opm-simulators/partition.c
2010-08-20 19:16:59 +00:00

521 lines
14 KiB
C

/*
* Copyright (c) 2010 SINTEF ICT, Applied Mathematics
*/
#include <assert.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include "dfs.h"
#include "partition.h"
#define MAX(a,b) (((a) > (b)) ? (a) : (b))
/* ---------------------------------------------------------------------- */
static void
partition_coord_idx(int ndims, int idx, const int *size, int *cidx)
/* ---------------------------------------------------------------------- */
{
int i;
for (i = 0; i < ndims; i++) {
cidx[i] = idx % size[i];
idx /= size[i];
}
assert (idx == 0);
}
/* ---------------------------------------------------------------------- */
static int
partition_lin_idx(int ndims, const int *size, const int *cidx)
/* ---------------------------------------------------------------------- */
{
int i, idx;
idx = cidx[ndims - 1];
for (i = ndims - 2; i >= 0; i--) {
idx = cidx[i] + size[i]*idx;
}
return idx;
}
/* ---------------------------------------------------------------------- */
/* Load-balanced linear distribution.
*
* See Eric F. Van de Velde, Concurrent Scientific Computing,
* 1994, Springer Verlag, p. 54 (Sect. 2.3) for details. */
static void
partition_loadbal_lin_dist(int ndims, const int *size, const int *nbins,
int *idx)
/* ---------------------------------------------------------------------- */
{
int i, L, R, b1, b2;
for (i = 0; i < ndims; i++) {
L = size[i] / nbins[i]; /* # entities per bin */
R = size[i] % nbins[i]; /* # bins containing one extra entity */
b1 = idx[i] / (L + 1);
b2 = (idx[i] - R) / L ;
idx[i] = MAX(b1, b2);
}
}
/* ---------------------------------------------------------------------- */
int
partition_unif_idx(int ndims, int nc,
const int *fine_d, const int *coarse_d, const int *idx,
int *p)
/* ---------------------------------------------------------------------- */
{
int c, ret, *ix;
ix = malloc(ndims * sizeof *ix);
if (ix != NULL) {
for (c = 0; c < nc; c++) {
partition_coord_idx(ndims, idx[c], fine_d, ix);
partition_loadbal_lin_dist(ndims, fine_d, coarse_d, ix);
p[c] = partition_lin_idx(ndims, coarse_d, ix);
}
ret = nc;
} else {
ret = -1;
}
free(ix);
return ret;
}
/* ---------------------------------------------------------------------- */
int
partition_compress(int n, int *p)
/* ---------------------------------------------------------------------- */
{
int ret, i, max, *compr;
max = -1;
for (i = 0; i < n; i++) {
assert (0 <= p[i]); /* Only non-neg partitions (for now?). */
max = MAX(max, p[i]);
}
compr = calloc(max + 1, sizeof *compr);
if (compr != NULL) {
for (i = 0; i < n; i++) { compr[p[i]]++; }
compr[0] = -1 + (compr[0] > 0);
for (i = 1; i <= max; i++) {
compr[i] = compr[i - 1] + (compr[i] > 0);
}
for (i = 0; i < n; i++) { p[i] = compr[p[i]]; }
ret = compr[max];
} else {
ret = -1;
}
free(compr);
return ret;
}
/* ---------------------------------------------------------------------- */
void
partition_deallocate_inverse(int *pi, int *inverse)
/* ---------------------------------------------------------------------- */
{
free(inverse);
free(pi);
}
/* ---------------------------------------------------------------------- */
int
partition_allocate_inverse(int nc, int max_bin,
int **pi, int **inverse)
/* ---------------------------------------------------------------------- */
{
int nbin, ret, *ptr, *i;
nbin = max_bin + 1;
ptr = malloc((nbin + 1) * sizeof *ptr);
i = malloc(nc * sizeof *i );
if ((ptr == NULL) || (i == NULL)) {
partition_deallocate_inverse(ptr, i);
*pi = NULL;
*inverse = NULL;
ret = 0;
} else {
*pi = ptr;
*inverse = i;
ret = nc;
}
return ret;
}
/* ---------------------------------------------------------------------- */
static void
reverse_bins(int nbin, const int *pbin, int *elements)
