mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-29 10:40:59 -06:00
711 lines
25 KiB
C++
711 lines
25 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Opm::FvBaseLinearizer
|
|
*/
|
|
#ifndef EWOMS_FV_BASE_LINEARIZER_HH
|
|
#define EWOMS_FV_BASE_LINEARIZER_HH
|
|
|
|
#include "fvbaseproperties.hh"
|
|
#include "linearizationtype.hh"
|
|
|
|
#include <opm/common/Exceptions.hpp>
|
|
#include <opm/common/TimingMacros.hpp>
|
|
#include <opm/grid/utility/SparseTable.hpp>
|
|
|
|
#include <opm/models/parallel/gridcommhandles.hh>
|
|
#include <opm/models/parallel/threadmanager.hh>
|
|
#include <opm/models/parallel/threadedentityiterator.hh>
|
|
#include <opm/models/discretization/common/baseauxiliarymodule.hh>
|
|
|
|
#include <dune/common/version.hh>
|
|
#include <dune/common/fvector.hh>
|
|
#include <dune/common/fmatrix.hh>
|
|
|
|
#include <type_traits>
|
|
#include <iostream>
|
|
#include <vector>
|
|
#include <thread>
|
|
#include <set>
|
|
#include <exception> // current_exception, rethrow_exception
|
|
#include <mutex>
|
|
|
|
namespace Opm {
|
|
// forward declarations
|
|
template<class TypeTag>
|
|
class EcfvDiscretization;
|
|
|
|
/*!
|
|
* \ingroup FiniteVolumeDiscretizations
|
|
*
|
|
* \brief The common code for the linearizers of non-linear systems of equations
|
|
*
|
|
* This class assumes that these system of equations to be linearized are stemming from
|
|
* models that use an finite volume scheme for spatial discretization and an Euler
|
|
* scheme for time discretization.
|
|
*/
|
|
template<class TypeTag>
|
|
class FvBaseLinearizer
|
|
{
|
|
//! \cond SKIP_THIS
|
|
using Model = GetPropType<TypeTag, Properties::Model>;
|
|
using Discretization = GetPropType<TypeTag, Properties::Discretization>;
|
|
using Problem = GetPropType<TypeTag, Properties::Problem>;
|
|
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
|
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
using DofMapper = GetPropType<TypeTag, Properties::DofMapper>;
|
|
using ElementMapper = GetPropType<TypeTag, Properties::ElementMapper>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
|
|
using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
|
|
using GlobalEqVector = GetPropType<TypeTag, Properties::GlobalEqVector>;
|
|
using SparseMatrixAdapter = GetPropType<TypeTag, Properties::SparseMatrixAdapter>;
|
|
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
|
|
using Constraints = GetPropType<TypeTag, Properties::Constraints>;
|
|
using Stencil = GetPropType<TypeTag, Properties::Stencil>;
|
|
using ThreadManager = GetPropType<TypeTag, Properties::ThreadManager>;
|
|
|
|
using GridCommHandleFactory = GetPropType<TypeTag, Properties::GridCommHandleFactory>;
|
|
|
|
using Toolbox = MathToolbox<Evaluation>;
|
|
|
|
using Element = typename GridView::template Codim<0>::Entity;
|
|
using ElementIterator = typename GridView::template Codim<0>::Iterator;
|
|
|
|
using Vector = GlobalEqVector;
|
|
|
|
using IstlMatrix = typename SparseMatrixAdapter::IstlMatrix;
|
|
|
|
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
|
|
enum { historySize = getPropValue<TypeTag, Properties::TimeDiscHistorySize>() };
|
|
|
|
using MatrixBlock = typename SparseMatrixAdapter::MatrixBlock;
|
|
using VectorBlock = Dune::FieldVector<Scalar, numEq>;
|
|
|
|
static const bool linearizeNonLocalElements = getPropValue<TypeTag, Properties::LinearizeNonLocalElements>();
|
|
|
|
// copying the linearizer is not a good idea
|
|
FvBaseLinearizer(const FvBaseLinearizer&);
|
|
//! \endcond
|
|
|
|
public:
|
|
FvBaseLinearizer()
|
|
: jacobian_()
|
|
{
|
|
simulatorPtr_ = 0;
|
|
}
|
|
|
|
~FvBaseLinearizer()
|
|
{
|
|
auto it = elementCtx_.begin();
|
|
const auto& endIt = elementCtx_.end();
|
|
for (; it != endIt; ++it)
|
|
delete *it;
|
|
}
|
|
|
|
/*!
