mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-18 17:42:58 -06:00
fabdfbafcb
since the unit code within opm-parser is now a drop-in replacement, this simplifies things and make them less error-prone. unfortunately, this requires quite a few PRs. (most are pretty trivial, though.)
410 lines
17 KiB
C++
410 lines
17 KiB
C++
/*
|
|
Copyright 2012 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
#include "config.h"
|
|
|
|
#include <opm/core/utility/miscUtilitiesBlackoil.hpp>
|
|
|
|
#include <opm/core/grid.h>
|
|
#include <opm/core/wells.h>
|
|
#include <opm/core/linalg/blas_lapack.h>
|
|
#include <opm/core/props/BlackoilPropertiesInterface.hpp>
|
|
#include <opm/core/simulator/BlackoilState.hpp>
|
|
#include <opm/core/simulator/WellState.hpp>
|
|
#include <opm/common/ErrorMacros.hpp>
|
|
#include <opm/parser/eclipse/Units/Units.hpp>
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <functional>
|
|
#include <limits>
|
|
#include <iostream>
|
|
#include <iterator>
|
|
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
/// @brief Computes injected and produced surface volumes of all phases.
|
|
/// Note 1: assumes that only the first phase is injected.
|
|
/// Note 2: assumes that transport has been done with an
|
|
/// implicit method, i.e. that the current state
|
|
/// gives the mobilities used for the preceding timestep.
|
|
/// Note 3: Gives surface volume values, not reservoir volumes
|
|
/// (as the incompressible version of the function does).
|
|
/// Also, assumes that transport_src is given in surface volumes
|
|
/// for injector terms!
|
|
/// @param[in] props fluid and rock properties.
|
|
/// @param[in] state state variables (pressure, sat, surfvol)
|
|
/// @param[in] transport_src if < 0: total resv outflow, if > 0: first phase surfv inflow
|
|
/// @param[in] dt timestep used
|
|
/// @param[out] injected must point to a valid array with P elements,
|
|
/// where P = s.size()/src.size().
|
|
/// @param[out] produced must also point to a valid array with P elements.
|
|
void computeInjectedProduced(const BlackoilPropertiesInterface& props,
|
|
const BlackoilState& state,
|
|
const std::vector<double>& transport_src,
|
|
const double dt,
|
|
double* injected,
|
|
double* produced)
|
|
{
|
|
const int num_cells = transport_src.size();
|
|
if (props.numCells() != num_cells) {
|
|
OPM_THROW(std::runtime_error, "Size of transport_src vector does not match number of cells in props.");
|
|
}
|
|
const int np = props.numPhases();
|
|
if (int(state.saturation().size()) != num_cells*np) {
|
|
OPM_THROW(std::runtime_error, "Sizes of state vectors do not match number of cells.");
|
|
}
|
|
const std::vector<double>& press = state.pressure();
|
|
const std::vector<double>& temp = state.temperature();
|
|
const std::vector<double>& s = state.saturation();
|
|
const std::vector<double>& z = state.surfacevol();
|
|
std::fill(injected, injected + np, 0.0);
|
|
std::fill(produced, produced + np, 0.0);
|
|
std::vector<double> visc(np);
|
|
std::vector<double> mob(np);
|
|
std::vector<double> A(np*np);
|
|
std::vector<double> prod_resv_phase(np);
|
|
std::vector<double> prod_surfvol(np);
|
|
for (int c = 0; c < num_cells; ++c) {
|
|
if (transport_src[c] > 0.0) {
|
|
// Inflowing transport source is a surface volume flux
|
|
// for the first phase.
|
|
injected[0] += transport_src[c]*dt;
|
|
} else if (transport_src[c] < 0.0) {
|
|
// Outflowing transport source is a total reservoir
|
|
// volume flux.
|
|
const double flux = -transport_src[c]*dt;
|
|
const double* sat = &s[np*c];
|
|
props.relperm(1, sat, &c, &mob[0], 0);
|
|
props.viscosity(1, &press[c], &temp[c], &z[np*c], &c, &visc[0], 0);
|
|
props.matrix(1, &press[c], &temp[c], &z[np*c], &c, &A[0], 0);
|
|
double totmob = 0.0;
|
|
for (int p = 0; p < np; ++p) {
|
|
mob[p] /= visc[p];
|
|
totmob += mob[p];
|
|
}
|
|
std::fill(prod_surfvol.begin(), prod_surfvol.end(), 0.0);
|
|
for (int p = 0; p < np; ++p) {
|
|
prod_resv_phase[p] = (mob[p]/totmob)*flux;
|
|
for (int q = 0; q < np; ++q) {
|
|
prod_surfvol[q] += prod_resv_phase[p]*A[q + np*p];
|
|
}
|
|
}
|
|
for (int p = 0; p < np; ++p) {
|
|
produced[p] += prod_surfvol[p];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/// @brief Computes total mobility for a set of saturation values.
