// q[w]_r = q[w]_s / bw
|
|
|
|
const double bw = FluidSystem::waterPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, saltConcentration);
|
|
|
|
voidage_rates[iw] = surface_rates[iw] / bw;
|
|
}
|
|
|
|
// Use average Rs and Rv:
|
|
auto a = ra.rs;
|
|
auto b = a;
|
|
if (io >= 0 && ig >= 0) {
|
|
b = surface_rates[ig]/(surface_rates[io]+1.0e-15);
|
|
}
|
|
|
|
double Rs = std::min(a, b);
|
|
|
|
a = ra.rv;
|
|
b = a;
|
|
if (io >= 0 && ig >= 0) {
|
|
b = surface_rates[io]/(surface_rates[ig]+1.0e-15);
|
|
}
|
|
|
|
double Rv = std::min(a, b);
|
|
|
|
// Determinant of 'R' matrix
|
|
const double detR = 1.0 - (Rs * Rv);
|
|
|
|
if (RegionAttributeHelpers::PhaseUsed::oil(pu)) {
|
|
// q[o]_r = 1/(bo * (1 - rs*rv)) * (q[o]_s - rv*q[g]_s)
|
|
|
|
const double bo = FluidSystem::oilPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rs);
|
|
const double den = bo * detR;
|
|
|
|
voidage_rates[io] = surface_rates[io];
|
|
|
|
if (RegionAttributeHelpers::PhaseUsed::gas(pu)) {
|
|
voidage_rates[io] -= Rv * surface_rates[ig];
|
|
}
|
|
|
|
voidage_rates[io] /= den;
|
|
}
|
|
|
|
if (RegionAttributeHelpers::PhaseUsed::gas(pu)) {
|
|
// q[g]_r = 1/(bg * (1 - rs*rv)) * (q[g]_s - rs*q[o]_s)
|
|
|
|
const double bg = FluidSystem::gasPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rv, 0.0 /*=Rvw*/);
|
|
const double den = bg * detR;
|
|
|
|
voidage_rates[ig] = surface_rates[ig];
|
|
|
|
if (RegionAttributeHelpers::PhaseUsed::oil(pu)) {
|
|
voidage_rates[ig] -= Rs * surface_rates[io];
|
|
}
|
|
|
|
voidage_rates[ig] /= den;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Compute coefficients for surface-to-reservoir voidage
|
|
* conversion for solvent.
|
|
*
|
|
*
|
|
* \param[in] r Fluid-in-place region of the well
|
|
* \param[in] pvtRegionIdx PVT region of the well
|
|
*
|
|
*
|
|
* \param[out] double Surface-to-reservoir conversion
|
|
* coefficients for solvent.
|
|
*/
|
|
template <class SolventModule>
|
|
void
|
|
calcCoeffSolvent(const RegionId r, const int pvtRegionIdx, double& coeff) const
|
|
{
|
|
const auto& ra = attr_.attributes(r);
|
|
const double p = ra.pressure;
|
|
const double T = ra.temperature;
|
|
const auto& solventPvt = SolventModule::solventPvt();
|
|
const double bs = solventPvt.inverseFormationVolumeFactor(pvtRegionIdx, T, p);
|
|
coeff = 1.0 / bs;
|
|
}
|
|
|
|
private:
|
|
/**
|
|
* Fluid property object.
|
|
*/
|
|
const PhaseUsage phaseUsage_;
|
|
|
|
/**
|
|
* "Fluid-in-place" region mapping (forward and reverse).
|
|
*/
|
|
const RegionMapping<Region> rmap_;
|
|
|
|
/**
|
|
* Derived property attributes for each active region.
|
|
*/
|
|
struct Attributes {
|
|
Attributes()
|
|
: pressure (0.0)
|
|
, temperature(0.0)
|
|
, rs(0.0)
|
|
, rv(0.0)
|
|
, pv(0.0)
|
|
, saltConcentration(0.0)
|
|
{}
|
|
|
|
double pressure;
|
|
double temperature;
|
|
double rs;
|
|
double rv;
|
|
double pv;
|
|
double saltConcentration;
|
|
};
|
|
|
|
RegionAttributeHelpers::RegionAttributes<RegionId, Attributes> attr_;
|
|
|
|
};
|
|
} // namespace RateConverter
|
|
} // namespace Opm
|
|
|
|
#endif /* OPM_RATECONVERTER_HPP_HEADER_INCLUDED */
|