|
|
* \brief Register all run-time parameters for the Jacobian linearizer.
|
|
*/
|
|
static void registerParameters()
|
|
{ }
|
|
|
|
/*!
|
|
* \brief Initialize the linearizer.
|
|
*
|
|
* At this point we can assume that all objects in the simulator
|
|
* have been allocated. We cannot assume that they are fully
|
|
* initialized, though.
|
|
*
|
|
* \copydetails Doxygen::simulatorParam
|
|
*/
|
|
void init(Simulator& simulator)
|
|
{
|
|
simulatorPtr_ = &simulator;
|
|
eraseMatrix();
|
|
auto it = elementCtx_.begin();
|
|
const auto& endIt = elementCtx_.end();
|
|
for (; it != endIt; ++it){
|
|
delete *it;
|
|
}
|
|
elementCtx_.resize(0);
|
|
fullDomain_ = std::make_unique<FullDomain>(simulator.gridView());
|
|
}
|
|
|
|
/*!
|
|
* \brief Causes the Jacobian matrix to be recreated from scratch before the next
|
|
* iteration.
|
|
*
|
|
* This method is usally called if the sparsity pattern has changed for some
|
|
* reason. (e.g. by modifications of the grid or changes of the auxiliary equations.)
|
|
*/
|
|
void eraseMatrix()
|
|
{
|
|
jacobian_.reset();
|
|
}
|
|
|
|
/*!
|
|
* \brief Linearize the full system of non-linear equations.
|
|
*
|
|
* The linearizationType() controls the scheme used and the focus
|
|
* time index. The default is fully implicit scheme, and focus index
|
|
* equal to 0, i.e. current time (end of step).
|
|
*
|
|
* This linearizes the spatial domain and all auxiliary equations.
|
|
*/
|
|
void linearize()
|
|
{
|
|
linearizeDomain();
|
|
linearizeAuxiliaryEquations();
|
|
}
|
|
|
|
/*!
|
|
* \brief Linearize the part of the non-linear system of equations that is associated
|
|
* with the spatial domain.
|
|
*
|
|
* That means that the global Jacobian of the residual is assembled and the residual
|
|
* is evaluated for the current solution.
|
|
*
|
|
* The current state of affairs (esp. the previous and the current solutions) is
|
|
* represented by the model object.
|
|
*/
|
|
void linearizeDomain()
|
|
{
|
|
linearizeDomain(*fullDomain_);
|
|
}
|
|
|
|
template <class SubDomainType>
|
|
void linearizeDomain(const SubDomainType& domain)
|
|
{
|
|
OPM_TIMEBLOCK(linearizeDomain);
|
|
// we defer the initialization of the Jacobian matrix until here because the
|
|
// auxiliary modules usually assume the problem, model and grid to be fully
|
|
// initialized...
|
|
if (!jacobian_)
|
|
initFirstIteration_();
|
|
|
|
// Called here because it is no longer called from linearize_().
|
|
if (static_cast<std::size_t>(domain.view.size(0)) == model_().numTotalDof()) {
|
|
// We are on the full domain.