/* ---------------------------------------------------------------------- */
{
int b, i, j, tmp;
for (b = 0; b < nbin; b++) {
i = pbin[b + 0] + 0;
j = pbin[b + 1] - 1;
while (i < j) {
/* Swap reverse (lower <-> upper) */
tmp = elements[i];
elements[i] = elements[j];
elements[j] = tmp;
i += 1; /* Increase lower bound */
j -= 1; /* Decrease upper bound */
}
}
}
/* ---------------------------------------------------------------------- */
static int
max_block(int nc, const int *p)
/* ---------------------------------------------------------------------- */
{
int m, i;
m = -1;
for (i = 0; i < nc; i++) {
m = MAX(m, p[i]);
}
return m;
}
/* ---------------------------------------------------------------------- */
void
partition_invert(int nc, const int *p, int *pi, int *inverse)
/* ---------------------------------------------------------------------- */
{
int nbin, b, i;
nbin = max_block(nc, p) + 1; /* Adjust for bin 0 */
/* Zero start pointers */
for (b = 0; b < nbin; b++) { pi[b] = 0; }
/* Count elements per bin */
for (i = 0; i < nc ; i++) { pi[ p[i] ]++; }
/* Derive start pointers for b=1:nbin (== ubound for b=0:nbin-1) */
for (b = 1; b < nbin; b++) { pi[b] += pi[b - 1]; }
/* Set end pointer in last bin */
assert (pi[nbin - 1] == nc);
pi[nbin] = nc;
/* Reverse insert bin elements whilst deriving start pointers */
for (i = 0; i < nc; i++) {
inverse[-- pi[ p[i] ]] = i;
}
assert (pi[0] == 0);
/* Reverse the reverse order, creating final inverse mapping */
reverse_bins(nbin, pi, inverse);
}
/* ---------------------------------------------------------------------- */
void
partition_localidx(int nbin, const int *pi, const int *inverse,
int *localidx)
/* ---------------------------------------------------------------------- */
{
int b, i;
for (b = 0; b < nbin; b++) {
for (i = pi[b]; i < pi[b + 1]; i++) {
localidx[ inverse[i] ] = i - pi[b];
}
}
}
/* ---------------------------------------------------------------------- */
static void
partition_destroy_c2c(int *pc2c, int *c2c)
/* ---------------------------------------------------------------------- */
{
free(c2c); free(pc2c);
}
/* ---------------------------------------------------------------------- */
static int
partition_create_c2c(int nc, int nneigh, const int *neigh,
int **pc2c, int **c2c)
/* ---------------------------------------------------------------------- */
{
int i, ret;
*pc2c = calloc(nc + 1, sizeof **pc2c);
if (*pc2c != NULL) {
for (i = 0; i < nneigh; i++) {
if ((neigh[2*i + 0] >= 0) && (neigh[2*i + 1] >= 0)) {
/* Symmetric Laplace matrix (undirected graph) */
(*pc2c)[neigh[2*i + 0]]++;
(*pc2c)[neigh[2*i + 1]]++;
}
}
(*pc2c)[0] += 1; /* Self connection */
for (i = 1; i < nc; i++) {
(*pc2c)[i] += (*pc2c)[i - 1];
(*pc2c)[i] += 1; /* Self connection */
}
(*pc2c)[nc] = (*pc2c)[nc - 1];
*c2c = malloc((*pc2c)[nc] * sizeof **c2c);
if (*c2c != NULL) {
/* Self connections */
for (i = 0; i < nc; i++) {
(*c2c)[-- (*pc2c)[i]] = i;
}
for (i = 0; i < nneigh; i++) {
if ((neigh[2*i + 0] >= 0) && (neigh[2*i + 1] >= 0)) {
/* Symmetric Laplace matrix (undirected graph) */
(*c2c)[-- (*pc2c)[neigh[2*i + 0]]] = neigh[2*i + 1];
(*c2c)[-- (*pc2c)[neigh[2*i + 1]]] = neigh[2*i + 0];
}
}
reverse_bins(nc, *pc2c, *c2c);
ret = nc;
} else {
free(*pc2c);
*pc2c = NULL;
ret = 0;
}
} else {
*c2c = NULL;
ret = 0;
}
return ret;
}
/* ---------------------------------------------------------------------- */
static void
deallocate_dfs_arrays(int *ia, int *ja, int *colour, int *work)
/* ---------------------------------------------------------------------- */
{
free(work); free(colour); free(ja); free(ia);
}
/* ---------------------------------------------------------------------- */
static int
allocate_dfs_arrays(int n, int nnz,