|
|
/// @param[in] props rock and fluid properties
|
|
/// @param[in] cells cells with which the saturation values are associated
|
|
/// @param[in] p pressure (one value per cell)
|
|
/// @param[in] temp temperature (one value per cell)
|
|
/// @param[in] z surface-volume values (for all P phases)
|
|
/// @param[in] s saturation values (for all phases)
|
|
/// @param[out] totmob total mobilities.
|
|
void computeTotalMobility(const Opm::BlackoilPropertiesInterface& props,
|
|
const std::vector<int>& cells,
|
|
const std::vector<double>& press,
|
|
const std::vector<double>& temp,
|
|
const std::vector<double>& z,
|
|
const std::vector<double>& s,
|
|
std::vector<double>& totmob)
|
|
{
|
|
std::vector<double> pmobc;
|
|
|
|
computePhaseMobilities(props, cells, press, temp, z, s, pmobc);
|
|
|
|
const std::size_t np = props.numPhases();
|
|
const std::vector<int>::size_type nc = cells.size();
|
|
|
|
totmob.clear();
|
|
totmob.resize(nc, 0.0);
|
|
|
|
for (std::vector<int>::size_type c = 0; c < nc; ++c) {
|
|
for (std::size_t p = 0; p < np; ++p) {
|
|
totmob[ c ] += pmobc[c*np + p];
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
/// @brief Computes total mobility and omega for a set of saturation values.
|
|
/// @param[in] props rock and fluid properties
|
|
/// @param[in] cells cells with which the saturation values are associated
|
|
/// @param[in] p pressure (one value per cell)
|
|
/// @param[in] z surface-volume values (for all P phases)
|
|
/// @param[in] s saturation values (for all phases)
|
|
/// @param[out] totmob total mobility
|
|
/// @param[out] omega fractional-flow weighted fluid densities.
|
|
void computeTotalMobilityOmega(const Opm::BlackoilPropertiesInterface& props,
|
|
const std::vector<int>& cells,
|
|
const std::vector<double>& p,
|
|
const std::vector<double>& z,
|
|
const std::vector<double>& s,
|
|
std::vector<double>& totmob,
|
|
std::vector<double>& omega)
|
|
{
|
|
std::vector<double> pmobc;
|
|
|
|
computePhaseMobilities(props, cells, p, z, s, pmobc);
|
|
|
|
const std::size_t np = props.numPhases();
|
|
const std::vector<int>::size_type nc = cells.size();
|
|
|
|
totmob.clear();
|
|
totmob.resize(nc, 0.0);
|
|
omega.clear();
|
|
omega.resize(nc, 0.0);
|
|
|
|
const double* rho = props.density();
|
|
for (std::vector<int>::size_type c = 0; c < nc; ++c) {
|
|
for (std::size_t p = 0; p < np; ++p) {
|
|
totmob[ c ] += pmobc[c*np + p];
|
|
omega [ c ] += pmobc[c*np + p] * rho[ p ];
|
|
}
|
|
|
|
omega[ c ] /= totmob[ c ];
|
|
}
|
|
}
|
|
*/
|
|
|
|
/// @brief Computes phase mobilities for a set of saturation values.
|
|
/// @param[in] props rock and fluid properties
|
|
/// @param[in] cells cells with which the saturation values are associated
|
|
/// @param[in] p pressure (one value per cell)
|
|
/// @param[in] T temperature (one value per cell)
|
|
/// @param[in] z surface-volume values (for all P phases)
|
|
/// @param[in] s saturation values (for all phases)
|
|
/// @param[out] pmobc phase mobilities (for all phases).