|
|
resetSystem_();
|
|
} else {
|
|
resetSystem_(domain);
|
|
}
|
|
|
|
int succeeded;
|
|
try {
|
|
linearize_(domain);
|
|
succeeded = 1;
|
|
}
|
|
catch (const std::exception& e)
|
|
{
|
|
std::cout << "rank " << simulator_().gridView().comm().rank()
|
|
<< " caught an exception while linearizing:" << e.what()
|
|
<< "\n" << std::flush;
|
|
succeeded = 0;
|
|
}
|
|
catch (...)
|
|
{
|
|
std::cout << "rank " << simulator_().gridView().comm().rank()
|
|
<< " caught an exception while linearizing"
|
|
<< "\n" << std::flush;
|
|
succeeded = 0;
|
|
}
|
|
succeeded = simulator_().gridView().comm().min(succeeded);
|
|
|
|
if (!succeeded)
|
|
throw NumericalProblem("A process did not succeed in linearizing the system");
|
|
}
|
|
|
|
void finalize()
|
|
{ jacobian_->finalize(); }
|
|
|
|
/*!
|
|
* \brief Linearize the part of the non-linear system of equations that is associated
|
|
* with the spatial domain.
|
|
*/
|
|
void linearizeAuxiliaryEquations()
|
|
{
|
|
OPM_TIMEBLOCK(linearizeAuxiliaryEquations);
|
|
// flush possible local caches into matrix structure
|
|
jacobian_->commit();
|
|
|
|
auto& model = model_();
|
|
const auto& comm = simulator_().gridView().comm();
|
|
for (unsigned auxModIdx = 0; auxModIdx < model.numAuxiliaryModules(); ++auxModIdx) {
|
|
bool succeeded = true;
|
|
try {
|
|
model.auxiliaryModule(auxModIdx)->linearize(*jacobian_, residual_);
|
|
}
|
|
catch (const std::exception& e) {
|
|
succeeded = false;
|
|
|
|
std::cout << "rank " << simulator_().gridView().comm().rank()
|
|
<< " caught an exception while linearizing:" << e.what()
|
|
<< "\n" << std::flush;
|
|
}
|
|
|
|
succeeded = comm.min(succeeded);
|
|
|
|
if (!succeeded)
|
|
throw NumericalProblem("linearization of an auxiliary equation failed");
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Return constant reference to global Jacobian matrix backend.
|
|
*/
|
|
const SparseMatrixAdapter& jacobian() const
|
|
{ return *jacobian_; }
|
|
|
|
SparseMatrixAdapter& jacobian()
|
|
{ return *jacobian_; }
|
|
|
|
/*!
|
|
* \brief Return constant reference to global residual vector.
|
|
*/
|
|
const GlobalEqVector& residual() const
|
|
{ return residual_; }
|
|
|
|
GlobalEqVector& residual()
|
|
{ return residual_; }
|
|
|
|
void setLinearizationType(LinearizationType linearizationType){
|
|
linearizationType_ = linearizationType;
|
|
};
|
|
|
|
const LinearizationType& getLinearizationType() const{
|
|
return linearizationType_;
|
|
};
|
|
|
|
void updateDiscretizationParameters()
|
|
{
|
|
// This linearizer stores no such parameters.
|
|
}
|
|
|
|
void updateBoundaryConditionData()
|
|
{
|
|
// This linearizer stores no such data.
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns the map of constraint degrees of freedom.
|
|
*
|
|
* (This object is only non-empty if the EnableConstraints property is true.)
|
|
*/
|
|
const std::map<unsigned, Constraints>& constraintsMap() const
|
|
{ return constraintsMap_; }
|
|
|
|
/*!
|
|
* \brief Return constant reference to the flowsInfo.
|
|
*
|
|
* (This object has been only implemented for the tpfalinearizer.)
|
|
*/
|
|
const auto& getFlowsInfo() const
|
|
{return flowsInfo_;}
|
|
|
|
/*!
|
|
* \brief Return constant reference to the floresInfo.
|
|
*
|
|
* (This object has been only implemented for the tpfalinearizer.)