int **ia, int **ja, int **colour, int **work)
/* ---------------------------------------------------------------------- */
{
int ret;
*ia = malloc((n + 1) * sizeof **ia );
*ja = malloc(nnz * sizeof **ja );
*colour = malloc(n * sizeof **colour);
*work = malloc(2 * n * sizeof **work );
if ((*ia == NULL) || (*ja == NULL) ||
(*colour == NULL) || (*work == NULL)) {
deallocate_dfs_arrays(*ia, *ja, *colour, *work);
*ia = NULL;
*ja = NULL;
*colour = NULL;
*work = NULL;
ret = 0;
} else {
ret = n;
}
return ret;
}
/* ---------------------------------------------------------------------- */
static void
count_block_conns(int nblk,
const int *pb2c, const int *b2c, const int *pc2c,
int *max_blk_cells, int *max_blk_conn)
/* ---------------------------------------------------------------------- */
{
int b, i, n_blk_conn;
*max_blk_cells = 0;
*max_blk_conn = 0;
i = 0; /* == pb2c[0] */
for (b = 0; b < nblk; b++) {
n_blk_conn = 0;
for (; i < pb2c[b + 1]; i++) {
n_blk_conn += pc2c[b2c[i] + 1] - pc2c[b2c[i]];
}
*max_blk_cells = MAX(*max_blk_cells, pb2c[b + 1] - pb2c[b]);
*max_blk_conn = MAX(*max_blk_conn , n_blk_conn);
}
}
/* ---------------------------------------------------------------------- */
static void
create_block_conns(int b ,
const int *p , const int *loc,
const int *pb2c, const int *b2c,
const int *pc2c, const int *c2c,
int *ia , int *ja )
/* ---------------------------------------------------------------------- */
{
int nc, c, i, j;
nc = pb2c[b + 1] - pb2c[b];
/* Clear start pointers */
memset(ia, 0, (nc + 1) * sizeof *ia);
for (i = pb2c[b]; i < pb2c[b + 1]; i++) {
c = b2c[i]; assert (loc[c] == i - pb2c[b]);
/* Self connections inserted in partition_create_c2c()) */
for (j = pc2c[c]; j < pc2c[c + 1]; j++) {
if (p[c2c[j]] == b) {
/* Connection internal to block 'b'. Add */
ia[loc[c]] ++;
}
}
}
assert (ia[nc] == 0);
for (i = 1; i <= nc; i++) { ia[i] += ia[i - 1]; }
for (i = pb2c[b]; i < pb2c[b + 1]; i++) {
c = b2c[i];
/* Create connections (self conn automatic) */
for (j = pc2c[c]; j < pc2c[c + 1]; j++) {
if (p[c2c[j]] == b) {
ja[-- ia[loc[c]]] = loc[c2c[j]];
}
}
}
assert (ia[0] == 0);
reverse_bins(nc, ia, ja);
}
/* ---------------------------------------------------------------------- */
int
partition_split_disconnected(int nc, int nneigh, const int *neigh, int *p)
/* ---------------------------------------------------------------------- */
{
int inv_ok, c2c_ok, dfs_ok;
int i, b, ret, maxblk, ncolour, max_blk_cells, max_blk_conn;
int *pb2c, *b2c, *loc, *pc2c, *c2c;
int *ia, *ja, *colour, *work;
maxblk = max_block(nc, p);
inv_ok = partition_allocate_inverse(nc, maxblk, &pb2c, &b2c);
c2c_ok = partition_create_c2c(nc, nneigh, neigh, &pc2c, &c2c);
loc = malloc(nc * sizeof *loc);
if (inv_ok && c2c_ok && (loc != NULL)) {
partition_invert(nc, p, pb2c, b2c);
partition_localidx(maxblk + 1, pb2c, b2c, loc);
count_block_conns(maxblk + 1, pb2c, b2c, pc2c,
&max_blk_cells, &max_blk_conn);
dfs_ok = allocate_dfs_arrays(max_blk_cells, max_blk_conn,
&ia, &ja, &colour, &work);
if (dfs_ok) {
/* Target acquired. Fire. */
ret = 0;
for (b = 0; b < maxblk + 1; b++) {
create_block_conns(b, p, loc, pb2c, b2c, pc2c, c2c, ia, ja);
dfs(pb2c[b + 1] - pb2c[b], ia, ja, &ncolour, colour, work);
if (ncolour > 1) {
/* Block contains more than one component. Assign
* new block numbers for cells in components
* 1:ncomp-1. */
for (i = pb2c[b]; i < pb2c[b + 1]; i++) {
if (colour[i - pb2c[b]] > 0) {
p[b2c[i]] = maxblk + ret + colour[i - pb2c[b]];
}
}
ret += ncolour - 1;
}
}
} else {
ret = -1;
}
deallocate_dfs_arrays(ia, ja, colour, work);
} else {
ret = -1;
}
free(loc);
partition_destroy_c2c(pc2c, c2c);
partition_deallocate_inverse(pb2c, b2c);
return ret;
}
/* Local Variables: */
/* c-basic-offset:4 */
/* End: */