|
|
void computePhaseMobilities(const Opm::BlackoilPropertiesInterface& props,
|
|
const std::vector<int>& cells,
|
|
const std::vector<double>& p,
|
|
const std::vector<double>& T,
|
|
const std::vector<double>& z,
|
|
const std::vector<double>& s,
|
|
std::vector<double>& pmobc)
|
|
{
|
|
const int nc = props.numCells();
|
|
const int np = props.numPhases();
|
|
|
|
assert(int(s.size()) == nc * np);
|
|
|
|
std::vector<double> mu(nc*np);
|
|
props.viscosity(nc, &p[0], &T[0], &z[0], &cells[0], &mu[0], 0);
|
|
|
|
pmobc.clear();
|
|
pmobc.resize(nc*np, 0.0);
|
|
double* dpmobc = 0;
|
|
props.relperm(nc, &s[0], &cells[0],
|
|
&pmobc[0], dpmobc);
|
|
|
|
std::transform(pmobc.begin(), pmobc.end(),
|
|
mu.begin(),
|
|
pmobc.begin(),
|
|
std::divides<double>());
|
|
}
|
|
|
|
/// Computes the fractional flow for each cell in the cells argument
|
|
/// @param[in] props rock and fluid properties
|
|
/// @param[in] cells cells with which the saturation values are associated
|
|
/// @param[in] p pressure (one value per cell)
|
|
/// @param[in] T temperature (one value per cell)
|
|
/// @param[in] z surface-volume values (for all P phases)
|
|
/// @param[in] s saturation values (for all phases)
|
|
/// @param[out] fractional_flow the fractional flow for each phase for each cell.
|
|
void computeFractionalFlow(const Opm::BlackoilPropertiesInterface& props,
|
|
const std::vector<int>& cells,
|
|
const std::vector<double>& p,
|
|
const std::vector<double>& T,
|
|
const std::vector<double>& z,
|
|
const std::vector<double>& s,
|
|
std::vector<double>& fractional_flows)
|
|
{
|
|
const int num_phases = props.numPhases();
|
|
|
|
computePhaseMobilities(props, cells, p, T, z, s, fractional_flows);
|
|
|
|
for (std::vector<int>::size_type i = 0; i < cells.size(); ++i) {
|
|
double phase_sum = 0.0;
|
|
for (int phase = 0; phase < num_phases; ++phase) {
|
|
phase_sum += fractional_flows[i * num_phases + phase];
|
|
}
|
|
for (int phase = 0; phase < num_phases; ++phase) {
|
|
fractional_flows[i * num_phases + phase] /= phase_sum;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Computes the surface volume densities from saturations by the formula
|
|
/// z = A s
|
|
/// for a number of data points, where z is the surface volume density,
|
|
/// s is the saturation (both as column vectors) and A is the
|
|
/// phase-to-component relation matrix.
|
|
/// @param[in] n number of data points
|
|
/// @param[in] np number of phases, must be 2 or 3
|
|
/// @param[in] A array containing n square matrices of size num_phases^2,
|
|
/// in Fortran ordering, typically the output of a call
|
|
/// to the matrix() method of a BlackoilProperties* class.
|
|
/// @param[in] saturation concatenated saturation values (for all P phases)
|
|
/// @param[out] surfacevol concatenated surface-volume values (for all P phases)
|
|
void computeSurfacevol(const int n,
|
|
const int np,
|
|
const double* A,
|
|
const double* saturation,
|
|
double* surfacevol)
|
|
{
|
|
// Note: since this is a simple matrix-vector product, it can
|
|
// be done by a BLAS call, but then we have to reorder the A
|
|
// matrix data.
|
|
std::fill(surfacevol, surfacevol + n*np, 0.0);
|
|
for (int i = 0; i < n; ++i) {
|
|
for (int col = 0; col < np; ++col) {
|
|
for (int row = 0; row < np; ++row) {
|
|
surfacevol[i*np + row] += A[i*np*np + row + col*np] * saturation[i*np + col];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// @brief Computes saturation from surface volume
|
|
void computeSaturation(const BlackoilPropertiesInterface& props,
|
|
BlackoilState& state)
|
|
{
|
|
|
|
const int np = props.numPhases();
|
|
const int nc = props.numCells();
|
|
std::vector<double> allA(nc*np*np);
|
|
std::vector<int> allcells(nc);
|
|
for (int c = 0; c < nc; ++c) {
|
|
allcells[c] = c;
|
|
}
|
|
|
|
//std::vector<double> res_vol(np);
|
|
const std::vector<double>& z = state.surfacevol();
|
|
|
|
props.matrix(nc, &state.pressure()[0], &state.temperature()[0], &z[0], &allcells[0], &allA[0], 0);
|
|
|
|
// Linear solver.