|
|
*/
|
|
const auto& getFloresInfo() const
|
|
{return floresInfo_;}
|
|
|
|
template <class SubDomainType>
|
|
void resetSystem_(const SubDomainType& domain)
|
|
{
|
|
if (!jacobian_) {
|
|
initFirstIteration_();
|
|
}
|
|
|
|
// loop over selected elements
|
|
using GridViewType = decltype(domain.view);
|
|
ThreadedEntityIterator<GridViewType, /*codim=*/0> threadedElemIt(domain.view);
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
unsigned threadId = ThreadManager::threadId();
|
|
auto elemIt = threadedElemIt.beginParallel();
|
|
MatrixBlock zeroBlock;
|
|
zeroBlock = 0.0;
|
|
for (; !threadedElemIt.isFinished(elemIt); elemIt = threadedElemIt.increment()) {
|
|
const Element& elem = *elemIt;
|
|
ElementContext& elemCtx = *elementCtx_[threadId];
|
|
elemCtx.updatePrimaryStencil(elem);
|
|
// Set to zero the relevant residual and jacobian parts.
|
|
for (unsigned primaryDofIdx = 0;
|
|
primaryDofIdx < elemCtx.numPrimaryDof(/*timeIdx=*/0);
|
|
++primaryDofIdx)
|
|
{
|
|
unsigned globI = elemCtx.globalSpaceIndex(primaryDofIdx, /*timeIdx=*/0);
|
|
residual_[globI] = 0.0;
|
|
jacobian_->clearRow(globI, 0.0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
Simulator& simulator_()
|
|
{ return *simulatorPtr_; }
|
|
const Simulator& simulator_() const
|
|
{ return *simulatorPtr_; }
|
|
|
|
Problem& problem_()
|
|
{ return simulator_().problem(); }
|
|
const Problem& problem_() const
|
|
{ return simulator_().problem(); }
|
|
|
|
Model& model_()
|
|
{ return simulator_().model(); }
|
|
const Model& model_() const
|
|
{ return simulator_().model(); }
|
|
|
|
const GridView& gridView_() const
|
|
{ return problem_().gridView(); }
|
|
|
|
const ElementMapper& elementMapper_() const
|
|
{ return model_().elementMapper(); }
|
|
|
|
const DofMapper& dofMapper_() const
|
|
{ return model_().dofMapper(); }
|
|
|
|
void initFirstIteration_()
|
|
{
|
|
// initialize the BCRS matrix for the Jacobian of the residual function
|
|
createMatrix_();
|
|
|
|
// initialize the Jacobian matrix and the vector for the residual function
|
|
residual_.resize(model_().numTotalDof());
|
|
resetSystem_();
|
|
|
|
// create the per-thread context objects
|
|
elementCtx_.resize(ThreadManager::maxThreads());
|
|
for (unsigned threadId = 0; threadId != ThreadManager::maxThreads(); ++ threadId)
|
|
elementCtx_[threadId] = new ElementContext(simulator_());
|
|
}
|
|
|
|
// Construct the BCRS matrix for the Jacobian of the residual function
|
|
void createMatrix_()
|
|
{
|
|
const auto& model = model_();
|
|
Stencil stencil(gridView_(), model_().dofMapper());
|
|
|
|
// for the main model, find out the global indices of the neighboring degrees of
|
|
// freedom of each primary degree of freedom
|
|
sparsityPattern_.clear();
|
|
sparsityPattern_.resize(model.numTotalDof());
|
|
|
|
for (const auto& elem : elements(gridView_())) {
|
|
stencil.update(elem);
|
|
|
|
for (unsigned primaryDofIdx = 0; primaryDofIdx < stencil.numPrimaryDof(); ++primaryDofIdx) {
|
|
unsigned myIdx = stencil.globalSpaceIndex(primaryDofIdx);
|
|
|
|
for (unsigned dofIdx = 0; dofIdx < stencil.numDof(); ++dofIdx) {
|
|
unsigned neighborIdx = stencil.globalSpaceIndex(dofIdx);
|
|
sparsityPattern_[myIdx].insert(neighborIdx);
|
|
}
|
|
}
|
|
}
|
|
|
|
// add the additional neighbors and degrees of freedom caused by the auxiliary
|
|
// equations
|
|
size_t numAuxMod = model.numAuxiliaryModules();
|
|
for (unsigned auxModIdx = 0; auxModIdx < numAuxMod; ++auxModIdx)
|
|
model.auxiliaryModule(auxModIdx)->addNeighbors(sparsityPattern_);
|
|
|
|
// allocate raw matrix
|
|
jacobian_.reset(new SparseMatrixAdapter(simulator_()));
|
|
|
|
// create matrix structure based on sparsity pattern
|
|
jacobian_->reserve(sparsityPattern_);
|
|
}
|
|
|
|
// reset the global linear system of equations.
|
|
void resetSystem_()
|
|
{
|
|
residual_ = 0.0;
|
|
// zero all matrix entries
|
|
jacobian_->clear();
|
|
}
|
|
|
|
// query the problem for all constraint degrees of freedom. note that this method is
|
|
// quite involved and is thus relatively slow.
|
|
void updateConstraintsMap_()
|
|
{
|
|
if (!enableConstraints_())
|
|
// constraints are not explictly enabled, so we don't need to consider them!
|
|
return;
|
|
|
|
constraintsMap_.clear();
|
|
|
|
// loop over all elements...
|
|
ThreadedEntityIterator<GridView, /*codim=*/0> threadedElemIt(gridView_());
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
unsigned threadId = ThreadManager::threadId();
|
|
ElementIterator elemIt = threadedElemIt.beginParallel();
|
|
for (; !threadedElemIt.isFinished(elemIt); elemIt = threadedElemIt.increment()) {
|
|
// create an element context (the solution-based quantities are not
|
|
// available here!)
|
|
const Element& elem = *elemIt;
|
|
ElementContext& elemCtx = *elementCtx_[threadId];
|
|
elemCtx.updateStencil(elem);
|
|
|
|
// check if the problem wants to constrain any degree of the current
|
|
// element's freedom. if yes, add the constraint to the map.
|
|
for (unsigned primaryDofIdx = 0;
|
|
primaryDofIdx < elemCtx.numPrimaryDof(/*timeIdx=*/0);
|
|
++ primaryDofIdx)
|
|
{
|
|
Constraints constraints;
|
|
elemCtx.problem().constraints(constraints,
|
|
elemCtx,
|
|
primaryDofIdx,
|
|
/*timeIdx=*/0);
|
|
if (constraints.isActive()) {
|
|
unsigned globI = elemCtx.globalSpaceIndex(primaryDofIdx, /*timeIdx=*/0);
|
|
constraintsMap_[globI] = constraints;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// linearize the whole or part of the system
|
|
template <class SubDomainType>
|
|
void linearize_(const SubDomainType& domain)
|
|
{
|
|
OPM_TIMEBLOCK(linearize_);
|
|
|
|
// We do not call resetSystem_() here, since that will set
|
|
// the full system to zero, not just our part.
|
|
// Instead, that must be called before starting the linearization.
|
|
|
|
// before the first iteration of each time step, we need to update the
|
|
// constraints. (i.e., we assume that constraints can be time dependent, but they
|
|
// can't depend on the solution.)
|
|
if (model_().newtonMethod().numIterations() == 0)
|
|
updateConstraintsMap_();
|
|
|
|
applyConstraintsToSolution_();
|
|
|
|
// to avoid a race condition if two threads handle an exception at the same time,
|
|
// we use an explicit lock to control access to the exception storage object
|
|
// amongst thread-local handlers
|
|
std::mutex exceptionLock;
|
|
|
|
// storage to any exception that needs to be bridged out of the
|
|
// parallel block below. initialized to null to indicate no exception
|
|
std::exception_ptr exceptionPtr = nullptr;
|
|
|
|
// relinearize the elements...