|
|
MAT_SIZE_T n = np;
|
|
MAT_SIZE_T nrhs = 1;
|
|
MAT_SIZE_T lda = np;
|
|
std::vector<MAT_SIZE_T> piv(np);
|
|
MAT_SIZE_T ldb = np;
|
|
MAT_SIZE_T info = 0;
|
|
|
|
|
|
//double res_vol;
|
|
double tot_sat;
|
|
const double epsilon = std::sqrt(std::numeric_limits<double>::epsilon());
|
|
|
|
for (int c = 0; c < nc; ++c) {
|
|
double* A = &allA[c*np*np];
|
|
const double* z_loc = &z[c*np];
|
|
double* s = &state.saturation()[c*np];
|
|
|
|
for (int p = 0; p < np; ++p){
|
|
s[p] = z_loc[p];
|
|
}
|
|
|
|
dgesv_(&n, &nrhs, &A[0], &lda, &piv[0], &s[0], &ldb, &info);
|
|
|
|
tot_sat = 0;
|
|
for (int p = 0; p < np; ++p){
|
|
if (s[p] < epsilon) // saturation may be less then zero due to round of errors
|
|
s[p] = 0;
|
|
|
|
tot_sat += s[p];
|
|
}
|
|
|
|
for (int p = 0; p < np; ++p){
|
|
s[p] = s[p]/tot_sat;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/// Compute two-phase transport source terms from well terms.
|
|
/// Note: Unlike the incompressible version of this function,
|
|
/// this version computes surface volume injection rates,
|
|
/// production rates are still total reservoir volumes.
|
|
/// \param[in] props Fluid and rock properties.
|
|
/// \param[in] wells Wells data structure.
|
|
/// \param[in] well_state Well pressures and fluxes.
|
|
/// \param[out] transport_src The transport source terms. They are to be interpreted depending on sign:
|
|
/// (+) positive inflow of first (water) phase (surface volume),
|
|
/// (-) negative total outflow of both phases (reservoir volume).
|
|
void computeTransportSource(const BlackoilPropertiesInterface& props,
|
|
const Wells* wells,
|
|
const WellState& well_state,
|
|
std::vector<double>& transport_src)
|
|
{
|
|
int nc = props.numCells();
|
|
transport_src.clear();
|
|
transport_src.resize(nc, 0.0);
|
|
// Well contributions.
|
|
if (wells) {
|
|
const int nw = wells->number_of_wells;
|
|
const int np = wells->number_of_phases;
|
|
if (np != 2) {
|
|
OPM_THROW(std::runtime_error, "computeTransportSource() requires a 2 phase case.");
|
|
}
|
|
std::vector<double> A(np*np);
|
|
for (int w = 0; w < nw; ++w) {
|
|
const double* comp_frac = wells->comp_frac + np*w;
|
|
for (int perf = wells->well_connpos[w]; perf < wells->well_connpos[w + 1]; ++perf) {
|
|
const int perf_cell = wells->well_cells[perf];
|
|
double perf_rate = well_state.perfRates()[perf];
|
|
if (perf_rate > 0.0) {
|
|
// perf_rate is a total inflow reservoir rate, we want a surface water rate.
|
|
if (wells->type[w] != INJECTOR) {
|
|
std::cout << "**** Warning: crossflow in well "
|
|
<< w << " perf " << perf - wells->well_connpos[w]
|
|
<< " ignored. Reservoir rate was "
|
|
<< perf_rate/Opm::unit::day << " m^3/day." << std::endl;
|
|
perf_rate = 0.0;
|
|
} else {
|
|
assert(std::fabs(comp_frac[0] + comp_frac[1] - 1.0) < 1e-6);
|
|
perf_rate *= comp_frac[0]; // Water reservoir volume rate.
|
|
props.matrix(1, &well_state.perfPress()[perf], &well_state.temperature()[w], comp_frac, &perf_cell, &A[0], 0);
|
|
perf_rate *= A[0]; // Water surface volume rate.
|
|
}
|
|
}
|
|
transport_src[perf_cell] += perf_rate;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
} // namespace Opm
|