|
|
using GridViewType = decltype(domain.view);
|
|
ThreadedEntityIterator<GridViewType, /*codim=*/0> threadedElemIt(domain.view);
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
auto elemIt = threadedElemIt.beginParallel();
|
|
auto nextElemIt = elemIt;
|
|
try {
|
|
for (; !threadedElemIt.isFinished(elemIt); elemIt = nextElemIt) {
|
|
// give the model and the problem a chance to prefetch the data required
|
|
// to linearize the next element, but only if we need to consider it
|
|
nextElemIt = threadedElemIt.increment();
|
|
if (!threadedElemIt.isFinished(nextElemIt)) {
|
|
const auto& nextElem = *nextElemIt;
|
|
if (linearizeNonLocalElements
|
|
|| nextElem.partitionType() == Dune::InteriorEntity)
|
|
{
|
|
model_().prefetch(nextElem);
|
|
problem_().prefetch(nextElem);
|
|
}
|
|
}
|
|
|
|
const auto& elem = *elemIt;
|
|
if (!linearizeNonLocalElements && elem.partitionType() != Dune::InteriorEntity)
|
|
continue;
|
|
|
|
linearizeElement_(elem);
|
|
}
|
|
}
|
|
// If an exception occurs in the parallel block, it won't escape the
|
|
// block; terminate() is called instead of a handler outside! hence, we
|
|
// tuck any exceptions that occur away in the pointer. If an exception
|
|
// occurs in more than one thread at the same time, we must pick one of
|
|
// them to be rethrown as we cannot have two active exceptions at the
|
|
// same time. This solution essentially picks one at random. This will
|
|
// only be a problem if two different kinds of exceptions are thrown, for
|
|
// instance if one thread experiences a (recoverable) numerical issue
|
|
// while another is out of memory.
|
|
catch(...) {
|
|
std::lock_guard<std::mutex> take(exceptionLock);
|
|
exceptionPtr = std::current_exception();
|
|
threadedElemIt.setFinished();
|
|
}
|
|
} // parallel block
|
|
|
|
// after reduction from the parallel block, exceptionPtr will point to
|
|
// a valid exception if one occurred in one of the threads; rethrow
|
|
// it here to let the outer handler take care of it properly
|
|
if(exceptionPtr) {
|
|
std::rethrow_exception(exceptionPtr);
|
|
}
|
|
|
|
applyConstraintsToLinearization_();
|
|
}
|
|
|
|
|
|
// linearize an element in the interior of the process' grid partition
|
|
template <class ElementType>
|
|
void linearizeElement_(const ElementType& elem)
|
|
{
|
|
unsigned threadId = ThreadManager::threadId();
|
|
|
|
ElementContext *elementCtx = elementCtx_[threadId];
|
|
auto& localLinearizer = model_().localLinearizer(threadId);
|
|
|
|
// the actual work of linearization is done by the local linearizer class
|
|
localLinearizer.linearize(*elementCtx, elem);
|
|
|
|
// update the right hand side and the Jacobian matrix
|
|
if (getPropValue<TypeTag, Properties::UseLinearizationLock>())
|
|
globalMatrixMutex_.lock();
|
|
|
|
size_t numPrimaryDof = elementCtx->numPrimaryDof(/*timeIdx=*/0);
|
|
for (unsigned primaryDofIdx = 0; primaryDofIdx < numPrimaryDof; ++ primaryDofIdx) {
|
|
unsigned globI = elementCtx->globalSpaceIndex(/*spaceIdx=*/primaryDofIdx, /*timeIdx=*/0);
|
|
|
|
// update the right hand side
|
|
residual_[globI] += localLinearizer.residual(primaryDofIdx);
|
|
|
|
// update the global Jacobian matrix
|
|
for (unsigned dofIdx = 0; dofIdx < elementCtx->numDof(/*timeIdx=*/0); ++ dofIdx) {
|
|
unsigned globJ = elementCtx->globalSpaceIndex(/*spaceIdx=*/dofIdx, /*timeIdx=*/0);
|
|
|
|
jacobian_->addToBlock(globJ, globI, localLinearizer.jacobian(dofIdx, primaryDofIdx));
|
|
}
|
|
}
|
|
|
|
if (getPropValue<TypeTag, Properties::UseLinearizationLock>())
|
|
globalMatrixMutex_.unlock();
|
|
}
|
|
|
|
// apply the constraints to the solution. (i.e., the solution of constraint degrees
|
|
// of freedom is set to the value of the constraint.)
|
|
void applyConstraintsToSolution_()
|
|
{
|
|
if (!enableConstraints_())
|
|
return;
|
|
|
|
// TODO: assuming a history size of 2 only works for Euler time discretizations!
|
|
auto& sol = model_().solution(/*timeIdx=*/0);
|
|
auto& oldSol = model_().solution(/*timeIdx=*/1);
|
|
|
|
auto it = constraintsMap_.begin();
|
|
const auto& endIt = constraintsMap_.end();
|
|
for (; it != endIt; ++it) {
|
|
sol[it->first] = it->second;
|
|
oldSol[it->first] = it->second;
|
|
}
|
|
}
|
|
|
|
// apply the constraints to the linearization. (i.e., for constrain degrees of
|
|
// freedom the Jacobian matrix maps to identity and the residual is zero)
|
|
void applyConstraintsToLinearization_()
|
|
{
|
|
if (!enableConstraints_())
|
|
return;
|
|
|
|
auto it = constraintsMap_.begin();
|
|
const auto& endIt = constraintsMap_.end();
|
|
for (; it != endIt; ++it) {
|
|
unsigned constraintDofIdx = it->first;
|
|
|
|
// reset the column of the Jacobian matrix
|
|
// put an identity matrix on the main diagonal of the Jacobian
|
|
jacobian_->clearRow(constraintDofIdx, Scalar(1.0));
|
|
|
|
// make the right-hand side of constraint DOFs zero
|
|
residual_[constraintDofIdx] = 0.0;
|
|
}
|
|
}
|
|
|
|
static bool enableConstraints_()
|
|
{ return getPropValue<TypeTag, Properties::EnableConstraints>(); }
|
|
|
|
Simulator *simulatorPtr_;
|
|
std::vector<ElementContext*> elementCtx_;
|
|
|
|
// The constraint equations (only non-empty if the
|
|
// EnableConstraints property is true)
|
|
std::map<unsigned, Constraints> constraintsMap_;
|
|
|
|
|
|
struct FlowInfo
|
|
{
|
|
int faceId;
|
|
VectorBlock flow;
|
|
unsigned int nncId;
|
|
};
|
|
SparseTable<FlowInfo> flowsInfo_;
|
|
SparseTable<FlowInfo> floresInfo_;
|
|
|
|
// the jacobian matrix
|
|
std::unique_ptr<SparseMatrixAdapter> jacobian_;
|
|
|
|
// the right-hand side
|
|
GlobalEqVector residual_;
|
|
|
|
LinearizationType linearizationType_;
|
|
|
|
std::mutex globalMatrixMutex_;
|
|
|
|
std::vector<std::set<unsigned int>> sparsityPattern_;
|
|
|
|
struct FullDomain
|
|
{
|
|
explicit FullDomain(const GridView& v) : view (v) {}
|
|
GridView view;
|
|
std::vector<bool> interior; // Should remain empty.
|
|
};
|
|
// Simple domain object used for full-domain linearization, it allows
|
|
// us to have the same interface for sub-domain and full-domain work.
|
|
// Pointer since it must defer construction, due to GridView member.
|
|
std::unique_ptr<FullDomain> fullDomain_;
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif
|